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Abstract

The trust region step problem, by solving a sphere con-
strained quadratic programming, plays a critical role in the
trust region Newton method. In this paper, we propose an ef-
ficient Multi-Stage Conjugate Gradient (MSCG) algorithm to
compute the trust region step in a multi-stage manner. Specif-
ically, when the iterative solution is in the interior of the
sphere, we perform the conjugate gradient procedure. Other-
wise, we perform a gradient descent procedure which points
to the inner of the sphere and can make the next iterative so-
lution be a interior point. Subsequently, we proceed with the
conjugate gradient procedure again. We repeat the above pro-
cedures until convergence. We also present a theoretical anal-
ysis which shows that the MSCG algorithm converges. More-
over, the proposed MSCG algorithm can generate a solution
in any prescribed precision controlled by a tolerance parame-
ter which is the only parameter we need. Experimental results
on large-scale text data sets demonstrate our proposed MSCG
algorithm has a faster convergence speed compared with the
state-of-the-art algorithms.

1 Introduction
The trust region Newton method (TRON) has received in-
creasing attention and it has been successfully applied to
many optimization problems in artificial intelligence and
machine learning communities (Lin, Weng, and Keerthi
2008; Kim, Sra, and Dhillon 2010; Yuan et al. 2010). The
trust region Newton method minimizes an objective function
l(w) by generating the solution at the (k+1)-th iteration via
wk+1 = wk +dk; dk is a trust region step computed by the
following trust region step problem:

min
d∈Rn

{f(d) =
1

2
dTHkd + (gk)Td} s.t. ‖d‖ ≤ λk, (1)

where gk and Hk are respectively the gradient and the Hes-
sian matrix of the objective function; λk is the trust region
radius controlling the size of the sphere constraint (‖d‖ ≤
λk). We accept wk+1 = wk + dk only if dk makes the
ratio (l(wk+1) − l(wk))/f(dk) large enough. Otherwise,
we update λk and compute dk until the above ratio is large
enough (Lin and Moré 1999; Lin, Weng, and Keerthi 2008;
Yuan et al. 2010). In the trust region Newton method, a key
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issue is how to efficiently compute the trust region step in
Eq. (1), which is the focus of this paper.

Existing algorithms for solving Eq. (1) can be broadly
classified into two categories. The first category reformu-
lates Eq. (1) as other optimization problems such as the root
finding (Mor and Sorensen 1983), the parameterized eigen-
value finding (Rojas, Santos, and Sorensen 2000) and the
semi-definite programming (Rendl and Wolkowicz 1997;
Fortin and Wolkowicz 2004). The second category di-
rectly solves Eq. (1), which includes the conjugate gradi-
ent (Steihaug 1983), the Gauss quadrature technique (Golub
and Von Matt 1991) and the subspace minimization (Hager
2001; Erway, Gill, and Griffin 2009; Erway and Gill 2009).
An interesting one among these algorithms is Steihaug’s al-
gorithm (Steihaug 1983), which utilizes the conjugate gradi-
ent method to obtain an approximate solution quickly. How-
ever, the conjugate gradient procedure in Steihaug’s algo-
rithm terminates once its iterative solution first reaches the
boundary of the sphere. Thus, Steihaug’s algorithm may ter-
minate even if it doesn’t converge and the precision of the so-
lution can’t be specified by users (Gould et al. 1999). But in
practice, different applications may have different require-
ments for the precision of the trust region step. Thus, it’s
preferred that the precision of the solution can be controlled
by a parameter (Erway, Gill, and Griffin 2009).

Recently, a class of first-order algorithms which can effi-
ciently solve Eq. (1) attract considerable attention. In arti-
ficial intelligence and machine learning communities, they
are often used to solve large-scale optimization problems
with simple constraints (e.g., sphere constraint) (Shalev-
Shwartz, Singer, and Srebro 2007; Figueiredo, Nowak, and
Wright 2007; Bach et al. 2011). The most typical al-
gorithms include Projected Gradient (PG) algorithm (Lin
2007; Duchi et al. 2008; Daubechies, Fornasier, and Loris
2008; Wright, Nowak, and Figueiredo 2009) and Acceler-
ated Projected Gradient (APG) algorithm (Nesterov 2004;
Liu, Ji, and Ye 2009b; 2009a; Beck and Teboulle 2009;
Gong, Gai, and Zhang 2011; Yuan, Liu, and Ye 2011;
Liu, Sun, and Ye 2011). Due to the simplicity of projection
a vector onto the sphere constraint, both PG and APG are
efficient algorithms for solving the trust region step prob-
lem in Eq. (1), especially in large-scale scenarios. How-
ever, both algorithms are general optimization techniques
and they don’t consider that the objective function in Eq. (1)
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is quadratic.
In this paper, we propose an efficient Multi-Stage Con-

jugate Gradient (MSCG) algorithm to solve the trust region
problem in a multi-stage manner. The main contributions of
this paper include:

(1) We propose an efficient Multi-Stage Conjugate Gradient
(MSCG) algorithm by extending the conjugate gradient al-
gorithm from the unconstrained optimization to the sphere
constrained quadratic optimization in a multi-stage manner.
Specifically, when the iterative solution is in the interior of
the sphere, we perform the conjugate gradient procedure.
Otherwise, we perform a gradient descent procedure which
points to the inner of the sphere and can make the next iter-
ative solution be a interior point. Subsequently, we proceed
with the conjugate gradient procedure again. We repeat the
above procedures until convergence.

(2) The MSCG algorithm can generate a solution in any pre-
scribed precision controlled by a tolerance parameter which
is the only parameter we need.

(3) We present a detailed theoretical analysis which shows
that our proposed MSCG algorithm decreases the objective
function value in each iteration and further guarantees the
convergence of the algorithm. Moreover, empirical stud-
ies on large-scale text data sets demonstrate the MSCG al-
gorithm has a faster convergence speed compared with the
state-of-the-art algorithms.

The rest of this paper is organized as follows: In Section 2,
we introduce some notations and preliminaries on the conju-
gate gradient method. In Section 3, we present the proposed
MSCG algorithm. Experimental results are present in Sec-
tion 4 and we conclude the paper in Section 5.

2 Preliminaries
Notations
We introduce some notations used throughout the paper.
Scalars are denoted by lower case letters (e.g., x ∈ R) and
vectors by lower case bold face letters (e.g., x ∈ Rn). Ma-
trix is denoted by capital letters (e.g., A) and the Euclidean
norm of the vector x is denoted by ‖x‖ =

√∑n
i=1 x

2
i .

∇f(x) denotes the first derivative (gradient) of f(x) at x.

Conjugate Gradient
Conjugate gradient (CG) is an efficient method to solve the
following unconstrained quadratic programming problem:

min
x∈Rn

{h(x) =
1

2
xTQx + bTx},

where Q ∈ Rn×n is positive definite and b ∈ Rn. CG is
an iterative method which generates the solution xi+1 at the
(i+ 1)-th iteration given by

xi+1 = xi +
‖∇h(xi)‖2

(pi)TQpi
pi,

where ∇h(xi) is the gradient of h(x) at xi and pi is the
conjugate gradient direction given by

pi = −∇h(xi) +
‖∇h(xi)‖2

‖∇h(xi−1)‖2
pi−1 with p0 = −∇h(x0).

In theory, CG terminates with an optimal solution after at
most n steps (Bertsekas 1999). However, in practice, CG of-
ten terminates after much less than n steps, especially when
the data is high dimensional (n is large). Thus, CG is very
efficient to solve the unconstrained quadratic optimization.
However, extending CG to efficiently solve the constrained
quadratic optimization is still a hard problem.

3 Proposed Multi-Stage Conjugate Gradient
In this section, we propose a Multi-Stage Conjugate Gra-
dient (MSCG) algorithm to efficiently solve the trust re-
gion step problem. The MSCG algorithm extends the
conjugate gradient method as in the traditional uncon-
strained quadratic optimization to solve the sphere con-
strained quadratic optimization in a multi-stage manner. We
unclutter Eq. (1) by omitting the superscript as follows:

min
d∈Rn

{
f(d) =

1

2
dTHd + gTd

}
s.t. ‖d‖ ≤ λ. (2)

In the subsequent discussion, we consider the case that H is
positive definite, which is very common in real applications
such as logistic regression, support vector machines (Lin,
Weng, and Keerthi 2008) and the wavelet-based image de-
blurring problems (Beck and Teboulle 2009). Our proposed
MSCG algorithm involves conjugate gradient (C procedure)
and gradient descent procedures (G procedure). The MSCG
algorithm calculates the iterative solution switching between
them. Specifically, when the i-th iterative solution di is an
interior point of the sphere, i.e., ‖di‖ < λ, we perform C
procedure. Otherwise, we turn to G procedure. The detailed
MSCG algorithm is presented in Algorithm 1.

Figure 1: Illustration for the MSCG algorithm. The initial
solution d0 is in the interior of the sphere and d1,d2,d3

are generated by C procedure. d3 is on the boundary of
the sphere and we turn to G procedure which generates d4.
Note that if the algorithm starts from 0 and terminates when
the iterative solution (d3) first reaches the boundary of the
sphere, the MSCG algorithm degrades into Steihaug’s algo-
rithm. Please refer to the text for more detailed explanations.

To better understand Algorithm 1, we illustrate a simple
case of the MSCG algorithm in Figure 1. The initial solution
d0 is in the interior of the sphere. Thus, we perform C proce-
dure which generates the iterative solutions d1 and d2 lying
in the interior of the sphere. When proceeding with C pro-
cedure, we obtain d̄3 which exceeds the sphere constraint.
At this time, we truncate d̄3 such that the iterative solution
d3 lies on the boundary of the sphere (line 21-24). Then,
we turn to G procedure where the descent direction points
to the inner of the sphere and G procedure generates the it-
erative solution d4 lying in the interior of the sphere. Thus,
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we reset the conjugate gradient direction (line 14-15) and
turn to C procedure. We repeat the above process between
C procedure and G procedure until the algorithm converges.

Algorithm 1: MSCG: Multi-Stage Conjugate Gradient
algorithm for trust region step problem

Input : H ∈ Rn×n, g,d0 ∈ Rn, λ > 0, 0 < ε < 1
1 if ‖d0‖ < λ then
2 flag = 1;
3 else
4 d0 = λ

‖d0‖d
0; flag = 0;

5 end
6 reset = flag;
7 for i = 0, 1, · · · do
8 qi = ∇f(di) + ‖∇f(di)‖

λ di;
9 if ‖qi‖ ≤ ε‖g‖ then

10 d? = di, iter = i; break;
11 end
12 if flag then
13 (C procedure:Line 14-24)
14 if reset then
15 pi = −∇f(di); reset = 0;
16 else
17 pi = −∇f(di) +

‖∇f(di)‖2/‖∇f(di−1)‖2pi−1;
18 end
19 αi = ‖∇f(di)‖2/((pi)THpi);
20 di+1 = di + αip

i;
21 if ‖di+1‖ ≥ λ then
22 Find a τ > 0 such that ‖di + τpi‖ = λ;
23 di+1 = di + τpi; flag = 0;
24 end
25 else
26 (G procedure:Line 27-32)
27 βi = (qi)T∇f(di)/((qi)THqi);
28 di+1 = di − βiqi; flag = 1; reset = 1;
29 if ‖di+1‖ ≥ λ then
30 Find a τ > 0 such that ‖di − τqi‖ = λ;
31 di+1 = di − τqi; flag = 0;
32 end
33 end
34 end

Output: d?, iter

Theoretical Analysis
In this subsection, we present some theoretical results for
the MSCG algorithm (Algorithm 1). First of all, inspired
by (Kučera 2007), we provide an important lemma which
motivates us to solve the sphere constrained quadratic opti-
mization problem in a multi-stage manner.

Lemma 1 Let qi = ∇f(di) + ‖∇f(di)‖
λ di and ‖di‖ = λ.

If di is not the optimal solution of Eq. (2), then we have
(qi)Tdi > 0 and (qi)T∇f(di) > 0.
Proof The KKT conditions of Eq. (2) are
∇f(d?) +µ?d? = 0, µ?(‖d?‖−λ) = 0 and µ? ≥ 0, (3)

where d? and µ? are the optimal primal and dual variables
of Eq. (2), respectively. If µ? > 0, we have

‖d?‖ = λ⇒ µ? =
‖∇f(d?)‖
‖d?‖

=
‖∇f(d?)‖

λ
.

Otherwise, µ? = 0 and ∇f(d?) = 0 hold. Thus, we can
rewrite the above KKT conditions in Eq. (3) into the follow-
ing compact form:

q? = ∇f(d?) +
‖∇f(d?)‖

λ
d? = 0. (4)

If di is not the optimal solution, then qi 6= 0. Thus ∇f(di)
and di are not collinear. Moreover, we have ‖di‖ = λ, thus
Lemma 1 follows from the facts:
(qi)Tdi = (di)T∇f(di) + λ‖∇f(di)‖
> λ‖∇f(di)‖ − ‖di‖ · ‖∇f(di)‖ = 0,

(qi)T∇f(di) = ‖∇f(di)‖
(
‖∇f(di)‖+ (di)T∇f(di)

λ

)
> 0.

�

Lemma 1 indicates that when the iterative solution di is on
the boundary of the sphere, −qi is a descent direction and
simultaneously points to the inner of the sphere. Thus, con-
ducting the gradient descent along −qi can decrease the ob-
jective function value and make the next iterative solution
di+1 be an interior point of the sphere. Once di+1 is in the
interior of the sphere constraint, we can perform the conju-
gate gradient procedure (C procedure).

Next, we formally present a result which indicates the de-
scent property of the MSCG algorithm (Algorithm 1).
Lemma 2 If di is not the optimal solution of Eq. (2), then
di+1 generated by Algorithm 1 decreases the objective func-
tion value, i.e., f(di+1) < f(di).
Proof Algorithm 1 includes C procedure and G procedure,
we prove Lemma 2 in two cases:

(1) di+1 is generated by C procedure. If di+1 = di + αip
i

satisfies ‖di+1‖ < λ, we have

∇f(di+1) = f(di) + αiHpi and (pi)T∇f(di+1) = 0,

according to the properties of the conjugate gradient method
(Bertsekas 1999). Thus, we obtain:

f(di+1)− f(di) = αi(p
i)T∇f(di) +

1

2
α2
i (p

i)THpi

= αi(p
i)T (∇f(di) + αiHpi)− 1

2
αi(p

i)THpi

= αi(p
i)T∇f(di+1)− 1

2
αi(p

i)THpi

= −1

2
αi(p

i)THpi < 0.

Otherwise, di+1 = di + τpi(0 < τ ≤ αi) and we have

f(di+1)− f(di) = τ(pi)T∇f(di) +
1

2
τ2(pi)THpi

= τ(pi)T (∇f(di) + αiHpi) +

(
1

2
τ2 − ταi

)
(pi)THpi

=

(
1

2
τ2 − ταi

)
(pi)THpi < 0.
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Thus, f(di+1) < f(di) holds.

(2) di+1 is generated by G procedure. Denote

l(θ) = f(di+1)− f(di − θqi)

=
1

2
θ2(qi)THqi − θ(qi)T∇f(di).

l(θ) is a strictly decreasing function of θ in the interval
[0, βi], where βi = (qi)T∇f(di)/((qi)THqi) > 0. More-
over, we have l(0)=0 and hence l(τ) < 0, l(βi) < 0 for
all 0 < τ ≤ βi. Therefore, either di+1 = di − βiq

i or
di+1 = di − τqi(0 < τ ≤ βi) is adopted, we both have
f(di+1) < f(di). �

The descent property in Lemma 2 is a critical result for the
convergence of Algorithm 1. Finally, we present the conver-
gence guarantee as follows:
Theorem 1 The sequence {di} generated by Algorithm 1
converges to the unique optimal solution d?.

Proof We first show that the sequence {di} generated by
Algorithm 1 has limit points. Since ‖di‖ ≤ λ (see Algo-
rithm 1) and f(di) < f(d0) (see Lemma 2), so the level set
{d | f(d) ≤ f(d0)} is nonempty and bounded. Thus, {di}
generated by Algorithm 1 has limit points.

Next, we show that every limit point of {di} is the unique
optimal solution d?. f(d) is continuously differentiable and
{di} is a sequence satisfying f(di+1) < f(di) for all i. In
addition, {di} is generated by a gradient method di+1 =
di + θis

i, where θi = αi (or τ), si = pi for C procedure
and θi = βi (or τ), si = −qi for G procedure. According
to Proposition 1.2.5 in (Bertsekas 1999), every limit point of
{di} generated by Algorithm 1 is a stationary point of f(d).
Note that we consider the case that H is positive definite
and hence f(d) is strictly convex. Thus, f(d) has a unique
optimal solution d? and hence every limit point of {di} is
the optimal solution d?. �

Implementation Issues and Discussions
We address some implementation issues and discussions in
the following aspects:

(1) In the implementation of Algorithm 1, we calculate the
matrix-vector product instead of storing the Hessian matrix
H explicitly. This saves memory for storing a large H and
makes the MSCG algorithm can tackle large scale trust re-
gion step problems.

(2) The most costly computation in each iteration is the
matrix-vector product and we implement Algorithm 1 care-
fully such that only one matrix-vector product (for comput-
ing the step size) is necessary in each iteration. Specifically,
when computing the step size αi (or βi) in the i-th itera-
tion, we record the matrix-vector product Hpi (or Hqi) as
Hv. Then we compute the gradient of the next iteration via
∇f(di+1) = ∇f(di) + θiHv, where θi equals αi or τ if C
procedure is adopted, −βi or τ otherwise.

(3) For the termination criterion of Algorithm 1, we con-
sider the KKT condition in Eq. (4). Strictly speaking, Al-
gorithm 1 converges if and only if Eq. (4) is satisfied. In
practical implementation, we can use any small parameter ε

to specify the precision of the solution (see line 9 of Algo-
rithm 1). We notice that the convergence result for TRON
in (Lin, Weng, and Keerthi 2008) (Theorem 2) is established
by requiring the precision of the solution of the sub-problem
in Eq. (2) to satisfy some conditions. Our proposed MSCG
algorithm guarantees convergence and can find a solution
in any prescribed precision controlled by users. Thus, the
MSCG algorithm can always meet the precision requirement
of Theorem 2 in (Lin, Weng, and Keerthi 2008). Moreover,
Steihaug’s algorithm can be treated as a special case of the
MSCG algorithm with a specific termination criterion. If
we set the initial point d0 as 0 and terminate Algorithm 1
when the iterative solution first reaches the boundary of the
sphere (see Figure 1), the MSCG algorithm degrades into
Steihaug’s algorithm (Steihaug 1983). The advantage of the
MSCG algorithm over Steihaug’s algorithm is its ability of
controlling the precision of the solution and it is more flexi-
ble in different applications.

(4) The step sizes αi and βi are both computed according
to the minimization rule (Bertsekas 1999). In the truncated
step of line 22-23, τ is the nonnegative root of the following
quadratic equation:

‖pi‖2τ2 + 2(pi)Tdiτ + ‖di‖2 − λ2 = 0.

But in the truncated step of line 30-31, we have ‖di‖2 = λ2.
Thus, τ is computed by:

τ = 2(qi)Tdi/‖qi‖2.

4 Experiments
In this section, we present empirical studies on the MSCG
algorithm compared with the state-of-the-art algorithms.

Experimental Setup
We consider the trust region step problem in the following
logistic regression:

min
w
{l(w) =

1

2
‖w‖2 + τ

m∑
i=1

log
(
1 + exp(−yiwTxi)

)
},

where w is the weight vector; xi and yi ∈ {+1,−1} are
the i-th training data and corresponding class label, respec-
tively; τ is a parameter to balance the Euclidean norm regu-
larization and the logistic loss. To solve the trust region step
problem in Eq. (2), we need to compute the gradient and
Hessian matrix of l(w), which can be obtained as follows
(Lin, Weng, and Keerthi 2008):

g = w + τ
m∑
i=1

(
σ(yiw

Txi)− 1
)
yixi, (5)

H = I + τXTDX, (6)

where σ(s) is the sigmoid function

σ(s) = (1 + exp(−s))−1 and X =
[
xT1 ; · · · ;xTm

]
is the data matrix with each row as a sample. I is the identity
matrix and D is a diagonal matrix with the i-th diagonal
entry as

Dii = σ(yiw
Txi)

(
1− σ(yiw

Txi)
)
.
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Table 1: Text data sets statistics: m is the number of samples (] positive and ] negative are the number of positive and negative
samples, respectively) and n is the dimensionality of the data. ] nonzero denotes the number of the nonzero entries of the data.

No. 1 2 3 4 5 6 7 8 9 10 11 12
datasets classic hitech k1b la12 la1 la2 news20 ng3sim ohscal real-sim reviews sports
m 7094 2301 2340 2301 3204 3075 19996 2998 11162 72309 4069 8580
n 41681 10080 21839 31472 31472 31472 1355191 15810 11465 20958 18482 14866

] positive 2431 1030 2024 2413 1250 1163 9999 1000 4497 22238 2132 4967
] negative 4663 1271 316 3866 1954 1912 9997 1998 6665 50071 1937 3613
] nonzero 223839 331373 302992 939407 484024 455383 9097916 335879 674365 3709083 758635 1091723

Table 2: The averaged time (seconds) and the averaged number of the matrix-vector product (] average prodnum) over 10
independent runs for λ = 10 (left) and λ = 1000 (right) on the text data sets 1− 4.

data averaged time (seconds) ] averaged prodnum averaged time (seconds) ] averaged prodnum
sets MSCG APG PG MSCG APG PG MSCG APG PG MSCG APG PG

classic 0.0391 0.0942 0.0671 8.0 29.0 20.0 0.3636 18.3538 24.9720 76.0 5516.0 6896.0
hitech 0.0523 0.0865 0.0624 20.0 39.0 28.0 2.0385 17.6176 23.4262 742.0 7737.0 9983.0
k1b 0.0245 0.0938 0.0683 7.0 33.0 24.0 2.6893 18.7076 58.3748 705.0 6459.0 18994.0
la12 0.1134 0.3464 0.1977 14.0 47.0 27.0 7.4677 57.5597 144.6517 862.0 7669.0 18693.0

Figure 2: Averaged time (top) and averaged ] prodnum (bottom) vs. the trust region radius (λ) plots on the text data sets 5− 8.

Figure 3: Objective (function) value vs. time plots with different trust region radiuses on the text data sets 9− 12 and 1− 4.
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We should note that the positive definite Hessian matrix H
is very large when the data is in high dimension. Moreover,
H is dense even though X is sparse. Thus it’s impossible to
store the Hessian matrix explicitly. To address this issue, we
calculate the following matrix-vector product

Hp = p + τXT (D(Xp)) (7)

instead, since the MSCG algorithm haven’t to store H ex-
plicitly as long as the matrix-vector product is available. If
the matrixX is sparse, we can efficiently calculate the above
matrix-vector product without storing H .

Competing Algorithms and Data Sets
We compare the proposed MSCG algorithm with two com-
peting algorithms: Projected Gradient (PG) and Accelerated
Projected Gradient (APG). The two algorithms are very pop-
ular in the communities of artificial intelligence and machine
learning and they have been successfully applied to effi-
ciently solve many optimization problems with simple con-
straints (e.g., sphere constraint). Especially in large-scale
scenarios, the PG and APG algorithms are very efficient. We
should mention that, we don’t include Steihaug’s algorithm
(Steihaug 1983) for comparison, since it is a special case of
the MSCG algorithm with a specific termination criterion.

We consider twelve text data sets from different sources.
These data sets are high dimensional and sparse. They
are summarized in Table 1. Two of them (news20, real-
sim) are downloaded from http://www.csie.ntu.edu.tw/cjlin/
libsvmtools/datasets/, and they have been preprocessed as
two-class data sets (Lin, Weng, and Keerthi 2008). The other
ten are available at http://www.shi-zhong.com/software/
docdata.zip and they are multi-class data sets. We trans-
form the multi-class data sets into two-class (Lin, Weng, and
Keerthi 2008) by labeling the first half of all classes as pos-
itive class, and the remaining classes as the negative class.

Experimental Evaluation and Analysis
The three algorithms are implemented in Matlab and we
execute the experiments on an Intel(R) Core(TM)2 Quad
CPU (Q6600 @2.4GHz) with 8GB memory. We set τ = 1
and generate each entry of w from the normal distribution
with mean 0 and standard deviation 1. Thus we can obtain
the gradient and the matrix-vector product via Eq. (5) and
Eq. (7). To fully evaluate the computational efficiency of the
MSCG algorithm, we set the trust region radius λ in Eq. (2)
as 10i (i = −1, 0, 1, 2, 3, 4). We terminate the three algo-
rithms (MSCG, APG and PG) when the precision control-
ling tolerance ε is less than 10−4 and record the CPU time
and the number of the matrix-vector product (] prodnum).

We report the CPU time and the number of the matrix-
vector product which are averaged over 10 independent runs
as in Table 2. From these results, we have the following
observations: (a) The MSCG algorithm is the most efficient
among the three algorithms, especially when the trust region
radius is large (λ = 1000). (b) The CPU time is proportional
to the number of the matrix-vector product (] prodnum) for
all the three algorithms, since the matrix-vector product is
the most costly operation in each iteration. This is consistent

with the analysis in Section 3. (c) PG is more efficient than
APG when the trust region radius is small, but APG is faster
than PG when the trust region radius is large.

We further study the performance of the computational
efficiency on the MSCG algorithm when the trust region ra-
dius varies. Figure 3 shows the averaged CPU time and the
averaged number of the matrix-vector product (] prodnum)
vs. the trust region radius (λ) plots over 10 independent runs.
From these curves, we observe: (i) The MSCG algorithm is
always the most efficient among the three algorithms. (ii)
For the PG and APG algorithms, the CPU time and the
number of matrix-vector product increase when the trust re-
gion radius increases. But for the MSCG algorithm, when
the trust region radius is large enough (λ = 10000), both
the CPU time and the number of the matrix-vector prod-
uct decrease. When the trust region radius is large enough
(λ = 10000), the optimal solution of the trust region step
problem in Eq. (2) is in the interior of the sphere constraint.
Thus, Eq. (2) is equivalent to an unconstrained quadratic
optimization problem. In this situation, the PG and APG
algorithms are computationally more expensive, while the
MSCG algorithm only involves C procedure and it is com-
putationally inexpensive. (iii) We observe the same phe-
nomenons as in the above observations (b) and (c).

To check the convergence detail of the MSCG algorithm,
we show the objective (function) value vs. time plots as
in Figure 3. From these curves, we have the following ob-
servations: (1) The MSCG algorithm always converges the
fastest among the three algorithms. (2) The MSCG algo-
rithm rapidly decreases the objective value and make it close
to the minimum objective value in very short time. This is
very useful when we don’t require high-precision solutions.

5 Conclusions
In this paper, we propose an efficient Multi-Stage Conjugate
Gradient (MSCG) algorithm to solve the trust region step
problem, which is a key ingredient in the trust region New-
ton method. The proposed MSCG algorithm extends the
conjugate gradient method to solve the sphere constrained
quadratic optimization problem, which involves C procedure
and G procedure. When the iterative solution is in the inte-
rior of the sphere, we perform C procedure. Otherwise, we
perform G procedure where the descent direction points to
the inner of the sphere. Thus, G procedure may make the
next iterative solution be an interior point and hence we can
proceed with the conjugate gradient again. Through repeat-
ing the above procedures until convergence, we utilize the
conjugate gradient in a multi-stage stage manner.

The MSCG algorithm can generate a solution in any pre-
scribed precision controlled by a tolerance parameter which
is the only parameter we need. Moreover, we provide a de-
tailed theoretical analysis which shows that the MSCG algo-
rithm can decrease the objective function value in each itera-
tion and further guarantees the convergence of the algorithm.
Empirical studies on large-scale text data sets demonstrate
our proposed MSCG algorithm has a faster convergence
speed compared with the state-of-the-art algorithms. More
interestingly, our MSCG algorithm can rapidly decrease the
objective value and make it close to the minimum objective
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value in very short time. Thus, we can obtain a good approx-
imated solution quickly. This is very useful when we don’t
require high-precision solutions.

In our future work, we hope to extend the MSCG algo-
rithm to efficiently solve more problems such as `1-norm
constrained least squares and other structured sparsity opti-
mization problems. There are three key aspects: (1) In the C
procedure, if some feasible solution exceeds the constraint,
how can we efficiently truncate it such that it lies on the
boundary of the constraint? (2) When some feasible solu-
tion lies on the boundary of the constraint, how can we find a
descent direction which points to the inner of the constraint?
(3) Can we employ the preconditioned conjugate gradient
instead of the conjugate gradient method to further acceler-
ate the convergence speed?
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