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Abstract

Significant progress has been made recently in the follow-
ing two lines of research in the intersection of AI and game
theory: (1) the computation of optimal strategies to commit
to (Stackelberg strategies), and (2) the computation of corre-
lated equilibria of stochastic games. In this paper, we unite
these two lines of research by studying the computation of
Stackelberg strategies in stochastic games. We provide the-
oretical results on the value of being able to commit and the
value of being able to correlate, as well as complexity results
about computing Stackelberg strategies in stochastic games.
We then modify the QPACE algorithm (MacDermed et al.
2011) to compute Stackelberg strategies, and provide experi-
mental results.

1 Introduction
Computing game-theoretic solutions is a topic that has long
been of interest to AI researchers. A recent line of research
focuses on two-player games in which player 1 is able to
commit to a strategy before the other player moves. The
following standard example illustrates the potential benefit
of such commitment.

L R
U (1,1) (3,0)
D (0,0) (2,1)

Figure 1: Normal-form game used in Example 1.

Example 1 (known). Consider the normal-form game in
Figure 1. For the case where the players move simulta-
neously (no ability to commit), the unique Nash equilib-
rium is (U,L): U strictly dominates D, so that the game
is solvable by iterated strict dominance. Player 1 (the row
player) receives utility 1. However, now suppose that player
1 has the ability to commit. Then, she is better off com-
mitting to play D, which will incentivize player 2 to play
R, resulting in a utility of 2 for player 1. The situation
gets even better for player 1 if she can commit to a mixed
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strategy: in this case, she can commit to the mixed strat-
egy (.5 − ε, .5 + ε), which still incentivizes player 2 to
play R, but now player 1 receives an expected utility of
2.5− ε. To ensure the existence of optimal strategies, we as-
sume (as is commonly done (Conitzer and Sandholm 2006;
Paruchuri et al. 2008)) that player 2 breaks ties in player
1’s favor, so that the optimal strategy for player 1 to commit
to is (.5, .5), resulting in a utility of 2.5. (Note that there is
never a reason for player 2 to randomize, since he effectively
faces a single-agent decision problem.)

Besides potentially increasing the utility of player 1 (and
never decreasing it (von Stengel and Zamir 2010)), the use
of mixed Stackelberg strategies has several other technical
advantages. First, it avoids the dreaded equilibrium selec-
tion problem: in simultaneous-move games, if the players
choose their strategies from different equilibria, the result
is not necessarily an equilibrium. Second, in two-player
normal-form games, an optimal mixed Stackelberg strategy
can be computed in polynomial time using linear program-
ming (Conitzer and Sandholm 2006; von Stengel and Za-
mir 2010), whereas computing a Nash equilibrium is PPAD-
complete (Daskalakis, Goldberg, and Papadimitriou 2006;
Chen and Deng 2006), and if the goal is to find an optimal
Nash equilibrium, typical objective functions (such as the
sum of the players’ utilities or even just player 1’s utility)
are NP-hard even to approximate (Gilboa and Zemel 1989;
Conitzer and Sandholm 2008). (However, an optimal corre-
lated equilibrium can be computed in polynomial time using
linear programming.) Perhaps in part due to some of these
advantages, the computation of mixed Stackelberg strategies
has recently found application in various real security prob-
lems, including airport security (Jain et al. 2008; Pita et al.
2009), assigning Federal Air Marshals to flights (Tsai et al.
2009), and Coast Guard patrols (Shieh et al. 2012).

Most of the work on computing mixed Stackelberg strate-
gies has focused on games where neither player learns any-
thing about the other’s actions until the end of the game, with
the exception of player 2 learning player 1’s mixed strategy
before acting. (An exception is work on computing Stack-
elberg strategies in extensive-form games (Letchford and
Conitzer 2010), on which we will draw later in the paper.)
A useful language for describing games that play out over
time is that of stochastic games, a generalization of MDPs to
multiple players. Computing equilibria of stochastic games
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S
L R

N (0,1);E (0,0);C

E
N

N (0,0);E

C
L R

U (2,ε);E (0,0);E
D (0,0);E (0,2);E

Figure 2: Example stochastic game.

presents a number of challenges, but a recent sequence of pa-
pers makes significant progress on the problem of comput-
ing correlated equilibria that are not necessarily stationary
(i.e., the players’ actions may depend on the history of play,
not just the current state). This line of research replaces the
notion of value (the maximum utility) in traditional value
iteration with an achievable set (the set of Pareto efficient
maximal utilities for each player). Achievable sets represent
all possible utility vectors yielded by correlated policies in
equilibrium. Murray and Gordon (2007) presented the first
exact algorithm for computing these achievable sets. How-
ever, the complexity of maintaining these achievable sets in-
creased exponentially with each iteration, leading to an al-
gorithm that where both time and space requirements scaled
exponentially. MacDermed et al. (2011) showed how to
epsilon-approximate achievable sets efficiently while simul-
taneously lowering computational complexity, leading to the
Quick Polytope Approximation of all Correlated Equilibria
algorithm (QPACE).

In this paper, we unite these two lines of work and focus
on the problem of computing optimal strategies to commit
to in stochastic games. The recent methods for computing
correlated equilibria of stochastic games turn out to com-
bine well with recent observations about the relationship be-
tween Stackelberg strategies and correlated equilibrium in
normal-form games (Conitzer and Korzhyk 2011), although
there are some additional subtleties in stochastic games, as
we will see. The idea of commitment also combines well
with the notion of “grim-trigger” strategies (strategies that
aim to forever minimize another player’s utility) in stochas-
tic games, because player 1’s commitment power will make
it credible for her to play such a strategy.

2 Stochastic games
A two-player stochastic game is defined as follows: We have
a two players, 1 and 2, a set of states T and in each state t,
we have a set of actions for each player At. For each state t
and each action pair in A1

t × A2
t , we have an outcome that

consists of two elements, the utilities that each of the play-
ers will achieve in that round and information on what state
the game will transition to next (possibly stochastically). Fi-
nally, we have a discount factor γ which is used to discount
the value of future payoffs.

Consider the game in Figure 2. This game has three states:
S, C and E. We assume state S is our initial state, meaning
that play will begin with the possible actionsA1

S for player 1

S
L R

N (0,2);E (0,0);F

C
N

U (0,3);E
D (0,0);E

F
L R

N (2,1);E (0,0);C

E
N

N (0,0);E

Figure 3: Example game where signaling must occur early,
but not too early.

and A2
S for player 2 (throughout this paper play will always

begin in the state labeled S). In this state player 1 has only 1
possible action; thus the outcome depends entirely on player
2. If player two chooses to play action L here (which we
will denote LS), then the outcome is (0,1);E. This means
that player 1 receives a utility of 0, player 2 receives a utility
of 1, and the game transitions to stateE, meaning in the next
round the two players will be playing the normal-form game
depicted as state E. Alternatively, if player 2 chooses RS ,
then both players receive a utility of 0 for this round, and
play transitions to state C.

3 Commitment and signals
In a two-player Stackelberg game, player 1 may be able
to do more than just committing to play a specific mixed
strategy; she may also be able to send signals to the other
player. This idea has previously been explored for normal-
form games (Conitzer and Korzhyk 2011). Specifically, they
consider the case where she can commit to drawing from a
joint distribution over signals and her own actions, and then
send the signal to player 2 before he moves, while playing
her drawn action. (Without loss of generality, we can as-
sume that the signal player 1 sends to player 2 is simply the
action that he should take.) They show that in a two-player
normal-form game, player 1 gains nothing from the ability to
commit to such a correlated strategy rather than just a mixed
strategy (that does not signal anything to the other player).
The reason is that for each signal, there will be a distribu-
tion over player 1’s actions conditional on that signal—and
player 1 may as well just commit to playing the best of those
distributions from her perspective.

It turns out that in two-player stochastic games, signaling
becomes more meaningful. First, let us return to the game
in Figure 2. If we assume γ = 1, if player 1 commits to
with probability (.5 − ε) send signal LC and play UC and
commits to with probability (.5 + ε) send signal RC and
play DC , then player 2 can expect a utility of 1+2.5ε - ε2 for
taking the actionRS . Without signaling, if player 1 commits
to UC less than 2

2+ε of the time, player 2 will respond with
RC which leads to a utility of 0 for player 1. Furthermore,
if player 1 commits to UC at at least 2

2+ε of the time, player
2 will always prefer LS which again gives a utility of 0 to
player 1.

However, being able to signal about one’s action at a state
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only when reaching that state may not be enough in every
game. Consider the game pictured in Figure 3. To achieve
a positive utility in this game, player 1 needs to signal what
she will be playing in state C before player 2 chooses his
action in state F but after he acts in state S. Consider what
happens if player 1 commits to (.5 + ε)UC + (.5 − ε)DC .
If she commits to sending the following signal to player 2
in state F : RF when she will be playing UC and LF when
she will be playing DC , it is possible for the two players
to achieve a correlated equilibrium of (.5 + ε)(RF , UC) +
(.5 − ε)LF . Given this, player 2 would prefer RS to LS as
he would achieve an expected utility of 2 + 2ε for RS . In
contrast, if player 1 only sends the signal after the transition
to state C, then player 2 will prefer to play RF (and LS). On
the other hand, the information signaled informs player 2 of
what action player 1 will play in state C and if this infor-
mation is signaled too early, namely before player 2 makes
a choice in S, then he would prefer to choose LS when the
signal is to play LF . Thus, without the ability to signal this
information at this specific time, this correlation would not
be possible and player 1 would achieve a utility of 0.

4 Value of correlation and commitment
The game in Figure 3 illustrates a situation where player 1
would be unable to achieve a positive utility without both the
ability to commit to a mixed strategy and the ability to cor-
relate her actions with those of player 2. In this game com-
mitment and correlation work synergistically. In this section
we show it is not always so: in some games commitment
by itself obtains all the value whereas correlation by itself
obtains none, and in other games the situation is reversed.

Towards this end, we define the following three values.
First, we define OptCom as player 1’s utility in the optimal
commitment strategy1 that does not use correlation. Sec-
ond, we define OptCor as player 1’s utility in the correlated
equilibrium that maximizes payoff for player 1. Finally, we
define Opt as player 1’s utility in the optimal commitment
strategy that uses correlation.

S
L R

U (ε,1);E (1,0);E
D (0,0);E (1-ε,1);E

E
N

N (0,0);E

Figure 4: Game where commitment offers an unbounded
advantage over correlation.

Theorem 1. There exists a stochastic game where
OptCom
OptCor =∞ and OptCom = Opt for any discount factor.

Proof. Consider the game in Figure 4.2 This is effectively
a one-shot game because of the immediate transition to an

1We use the standard definition of optimal here, where a com-
mitment strategy is considered to be optimal if it maximizes the
utility for player 1.

2We have used the stage game for state S elsewhere to point out
that the value of commitment in normal-form games is∞ (Letch-
ford, Korzhyk, and Conitzer 2012).

absorbing state. To calculate OptCom and OptCor for this
game, we can reason as follows. In the normal-form game
associated with S, US dominates DS , which allows us to
solve this game by iterated strict dominance. Thus the only
correlated equilibrium is (US ,LS) which gives a utility of ε
to player 1. However, if player 1 is able to commit to playing
DS with probability 1, then player 2’s best response to this is
to play RS (both with and without correlation). This causes
player 1 to receive a utility of 1 − ε. Thus, OptComOptCor = 1−ε

ε

which tends to∞ as epsilon approaches 0 and OptCom =
Opt.

S
L R

U (0,0);C (0,.5);E
D (2ε,0);E (ε,ε);E

E
N

N (0,0);E

C
L R

U (0,0);E ( 1γ , εγ );E
D ( εγ , 1γ );E (0,0);E

Figure 5: Game where correlation offers an unbounded ad-
vantage over commitment.

Theorem 2. For any γ > 0 there exists a stochastic game
where OptCor

OptCom =∞ and OptCor = Opt.

Proof. Consider the game in Figure 5. To calculate OptCor
and OptCom for this game, let us start by finding the op-
timal Stackelberg strategy without correlation. Let us first
consider what is necessary to convince player 2 to play LS .
Even if player 1 commits to US , player 2 will best respond
by playing RS (which gives player 1 a utility of 0) unless
player 1 commits toDC with probability at least .5. If player
1 does commit toDC with probability at least .5, then player
2’s best response for C will be LC and at best player 1 can
expect at ε utility from C. Thus, there is no way for player
1 to achieve more than 2ε by convincing player 2 to best re-
spond with LS . As both outcomes where player 2 plays RS
transition to the absorbing state E and give player 1 at most
ε utility, we can conclude that player 1 will achieve at most
2ε via commitment without correlation.

Next, consider the following correlated equilibrium,
which involves: (US ,LS), .5(UC ,RC) + .5(DC ,LC). This
gives a discounted expected value of .5 + .5ε for both play-
ers for state C, causing player 1 to prefer US to DS and
player 2 to prefer LS to RS . Player 1’s utility under this
equilibrium is .5+ .5ε. Thus, OptCor

OptCom ≥
.5+.5ε

2ε which tends
to∞ as ε goes to 0.

5 Hardness results
In this section we consider the difficulty of solving for an
optimal Stackelberg strategy. We consider two main dimen-
sions of the problem, the amount of memory about past
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h = 0 0 < h <∞ h =∞
Corr. NP-hard (Th 3) NP-hard (Th 4) ?3

No Corr. NP-hard (Th 3) NP-hard (Th 4) NP-hard (Th 5)

Figure 6: Overview of hardness results. h represents the
amount of history that player 1 can remember.

states and actions player 1 can base her actions upon and
the ability of player 1 to signal to the follower to enable
correlation. For the memory dimension we consider three
main cases. In the first case player 1 is constrained to com-
mit to a stationary strategy. In the second case player 1 has
some finite memory and can commit to act based upon the
states and actions taken in these past timesteps. Finally, in
the third case player 1 has an infinite memory, and can com-
mit based on all actions and states that have occurred since
the start of the game. For the signaling dimension we con-
sider two cases, both with and without the ability to signal.
An overview of our results appears in Figure 6.

Theorem 3. It is NP-hard to solve for the optimal commit-
ment to a stationary strategy in a stochastic game with or
without correlation, for any discount factor γ > 0.

Proof. We reduce an arbitrary instance of 3SAT to a stochas-
tic game such that player 1 can obtain utility 1 if and only
if the 3SAT instance is satisfiable. The 3SAT instance con-
sists ofN variables xi . . . xn andM clausesC1 . . . Cm. The
construction is pictured in Figure 7 and the details are as fol-
lows. We start with an initial state S, one state Ci for each
clause, one state xi for each variable and one final absorbing
state E. Our initial state S has no payoff for either player,
but transitions uniformly at random to a clause state Ci. Ad-
ditionally, E, the absorbing state has a single possible out-
come, namely (0,0);E.
Clause states: Each clause state is constructed as follows.
For each literal we have one row (Cxi ) and two columns
(C+x
i and C−xi ). If the literal is positive we have two entries

in the game, (Cxi ,C+x
i ) is assigned an outcome of ( 1γ ,0);x

and (Cxi ,C−xi ) is assigned an outcome of (0,1);E. If the lit-
eral is instead negative, we include the following two entries,
(Cxi ,C+x

i ) is assigned an outcome of ( 1γ ,0);E and (Cxi ,C−xi )
is assigned an outcome of (0,0);x. The other 12 outcomes of
the game are (0,0);E. In Figure 7 we show an example for a
clause with the literals (x1 ∨ ¬x2 ∨ x3).
Variable states: Each variable state has 1 column and two
rows +xi and −xi. The outcomes are as follows, for row
+xi it is (0, 1γ );E and for row −xi it is (0,0);E.
Proof of equivalence to 3SAT instance: We now show that
player 1 can obtain a utility of 1 from this game if and only if
there exists a satisfying assignment to the underlying 3SAT
instance. Let us start by considering when player 1 can ob-
tain a utility of 1 from a given clause state. We first con-
sider a row that corresponds to a positive literal. In this case,
if player 1 has also committed to +x in the corresponding
variable state, then the two non-zero outcomes in this row

3We show how to solve this approximately by a modification of
the QPACE algorithm in Section 6.

give payoffs of ( 1γ ,1) and (0,1). Since, by assumption, the
follower breaks ties in player 1’s favor, a signal to play C+x

(this could be either committing to play Cx or explicitly sig-
naling this to player 2) will lead to a utility of 1 for player 1.
If player 1 instead commits to any other strategy in x then a
signal to play C+x will instead lead to player 2 deviating to
C−x causing player 1 to receive 0 utility. Next, consider a
row corresponding to a negative literal. In this case, if player
1 has committed to −x in the corresponding variable state,
then the two potentially non-zero outcomes in this row gives
payoffs of (0,0) and ( 1γ ,0). With similar logic as before, a
signal to play C−x will lead to a utility of 0 for player 1 un-
less she has committed to −x. As there are three literals in
each clause, this gives player 1 three potential ways to incen-
tivize the follower to play in a way that is beneficial to player
1. However, later commitment (in the variable states) can
remove this potential (namely commitment in such a way to
preserve the potential for the opposing literal). If all three
of these signals lose their potential, player 1 is left with no
way to incentivize the follower to play in a way that gives
her utility if play reaches this clause. Since the initial state
forces a uniform random choice between these clauses sub-
games, this game will have expected value for player 1 of 1
if and only if all of the clause states have a utility of 1.

Theorem 4. It is NP-hard to solve for the optimal commit-
ment to a strategy that uses a constant h steps of history with
or without correlation and any discount factor γ > 0.

Proof. Consider the following modification to the reduction
used in the proof of Theorem 3. For each variable state, we
isnert h buffer states that give no payoffs before that state.
Thus, by the time player 1 reaches the variable state, they
will have forgotten which clause they originated from and
the above reduction will again hold.

For the case of infinite history, it is impossible to extend
the above 3SAT reduction. Consider the construction from
Theorem 3 with h buffer states inserted for each variable. If
player 1 has a memory of h + 1, when choosing a literal to
commit to, player 1 can condition this upon the clause the
players transitioned from. In this way, player 1 will be able
to “satisfy” both the positive and negative values of each
literal.

However, we note that stochastic games can model
extensive-form games with chance nodes, which allows us to
adapt the KNAPSACK reduction from Theorem 5 in (Letch-
ford and Conitzer 2010) with minor changes.

Theorem 5. It is NP-hard to solve for the optimal commit-
ment in a stochastic game even when the strategy is allowed
to use infinite history without correlation and any discount
factor γ > 0.

Proof. In the KNAPSACK problem, we are given a set of
N items, and for each of them, a value pi and a weight wi;
additionally, we are given a weight limit W . We are asked
to find a subset of the items with total weight at most W
that maximizes the sum of the pi in the subset. We reduce
an arbitrary KNAPSACK instance to a stochastic game, in
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S
N

N (0,0); 1
MC1 + ...+ 1

MCm

xi
N

+xi (0, 1γ );E
−xi (0,0);E

E
N

N (0,0);E

Ci (x1 ∨ ¬x2 ∨ x3)
C+x1
i C−x1

i C+x2
i C−x2

i C+x3
i C−x3

i

Cx1
i ( 1γ ,0);x1 (0,1);E (0,0);E (0,0);E (0,0);E (0,0);E

Cx2
i (0,0);E (0,0);E ( 1γ ,0);E (0,0);x2 (0,0);E (0,0);E

Cx3
i (0,0);E (0,0);E (0,0);E (0,0);E ( 1γ ,0);x3 (0,1);E

Figure 7: Stochastic game used in the hardness reduction of Theorem 3.

such a way that the maximal utility obtainable by player 1
with commitment (whether pure or mixed) is equal to the
optimal solution value in the KNAPSACK instance. This
game is illustrated in Figure 8, and defined formally below.
Initial state S: The first state contains two possible
choices by player 2, who chooses between an outcome of
(0,−W );E and a outcome which randomizes uniformly
over the item states, defined next.
Item states: Each item Ii has two states. At the top level
I1i (which can be reached directly from S), there is a state
where player 2 acts. It has two potential outcomes: one is
an outcome of (Npiγ ,−Nwiγ );E, the other is a transition to a
state I2i where only player 1 has a choice. The latter node
also has two outcomes: (0,−Nwiγ2 );E and (0,0);E.
Proof of equivalence to KNAPSACK instance: If for an
item i, player 1 commits to playing 100% InI2i , then player
2, breaking ties in 1’s favor, will move InI1i , resulting in dis-
counted payoffs of (Npi,−Nwi) if I1i is reached. Other-
wise, player 2 will move OutI1i , and player 1 will get 0 (and
player 2 at most 0). Because player 1 wants player 2 to
choose KS , there is no benefit to player 1 in moving InI2i
with probability strictly between 0 and 100%, since this will
only make KS less desirable to player 2 without benefiting
player 1. Thus, we can assume without loss of optimality
that player 1 commits to a pure strategy.

Let X be the set of indices of states where player 1 com-
mits to playing In. Then, player 2’s expected utility for
choosingKS is (1/N)

∑
i∈X −Nwi = −

∑
i∈X wi. Player

2 will choose KS if and only if
∑
i∈X wi ≤ W . Given this,

player 1’s expected utility is (1/N)
∑
i∈X Npi =

∑
i∈X pi.

Hence, finding player 1’s optimal strategy to commit to is
equivalent to solving the KNAPSACK instance.

6 Empirical Results
While we have shown that the ability to commit can, in the
extreme, provide an unbounded increase in utility, these re-
sults say little about the value of committing in general. We
present the first algorithm which can compute all correlated
commitment equilibria of a stochastic game. We use this

S
K A

N 1
N
I11 + ...+ 1

N
I1n (0,−W );E

I1i
In Out

N (Npi
γ

,−Nwi
γ

);E (0,0);I2i

I2i
N

In (0,−Nwi
γ2

);E
Out (0,0);E

E
N

N (0,0);E

Figure 8: Stochastic game used in the hardness reduction of
Theorem 5.

algorithm to compare a leader’s value using correlated com-
mitment to her value using only correlation, and make con-
clusions about the conditions under which commitment is
most important.

6.1 Computing Commitment Equilibria
The QPACE algorithm (MacDermed et al. 2011) efficiently
approximates the set of correlated equilibria in stochastic
games by iteratively contracting a state’s achievable set, by
removing policies that violate a player’s rationality con-
straints. Conitzer and Korzhyk (2011) showed that the set
of commitment equilibria is equivalent to the set of corre-
lated equilibria without the leader’s rationality constraints.
Therefore QPACE can be easily modified to approximately
compute commitment equilibria by removing the leader ra-
tionality constraints in the achievable set contraction step.

Every iteration of QPACE performs a backup similar to
single agent value iteration which improves the current esti-
mation of each state’s achievable set V (s). Achievable sets
are represented as polytopes with halfspace normals Hj and
offsets V (s)j . The normals H are fixed at initialization and
are the same for all achievable sets. A state’s backup is bro-
ken down into three steps: (1) Calculate the action achiev-
able sets Q(s,~a), giving us the set of possible continuation
utilities. (2) Construct a set of inequalities that defines the
set of equilibria. (3) Approximately project this feasible set
into value-vector space by solving a linear program for each
hyperplane V (s)j . Step two is the only step that needs to be
changed to compute feasible commitment policies instead of
correlated equilibria. We modify equation 6 in MacDermed
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et al. (2011) to not include rationality constraints for the
leader. The resulting set of inequalities defining the set of
commitment equilibria is shown in equation 1. This gives
us our polytope in R(n+1)|A|n over variables −→cu~ai and x~a of
feasible correlated equilibria:

For each player i who cannot commit,
for each pair of distinct actions α, β ∈ Ai∑

~a∈An

−−−→cu~a(α) i ≥
∑
~a∈An

x~a(α) [
−−−→
gt~a(β) i +R(s,~a(β))i]∑

~a∈An
x~a = 1 and ∀~a ∈ An, x~a ≥ 0

For each joint-action ~a ∈ An and halfspace j

Hj
−→cu~a ≤ x~a Q(s,~a)j

(1)

The rest of QPACE remains unchanged. Our modification
to QPACE is minor and leaves the strong theoretical proper-
ties of the original algorithm intact. Most importantly, the
algorithm converges to within ε in polynomial time and re-
turns a set of commitment equilibria which is guaranteed to
include all exact equilibria with additional solutions being
no worse than ε-equilibria, where ε is the approximation pa-
rameter.

6.2 Experiments on random games
We ran suites of experiments over sets of random games.
These random games varied over the number of states, ac-
tions, stochasticity (the number of successor states with non-
zero transition probability), and discount (γ). Unless oth-
erwise noted, games were run with four joint-actions, five
states, two successor states, a γ of 0.9 and an ε approxima-
tion error of 0.01. Results are averaged over 1000 games,
which allows our utility results to be accurate within 0.02
with 99% confidence. A random game is generated using the
following procedure: for each state joint-action pair k suc-
cessor states are chosen at random. The simplex over these
k states represents all possible probability distributions over
these states. A transition probability distribution is chosen
uniformly at random from this simplex. Each state joint-
action pair is also assigned a reward for each player drawn
uniformally at random. Finally, these rewards are normal-
ized such that each player’s rewards range between 0 and
1.

Our first set of experiments examines the scalability of the
algorithm. Despite our algorithm having fewer constraints
for each linear program than the original QPACE algorithm,
we found our algorithm to have running time nearly identi-
cal to the original. Because QPACE starts each linear pro-
gram at the solution of the previous iteration’s linear pro-
gram, the total number of basis changes over the course of
the entire algorithm is relatively small. Thus, fewer con-
straints reduces the overall running time by an insignificant
amount. Our algorithm appears to scale linearly in the num-
ber of states, joint-actions, and 1/ε (the first two of these are
shown in Figure 9).

Our second set of experiments focuses on determining the
importance of commitment vs. equilibrium selection. One

Figure 9: The running time of our algorithm is linear in the num-
ber of states and joint-actions.

of the more powerful aspects of committing is being able
to dictate which particular equilibrium of the many possi-
ble will be chosen. Without commitment, players are faced
with a bargaining problem to determine the which equilib-
rium will be chosen. This may result in significantly less
utility for a potential leader. It is important to differentiate
between the benefit of being able to commit to sub-rational
policies and the benefit of equilibrium selection. Towards
this end we compute both the Kalai-Smorodinsky bargain-
ing solution (Kalai and Smorodinsky 1975), which favors
equal gains to all parties, and the optimal selfish equilibrium
for the potential leader with and without commitment (Fig-
ure 10).

Figure 10: The average utility of being able to select a cor-
related or commitment equilibrium selfishly as opposed to the
leader’s Kalai-Smorodinsky bargaining solution or the follower’s
utility when the leader selected a commitment equilibrium.

The results show that as γ increases, the importance
of committing, over and above just being able to select
the equilibrium, decreases. This relationship is caused
by threats becoming more powerful as the horizon in-
creases. Strong threats act as a binding mechanism, permit-
ting a wider array of possible equilibria by allowing play-
ers to punish each other for deviations without the need
of someone violating her rationality constraint (as per folk-
theorems). On the other hand, the benefit of equilibrium se-
lection remains important regardless of the discount factor.
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The effect of equilibrium selection on the follower is even
more dramatic than it is for the leader (Figure 10). With a
small discount factor, the set of possible equilibria is small
and thus likely to provide both players with similar utili-
ties, even when the leader selects selfishly. As γ increases, a
leader has more options for forcing the follower down a path
more preferable to the leader at the expense of the follower.

Our third set of experiments examines how the number of
actions affects the value of committing. We tested random
games with a γ of both 0.0 and 0.4 across varying numbers
of actions per player (Figure 11). We observe that as the
number of actions increases, the relative commitment gain
decreases slightly because additional actions increase the
probability that a correlated equilibrium without commit-
ment will approach the unrestricted optimum, leaving less
room for improvement by committing. While more actions
decreases the importance of committing, the importance of
being able to select the equilibrium (as opposed to having to
bargain) remains high. This effect is stronger for larger val-
ues of γ. For games with very high discount factors, increas-
ing the number of actions tends to increase the total value of
the game, but not the relative importance of committing.

Figure 11: The best utility achievable by the leader using either
correlated or commitment equilibria compared to the unrestricted
optimum. Result are shown for γ = 0.0 and 0.4.

7 Conclusion
In this paper we showed how to adapt the QPACE algorithm
to approximately solve for the optimal commitment solution
in stochastic games. Additionally, we showed that removing
the ability to correlate or the ability to use the full history of
the game causes solving for the optimal commitment strat-
egy to become NP-hard. Finally, we studied the value that
both commitment and correlation provide to the leader, both
theoretically and experimentally.
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