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Abstract
Data sparsity is an emerging real-world problem ob-
served in a various domains ranging from sensor net-
works to medical diagnosis. Consecutively, numerous
machine learning methods were modeled to treat miss-
ing values. Nevertheless, sparsity, defined as missing
segments, has not been thoroughly investigated in the
context of time-series classification. We propose a novel
principle for classifying time series, which in contrast
to existing approaches, avoids reconstructing the miss-
ing segments in time series and operates solely on the
observed ones. Based on the proposed principle, we de-
velop a method that prevents adding noise that incurs
during the reconstruction of the original time series. Our
method adapts supervised matrix factorization by pro-
jecting time series in a latent space through stochastic
learning. Furthermore the projected data is built in a su-
pervised fashion via a logistic regression. Abundant ex-
periments on a large collection of 37 data sets demon-
strate the superiority of our method, which in the ma-
jority of cases outperforms a set of baselines that do not
follow our proposed principle.

1 Introduction
Time-series classification has attracted considerable re-
search interest during the recent decades. However the prob-
lem of classifying sparse time series has not been generally
analyzed. In the context of our study sparsity is defined as
the absence of time-series segments at random. The absence
of segments is due to either improper recordings or deliber-
ate avoidance of it. For instance in sensor networks, devices
like wireless transmitters often experience operational fail-
ures that result in sparse signals. Recording might also be
deliberately skipped, as in medical diagnosis, where high
costs lead to partial (sparse) array of measurements over
time (Rostamizadeh, Agarwal, and Bartlett 2011).

Dynamic time warping (DTW) is a distance measure
that identifies time-shifted patterns among series. DTW is
used for the nearest neighbor (NN) time-series classification
(Berndt and Clifford 1996). It has been presented that the
combination of DTW and NN achieved hard-to-beat results
(Ding et al. 2008). Unfortunately DTW is not directly appli-
cable to sparse time series, since the warping path procedure
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cannot operate with missing segments. An intuitive way to
overcome this can be done in two steps: (i) Approximately
reconstructing the full form of a sparse series, (ii) then apply
NN classifier with DTW on the full form.

In this two-step approach, reconstruction (a.k.a. imputa-
tion) can be either intra-series (Opfer and Knott 2001) or
collaborative (Marwala 2009). Intra-series approaches re-
construct the missing segment via analyzing the patterns in
the other present segments of the series. Such strategies, as
will be shown, perform non-optimally because of the unpre-
dictable patterns observed on typical time series data sets.
Collaborative techniques advocate sharing the structure in-
formation with other series instances in the same data set.
Specifically, missing segments are reconstructed by mim-
icking pattern structures from other time series, during the
same time interval as the missing segment. Yet, reconstruc-
tion techniques may produce noisy approximations of the
original series segments. As our results will demonstrate,
classification performance deteriorates for this reason.

Motivated by the aforementioned drawbacks of the recon-
struction techniques, we propose a novel principle to handle
sparsity (Section 3). Instead of focusing on improving re-
construction, our principle aims at classifying sparse time
series using only observed segments, without any need for
reconstructing the missing segments.

Based on this principle, we propose a new method
(Section 4) that adapts supervised matrix factorization,
which collaboratively extracts latent (hidden) features
of time series by considering only observed values. An
important aspect of matrix factorization, is that it creates a
latent feature space where all time-series instances jointly
share information. This latent space is built via a stochastic
learning technique which is specifically designed for sparse
data sets (Koren, Bell, and Volinsky 2009). Additionally,
our method performs supervised factorization, which
improves separability of latent data by enforcing a classi-
fication accuracy loss function (Menon and Elkan 2010).
In our implementation we introduce an all-vs-one logistic
regression loss function. Abundant experiments on a large
collection of 37 data sets demonstrate the superiority of our
method, which in the vast majority of cases outperforms a
set of baselines that do not follow our proposed principle
(Section 5).

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

928



2 Related Work

Time series classification has been highly elaborated by
machine learning researchers mostly in the two recent
decades. Various state-of-art classifiers have been adopted
to the time series domain, ranging from neural networks
(Kehagias and Petridis 1997), Bayesian networks (Pavlovic,
Frey, and Huang 1999) and Support Vector Machines (SVM)
(Eads et al. 2002). Distance based nearest neighbor em-
powered with a distance similarity technique called Dy-
namic Time Warping (DTW) overcomes the drawbacks of
other classifiers by detecting shifts of patterns in time. Re-
cent studies show that DTW is a hard-to-beat method in
terms of classification accuracy (Ding et al. 2008). DTW
computes the minimum warping distance between two se-
ries by constructing a matrix whose cells contain accumu-
lated similarity-aligned path cost (Keogh and Pazzani 2000).
Global constraints on the warping path can be applied to
restrict the subset of visitable cells around the diagonal,
called warping window (Keogh and Ratanamahatana 2005).
As mentioned in Introduction, in contrast to our proposed
method, DTW cannot directly handle sparsity.

Imputation is a long studied field in statistics and com-
puter science involved with the filling/reconstruction of
missing values of data set. Several imputation techniques
have been developed, where one of the most popular is
model based imputation, which offers a collaborative ap-
proach for imputing missing segments using information
from other data instances (Marwala 2009). Spline interpo-
lations, on the other hand, are used to complete missing cur-
vature segments by preserving the continuity and smooth-
ness of the curve (Opfer and Knott 2001). In comparison,
our method avoids reconstruction at all.

Matrix Factorization (MF) exploits hidden features of
a matrix by learning latent matrices whose dot product
represent the original (Srebro, Rennie, and Jaakola 2005;
Gemulla et al. 2011). Unification of different MF techniques
has been formalized as minimizing a generalized Bregman
divergence (Singh and Gordon 2008). Stochastic gradient
descent learning has been successfully applied for unsuper-
vised factorization of data sets with missing values (Koren,
Bell, and Volinsky 2009). For instance, in recommender sys-
tems various MF strategies have been recently adopted to
collaborative filtering of sparse user-item ratings with the
aim of recommending unrated pairs (Rendle and Schmidt-
Thieme 2008). Supervision, in the context of matrix factor-
ization, enables the linear separation of classes in the pro-
jected data space (Menon and Elkan 2010). The objective
function of the factorization has been shaped to enforce spe-
cific properties of the latent projected data, for example, ge-
ometric structure of affinity can be used to position neighbor
instances closer in the projected space (Cai et al. 2011). MF
has been also applied to the analysis of time series, for in-
stance in music transcription (Smaragdis and Brown 2003),
or EEG preprocessing (Rutkowski, Zdunek, and Cichocki
2007). Our study extends the prior works by adopting super-
vised factorization to sparse time series.

3 Proposed Principle and Method Outline
3.1 Proposed Principle
We define our data set to contain N time series over M time
points. Such data set can be represented as a sparse matrix,
denoted X ∈ (R ∪ {·})N×M , where {·} denotes the sparse
(null) cells. Each row of X corresponds to one time series.
The respective class labels can be defined alongside as Y ∈
{0, 1}N×L, where L is the count of distinct label values. In
this matrix each class label is a row vector where all values
are zero except the index of the class label value, which is set
to one. Our proposed principle aims at classifying unlabeled
time series directly, relying solely on observed time series
matrix cells, denoted as O = {(i, j) | Xi,j 6= {·}, 1 ≤ i ≤
N, 1 ≤ j ≤M}.

3.2 Method Outline
Our proposed method is composed of two steps: (i) super-
vised projection to a latent space and (ii) classification in this
latent space. During the first step, the data set is projected in
a latent space of K dimensions using supervised MF. Super-
vised factorization has been shown to boost the accuracy of
classifiers on the projected space (Menon and Elkan 2010).
In our study, we apply a polynomial kernel Support Vec-
tor Machine (SVM) (Cortes and Vapnik 1995) in order to
classify the projected data. Section 4 describes in details the
technique employed to handle the supervised factorization.

4 Supervised Matrix Factorization (SMF)
Matrix factorization approximates the original data set by
learning latent features matrices whose dot product can ap-
proximately reconstruct the original matrix as shown in
Equation 1. In our problem description the time series ma-
trix X are approximated by the dot product of two factor
matrices U ∈ RN×K and V ∈ RM×K , approximating only
the observed cells O. Meanwhile K is the dimensionality
of the latent space. Firstly, U is the latent representation of
time series, where each row Ui,: defines the latent features
of the original time series Xi,:. Similarly V is the latent rep-
resentation of time points.

X ≈O UVT (1)

Supervised factorization adds another objective, Equa-
tion 2, by conditioning the latent instances of U to be lin-
early separable w.r.t class labels Y. Let us initially define a
matrix W ∈ RK×L to be a set of linear logistic regression
weights, one column per class label. We mutually restrict U
and W to be built such that the logistic value of their dot
product can accurately predict the labels Y, where σ is the
cell-wise logistic function σ(z) = 1

1+e−z .

Y ≈ σ(UWT ) (2)

The objective of our matrix factorization is to learn op-
timal latent representation matrices, denoted U∗, V∗, W∗,
which best approximate the matrices X and Y via a loss
function optimization.
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4.1 Supervised Matrix Factorization
The objective function to be minimized, shown in Equa-
tion 3, is composed of three loss terms. Firstly the recon-
struction loss, denoted LR, makes sure that the latent feature
matrices U and V could reconstruct X. Secondly the super-
vised classification accuracy loss term, denoted LCA, en-
forces the latent time series representation U to be corrected
such that a set of all-vs-one logistic regression weights W
can maximize the classification accuracy on the data set. Fi-
nally the regularization term, denoted Reg, ensures that the
latent matrices do not overfit. We introduce a parameter µ as
a switch that controls the trade-off between the importance
of reconstruction and the impact of classification accuracy.

(U∗,V∗,W∗) = argmin
U,V,W

µLR(X,UVT)

+ (1− µ)LCA(Y, σ(UWT))

+ Reg(U,V,W) (3)

Reconstruction loss is defined in Equation 4 as the sum of
square errors in predicting the observed cells of X.

LR(X,UVT) = ‖X−UVT ‖2O

=
∑

(i,j)∈O

(
Xi,j −

K∑
k=1

Ui,kV
T
k,j

)2

(4)

Meanwhile the classification accuracy loss, defined in
Equation 5, is expressed as the cumulative linear logistic re-
gression loss in classifying the training set of time series Y
through the weights W .

LCA(Y, σ(UWT)) = −
N∑
i=1

L∑
l=1

Yi,l lnσ

(
K∑

k=1

Ui,kW
T
k,l

)

+(1−Yi,l)

(
1− lnσ

(
K∑

k=1

Ui,kW
T
k,l

))
(5)

Equation 6 introduces the regularization terms, each de-
fined with a squared Euclidean norm. This loss assures that
the latent matrices U,V,W do not overfit.

Reg(U,V,W) = λU‖U‖2 + λV ‖V‖2 + λW ‖W‖2 (6)

4.2 Stochastic Learning
The objective function (3) contains only convex terms there-
fore gradient descent is an obvious choice for optimization.
In sparse matrices stochastic gradient descent is preferred
to the full gradient descent (Rendle and Schmidt-Thieme
2008), because it accelerates the convergence of the latent
projection (Koren, Bell, and Volinsky 2009). Matrix cells are
picked in random order and the partial error of a single cell
is propagated backward to the latent matrices for correction.
In order to repair the error of a single observed cell, the re-
spective row and column of the latent matrices is corrected

in the negative direction of the error. For instance, in order
to repair the loss of cell Xi,j then row Ui,: and column VT

:,j

are corrected. A stepwise correction of a row requires the
stepwise updates of all its column values, K columns for
reconstruction loss or L columns for classification accuracy
loss. In order to apply the gradient update of every cell value
in the latent representations it is a prerequisite to initially
compute the partial derivatives of the loss equations (4) and
(5). The computed derivatives are shown in equation 7-10.

∂LRi,j

∂Ui,k
= 2

(
Xi,j −

K∑
k=1

Ui,k ·VT
k,j

)
VT

k,j (7)

∂LRi,j

∂V T
k,j

= 2

(
Xi,j −

K∑
k=1

Ui,k ·VT
k,j

)
Ui,k (8)

∂LCAi,l

∂Ui,k
= −

(
Yi,l − σ

(
K∑

k=1

Ui,kW
T
k,l

))
WT

k,l (9)

∂LCAi,l

∂WT
k,l

= −

(
Yi,l − σ

(
K∑

k=1

Ui,kW
T
k,l

))
Ui,k (10)

4.3 Algorithm
Algorithm 1 demonstrates a method that updates the latent
matrices until the cumulative reconstruction and classifica-
tion accuracy loss function cannot be further minimized.
There are two major parts of the update mechanisms, the re-
construction updates and the classification accuracy updates.
During each iterative epoch all observed cells of X, denoted
by O as in Section 3.1, are randomly taken into considera-
tion. The loss error reconstructing each cell is used as a scale
to correct back the latent matrices U and VT via the partial
derivatives. Updates are issued based on the reconstruction
loss LRi,j

for a cell i, j with respect to all K values of the
i-th row of U and j-th column of VT . Similar mechanism
is followed for propagating backwards the error associated
with the classification accuracy loss, with one difference,
since label data are not sparse, we do not need stochastic
selections of the cells to process. The learning rate parame-
ter, denoted η, controls the trade-off between run time and
convergence accuracy.

Once we have built the latent representation matrix U, we
can use it as the new data set for classification. Upon algo-
rithm completion U has two main properties, it is both good
estimate of the observed data segments and is also well set
apart by the classifier loss, therefore it is suitable for being
classified via an SVM classifier. It has been shown that com-
bining supervised factorization and an additional classifier
in the produced latent space, results in better classification
accuracy compared to either unsupervised factorization or
classification without additional use of classifiers in the la-
tent space (Menon and Elkan 2010).
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Algorithm 1 Stochastic Gradient Descent Learning
Input: Sparse X
Output: U,V,W

1: Initialize U,V,W uniformly random between (−ε,+ε)
2: previousLoss←MaxV alue
3: currentLoss←

{
LR(X,UVT ) + LCA(Y, σ(UWT ))

}
4: while currentLoss < previousLoss do
5: for (i, j) ∈ O in random order do
6: for k = 1 to K do
7: Ui,k ← Ui,k − η ·

∂LRi,j

∂Ui,k

8: VT
k,j ← VT

k,j − η ·
∂LRi,j

∂V T
k,j

9: end for
10: end for
11: for i = 1 to N do
12: for l = 1 to L do
13: for k = 1 to K do
14: Ui,k ← Ui,k − η ·

∂LCAi,l

∂Ui,k

15: WT
k,l ←WT

k,l − η ·
∂LCAi,l

∂WT
k,l

16: end for
17: end for
18: end for
19: previousLoss← currentLoss
20: currentLoss←

{
LR(X,UVT ) + LCA(Y, σ(UWT ))

}
21: end while
22: return U,V,W

5 Experiments
In order to compare the classification accuracy of our super-
vised matrix factorization (SMF) method we selected the
following baselines which address the sparsity reconstruc-
tion/imputation based on different perspectives. All methods
reconstruct a sparse time series as a prerequisite to NN plus
DTW classifier.

• Model Based Imputation (MBI): is a popular and ef-
fective collaborative approach for imputing missing data
(Marwala 2009), (Raghunathan et al. 2001). In case a data
set contains k features, then MBI builds k different clas-
sifiers, each trained to predict a different feature as target.
Each classifier treats the observed values of the target fea-
ture as training set and the missing data as test set (Mar-
wala 2009). Support Vector Regression was preferred due
to the superior performance exhibited in our experiments
compared to regression trees.1 Comparing our method to-
wards MBI will show whether avoiding reconstruction
improves classification accuracy.

• Matrix Factorization and Reconstruction (MFR): is
another direct approach, which builds latent representa-
tion matrices similar to SMF without the classification ac-
curacy loss term in the optimization loss function (Koren,
Bell, and Volinsky 2009). Finally, the aim is to predict the
missing values as dot product of the latent matrices. The
1Expectation Maximization (EM) was also a candidate, how-

ever it performed poorly in our experiments. EM implementations
suggest that the number of training instances be more than the num-
ber of features (Schafer 1997), but time series data sets do often
have more features (time points) than instances.

relative performance of SMF against MFR will demon-
strate whether the supervision added in our factorization
loss has additive benefits.

• Spline Interpolation: Splines are effective intra-series
alternatives for reconstructing missing segments. Cubic
Spline Interpolation (CSP), interpolate a missing segment
by fitting a local cubic polynomial (spline), assuring that
the first derivative (tangential) and the second derivative
(speed of curvature change) are preserved at the connec-
tion points to observed neighboring segments. Similarly
B-Spline Interpolation (BSP), fits a third degree piece-
wise polynomial into a missing interval by using neigh-
bor observed points as control points or de Boor points
(Opfer and Knott 2001). The relative performance of SMF
against spline interpolation will clarify whether collabora-
tive reconstruction is superior to the intra-series approach
of splines.

5.1 Experimental Setup
The experiments were conducted on a massive setup of 37
time series data sets belonging to the UCR collection2. In
absence of publicly available sparse time series data, sparsi-
fication was simulated by randomly removing segments of
continuous time points. Each segment has length equal to
10% of the whole series, where the starting point of the seg-
ment is picked uniformly random. Every data set was sub-
ject to a 5-fold cross validation split, three folds used for
training, one for validation and one fold for testing. The
final accuracy on the test sets was averaged among splits.
The SMF hyperparameters to be tuned were: the regular-
ization coefficients λU , λV , λW of equation 6, the num-
ber of latent dimensions K, µ of Equation 3, the learn-
ing rate η of Algorithm 1, and the SVM complexity pa-
rameter C. In order to reduce the computational time, the
same λ values were used for all latent matrices and the
SVM learns a fixed degree polynomial kernel. To easy ex-
periment reproducibility we report the following ranges of
parameters: Learning rates η one of {0.01, 0.001, 0.0001},
K around 30% of the number of features, λ one of
{0.0001, 0.001, 0.01, 0.1}, µ one of {0.5, 0.6, 0.7, 0.8},
SVM’s C one of {0.125, 0.25, 0.5, 1, 2, 4}, while the degree
of polynomial kernel was fixed to 4.

To help the interpretation of our results, we introduce a
metric for categorizing the data sets in the examined collec-
tion. The metric, denoted as E2D, is defined as E2D =
E(Euclidean) − E(DTW ), where E(Euclidean) denotes
the error percentage of 1-NN classifier using Euclidean dis-
tance (hereafter simply referred to as Euclidean-NN). Simi-
larly E(DTW ) denotes the error percentage of 1-NN using
DTW (hereafter referred to as DTW-NN). Only for this cat-
egorization, the provided (non-sparse) train/test splits in the
UCR collection were used. Based on the E2D metric, the
UCR data sets can be categorized into three types:

• Type-1 Data Sets: E2D ≤ 0. Euclidean-NN, is more,
or equally, accurate w.r.t. DTW-NN, implying data has no
patterns shifted in time. Nearest neighbor classifier is a

2www.cs.ucr.edu/∼eamonn/time series data
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dominant factor affecting classification accuracy, while
DTW-NN is expected to perform non-optimally.

• Type-2 Data Sets: 0 < E2D ≤ α. DTW-NN is
slightly superior w.r.t Euclidean-NN, implying patterns
are slightly shifted in time. In order for the types to con-
tain about equal number of data sets, we set α to 10. SMF
is not supposed to handle time shifting, however we still
expect SMF to be competitive because the disadvantage
in considering time shifting is counteracted by the ad-
vantage in handling sparsity without needing reconstruc-
tion/imputation. Meanwhile the accuracies of DTW-based
methods are expected to deteriorate because of the addi-
tive reconstruction error.

• Type-3 Data Sets: E2D > α. DTW-NN has large superi-
ority, therefore time series contain patterns significantly
shifted in time. Since SMF is not modeled to consider
large time-shifts, we expect worse results than baselines.

5.2 Results
Table 1 presents the results of the experiments. Three de-
grees of sparsity were applied to every data set 20%, 40%
and 60%. Result values denote classification error percent-
ages, where bold results show the winning method per de-
gree of sparsity. Moreover values shown with circle (◦) de-
note cases where the difference between the average error of
the winning method and second best method is adequately
large, such that the standard deviations span of these two er-
rors do not overlap. The results are interpreted in accordance
with the E2D-based categorization as follows:

• Type-1 Results: In data sets where patterns are not shifted
in time. As expected from above, SMF has a clear dom-
inance winning 36.33 (fraction due to ties) out of 45 ex-
periments.

• Type-2 Results: In accordance to our expectation, SMF’s
superior handling of sparsity counteracts the initial light
accuracy advantage of the baselines that handle time
shifts. It wins 22.83 out of 36.

• Type-3 Results: The existence of significant time shifts
provides superiority to the baselines. Therefore SMF
could only win 7 out of 30 experiments.

Overall Results: SMF wins in the vast majority of exper-
iments as demonstrated in the Total Wins row of the table.

Below, we demonstrate experiments on two data sets with
varying levels of sparsity. Results for a Type-1 data set,
Adiac, are depicted in Figure 1, showing that SMF con-
stantly results in the lowest error ratio on all degrees of spar-
sity. The second graph shown in Figure 3 illustrates CBF,
a Type-3 data set. As expected, SMF is not the winning
method in all sparsity ratios. However due to the advantage
of avoiding reconstruction, SMF recovers the handicap of
not detecting time shifts and therefore it is highly competi-
tive against the winning baselines.

6 Conclusions
We introduced a new principle in analyzing the problem
of sparse time series classification which, in contrast to

Figure 1: Type-1 data set ’Adiac’: Error Ratios per Different
Degrees of Sparsity, (0.x is x · 100%). Vertical bars denote
standard deviations.

Figure 2: Type-3 Data Set ’CBF’: Error Ratios per Differ-
ent Degrees of Sparsity. Vertical bars denote standard devi-
ations.

other approaches, avoids reconstructing missing segments
and presented a stochastic learning algorithm which oper-
ates only on observed data. The proposed method relies on
a customized supervised matrix factorization technique that
projects sparse time series into a dense latent space.

Large experimentations were conducted on 37 time se-
ries data sets, where the superiority of the supervised factor-
ization was clearly distinguishable compared to examined
baseline, which incur noise during the reconstruction of the
missing segments. Due to avoiding reconstruction and col-
laboratively building a latent data projection, our method ex-
hibited superiority on vast majority of experiments.

Despite being superior in treating sparsity, the supervised
factorization technique is a generic method suited for feature
vector data instances, where each feature is treated equally
in the objective function. It is not specifically tailored to time
series, where the features/points are correlated to the neigh-
bor points, therefore it is not designed to consider patterns
which might be heavily shifted in time. As a future work, we
plan to incorporate a time shift detection mechanism into the
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Table 1: Classification Error Percentages of Different Algorithms on Sparse Data Sets

(i) E2D is defined in section 5.1
(ii) All baselines BSP, CSP, MBI, MFR reconstruct the sparse dataset, which is later classified by 1-NN with DTW

Data E2D 20% Sparsity 40% Sparsity 60% Sparsity
Set BSP CSP MBI MFR SMF BSP CUB MBI MFR SMF BSP CUB MBI MFR SMF

Type-1 Data Sets
EC2 -11 24 22 20 23 16 29 29 24 26 ◦15 38 32 26 23 24
MOT -4 11 12 10 8 8 17 15 13 14 12 22 25 17 18 17
BEE -3 47 55 53 57 43 57 57 48 50 50 70 70 58 58 58
ECF -3 9 11 7 4 ◦0 22 26 11 9 ◦3 33 42 18 16 ◦11
SO2 -3 14 13 9 7 5 23 25 12 13 ◦8 32 32 13 14 13

UWY -3 42 40 45 40 ◦34 51 51 52 45 ◦40 63 61 60 52 ◦48
WAF -2 2 3 Runn. 2 ◦0 4 4 4 2 ◦1 5 7 5 3 ◦2
ADI -1 60 53 53 37 ◦26 79 76 68 48 ◦35 88 87 71 59 ◦49
GUN -1 12 19 23 10 6 17 25 29 19 9 33 36 27 28 23
ITA -1 8 7 5 5 4 12 12 5 6 5 16 16 3 8 6

UWX -1 32 31 33 30 ◦27 43 42 43 36 ◦32 59 55 54 45 ◦39
UWZ -1 38 38 40 37 ◦31 50 46 47 42 ◦37 61 58 56 50 ◦44
CHL 0 52 52 43 37 ◦2 57 57 49 41 ◦7 56 57 52 38 ◦19
OLI 0 60 62 ◦22 38 43 55 77 ◦15 37 42 68 70 ◦27 57 63
SWE 0 40 37 32 26 ◦18 63 61 44 41 ◦27 77 78 53 55 ◦43

Type-1 Wins 0 0 1 0.5 13.5 0 0 2.5 0 12.5 0 0 3.33 1.33 10.33
Type-2 Data Sets

DIA +3 6 5 3 1 1 17 11 6 0 1 33 26 9 4 3
WOR +3 49 48 48 40 41 69 68 60 55 50 83 80 72 69 ◦62
MED +5 36 30 30 28 32 41 41 40 36 35 49 52 43 43 43
SON +5 14 12 7 6 ◦3 22 24 9 8 5 31 33 13 15 ◦8
SYM +5 6 5 9 4 5 12 12 15 6 9 22 21 22 14 11
FAF +5 31 39 19 9 8 49 70 25 20 15 67 64 25 25 31
FIS +5 49 45 45 35 ◦17 69 67 51 48 ◦23 77 77 56 58 ◦41
50W +6 52 51 48 41 ◦37 71 70 62 61 ◦47 86 84 72 75 ◦63
COF +7 41 33 14 11 5 43 43 16 13 5 59 44 12 25 18
OSU +7 56 53 51 43 45 64 67 62 54 50 73 75 72 66 62
FAA +9 26 28 13 8 12 52 60 28 23 21 73 78 38 42 ◦34
TWO +9 3 3 7 5 16 17 20 21 ◦13 31 41 46 39 ◦31 48
Type-2 Wins 0.5 0.5 0 5.5 5.5 0 0 0 3 9 0 0 1.83 1.83 8.33

Type-3 Data Sets
SYN +11 12 10 4 3 4 27 25 5 7 12 50 48 10 14 19
LI2 +12 26 27 25 20 34 ◦25 43 30 29 36 44 48 ◦33 40 43
FAU +14 29 28 14 ◦9 12 54 58 28 23 ◦21 72 77 40 39 36
CBF +15 3 6 3 2 1 15 14 7 7 5 31 30 11 15 13
CRY +15 45 46 40 36 47 65 67 55 ◦48 60 78 82 68 ◦58 74
LI7 +15 40 43 37 31 48 53 59 49 46 49 63 72 46 49 60

TWE +16 6 6 3 1 0 17 18 8 4 2 30 32 11 9 6
CRZ +17 43 42 41 ◦32 49 59 62 52 49 63 75 80 67 61 70
CRX +20 43 41 40 ◦32 52 57 67 53 47 59 78 81 67 ◦60 72
TRA +24 9 9 21 ◦8 17 18 ◦16 28 20 29 36 40 37 28 33
Type-3 Wins 0 0 0 8 2 1 1 1 4 3 0 0 4 4 2

Cumulative Results
Total Wins 0.5 0.5 1 14 21 1 1 3.5 7 24.5 0 0 9.16 7.16 20.66

Data Set Name Acronyms
EC2:ECG200, MOT:MoteStrain, 50W:50Words, BEE:Beef, TWE:TwoLeadECG, UW*:uWaveGestureLibrary *,
ECF:ECGFiveDays, MED:MedicalImages, ITA:ItalyPowerDemand, CHL:ChlorineConcentration, WOR:WordsSynonyms,
TRA:Trace, SWE:SwedishLeaf, DIA:DiatomSizeReduction, SON:SonyAIBORobotSurface, SO2:SonyAIBORobotSurfaceII
FAF:FaceFour, FIS:Fish, COF:Coffee, OSU:OSULeaf, FAA:FaceAll, TWO:Two Patterns, GUN:Gun-Point, SYM:Symbols
SYN:SyntheticControl, WAF:Wafer, OLI:OliveOil, ADI:Adiac, FAU:FacesUCR, LI*:Lightning*, CR*:Cricket*, CBF:CBF
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latent feature extraction (factorization) algorithm.
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