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Abstract

Given a monochrome image and some manually labeled pix-
els, the colorization problem is a computer-assisted process of
adding color to the monochrome image. This paper proposes
a novel approach to the colorization problem by formulat-
ing it as a matrix completion problem. In particular, taking a
monochrome image and parts of the color pixels (labels) as
inputs, we develop a robust colorization model and resort to
an augmented Lagrange multiplier algorithm for solving the
model. Our approach is based on the fact that a matrix can
be represented as a low-rank matrix plus a sparse matrix. Our
approach is effective because it is able to handle the potential
noises in the monochrome image and outliers in the labels. To
improve the performance of our method, we further incorpo-
rate a so-called local-color-consistency idea into our method.
Empirical results on real data sets are encouraging.

Introduction
For technical reasons, old photos and films are all
monochrome, and it is of great interest to colorize those
monochrome images and films. Computer assisted coloriza-
tion has become an important application of artificial intelli-
gence and has been widely applied to free technicians from
manual colorization. Many methods have been proposed for
the colorization problem in the literature (Horiuchi 2002;
Levin, Lischinski, and Weiss 2004; Yatziv and Sapiro 2006;
Luan et al. 2007).

One seminal work is the optimization method of Levin,
Lischinski, and Weiss (2004). The key idea is based on the
assumption that neighboring pixels have similar colors if
their intensities are similar. As a result, the colors of un-
labeled pixels are estimated by minimizing the difference
from the weighted average of the colors at the neighboring
pixels. The monochrome pixels are the observations, some
of which are labeled with colors and the rest are unlabeled.
The task is to learn a function which predicts colors (labels)
for the unlabeled pixels. This optimization method uses both
labeled and unlabeled pixels for training, thus enjoys semi-
supervised learning mechanism (Cheng and Vishwanathan
2007).

However, the local-color-consistency assumption makes
the method of Levin, Lischinski, and Weiss (2004) have
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Figure 1: Colorization using our method (Low-rank+Local-
color-consistency) with 1% pixels labeled with colors.

two major limitations. First, colors are sometimes not local
consistent, such as in some complex textures. Second, this
local-color-consistency assumption requires each similar-
color patch has at least one labeled pixel. Unfortunately,
since similar-color patches are sometimes very small, there
are numerous such patches, which makes it hard to guaran-
tee each patch to include one labeled pixel.

In this paper we propose a new semi-supervised learning
method for tackling the colorization problem. Our work is
motivated by the recent advances of matrix recovery and
its extensions. Matrix recovery is a class of problems of
restoring a matrix corrupted by noises and outliers or a ma-
trix with missing entries. Rank minimization plays a central
role in matrix recovery techniques (Candès and Recht 2009;
Cai, Candès, and Shen 2010; Mazumder, Hastie, and Tibshi-
rani 2010). In practical applications, as a convex surrogate of
the matrix rank, the nuclear norm is typically employed to
deal with the NP-hard problem of rank minimization. Re-
cently, Candès et al. (2011) proved that an abitrary matrix
can be represented as a low-rank matrix plus a sparse matrix.
Accordingly, they proposed the robust principal component
analysis (RPCA) model.

Owing to the strong theories and tractable computations,
matrix recovery has received wide applications in collabo-
rative filtering (Candès and Recht 2009; Cai, Candès, and
Shen 2010), background modeling (Candès et al. 2011), sub-
space clustering (Liu, Lin, and Yu 2010), image alignment
(Peng et al. 2010), camera calibration (Zhang, Matsushita,
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and Ma 2011), multi-label image classification (Cabral et al.
2011), etc. To the best of our knowledge, however, matrix
recovery has not yet been applied to colorization problem.

Typically, each color image can be represented by a ma-
trix of the three color components. We thus seek to formulate
the colorization problem as a matrix completion problem (a
kind of matrix recovery problems). Roughly speaking, given
a proportion of observed entries from each color component
(i.e. labels) and the weighted sum of the three components
(the monochrome), colorization amounts to recovering the
matrix from the observations. In particular, our work offers
several contributions as follows.

1. Our work is the first to formulate colorization as a matrix
completion problem. On one hand, this enables us to ap-
ply recent advances in matrix completion to the coloriza-
tion problem. On the other hand, our study brings some
new insight for the matrix completion problem.

2. Our approach is reasonable because it is based on the fact
that any natural image can be effectively approximated
by a low-rank matrix plus a sparse matrix (Cai, Candès,
and Shen 2010; Candès et al. 2011). And some recent de-
velopments (Candès and Recht 2009; Candès et al. 2011)
have even shown that low-rank matrices can be recovered
exactly from a small number of sampled entries under
some assumptions.

3. We develop a robust formulation which can handle the
noises in the monochrome image as well as the outliers in
the labels. Moreover, we devise an augmented Lagrange
multiplier (ALM) algorithm for solving the model. This
algorithm is very efficient; in all our experiments it per-
forms less than 50 times singular value decompositions
even under extremely strong convergence criteria.

4. Finally, we show that the local-color-consistency idea can
be incorporated into our method, which further improves
the performance.
The rest of the paper is organized as follows. We first

formulate the colorization problem as a matrix comple-
tion problem and seek to solve it in a regularized rank-
minimization approach. We relax the rank-minimization
problem into a convex nuclear norm minimization problem,
providing a robust model as well as an algorithm for solving
the model. Then we propose to combine the low-rank and
local-color-consistency methods to improve colorization. Fi-
nally, we empirically demonstrate the performance of our
methods.

Problem Formulation
First of all, we give some notations that will be used in
our paper. For a matrix A = [Aij ] ∈ Rm×n, let ‖A‖0
be the `0-norm (i.e. the number of nonzero entries of A),
‖A‖1 =

∑
i,j |Aij | be the `1-norm, ‖A‖F = (

∑
i,j A

2
ij)

1/2

be Frobenius norm, ‖A‖∞ = maxi,j |Aij |, and ‖A‖∗ =∑r
i=1 σi(A) be the nuclear norm where r = min{m,n}

and σi(A) is the i-th largest singular value of A. Addition-
ally, let A ◦ B be the Hadamard product of A and B, i.e.
A◦B = [AijBij ]. Finally, let Im denote them×m identity
matrix.

In this paper we consider RGB color images. Suppose the
color image is of sizem×n and has three color components,
that is, red R̃, green G̃, and blue B̃, all of size m × n. The
corresponding monochrome image is the weighted sum of
the three components. There are two kinds of widely used
monochrome images: the average W = 1

3 (R̃+ G̃+ B̃) and
the luminosity W = 0.21R̃+0.71G̃+0.07B̃. Without loss
of generality, we use the average in our experiments.

Finally, the colorization problem is formally defined as
follows.
Definition 1. Suppose we are given a monochrome image
W ∈ Rm×n, a partially observed color image D ∈ Rm×3n,
and a zero-one matrix Ω ∈ {0, 1}m×3n, where Ωij = 1
indicates Dij is observed and Ωij = 0 otherwise. The col-
orization problem is to obtain the three color components
R,G,B ∈ Rm×n which best approximate the underlying
R̃, G̃, B̃, respectively.

Methodology
Our methodology is motivated by the fact that a natural im-
age matrix can be represented as sum of a low-rank matrix
and a sparse matrix. Thus it is intuitive to recover a low-
rank matrix from the observations. From this point of view,
an optimization problem for colorization is naturally formu-
lated as follows.

Let R, G and B ∈ Rm×n be the three color components
we would like to recover. By stacking them horizontally we
form L = [R,G,B] ∈ Rm×3n. Let S ∈ Rm×3n denote the
noises in the labels, W ∈ Rm×n the monochrome image,
D ∈ Rm×3n the labels, and Ω ∈ {0, 1}m×3n the indices of
the observed entries. Assuming that L is of low-rank and S
is sparse, we have

min
R,G,B,L,S

rank(L) + λ‖Ω ◦ S‖0;

s.t. L = [R,G,B];
L + S = D;

α1R + α2G + α3B = W, (1)

where α1 = α2 = α3 = 1
3 for the average monochrome

image and α1 = 0.21, α2 = 0.71, α3 = 0.07 for the lumi-
nosity. The third constraint is equivalent to LT = W where

T = [α1In, α2In, α3In]T .

With these notations, Problem 1 can be equivalently ex-
pressed as follows.

min
L,S

rank(L) + λ‖Ω ◦ S‖0; s.t.L + S = D; LT = W. (2)

Since the regularized rank-minimization problem 2 is NP-
hard, in most matrix recovery problems the nuclear norm
and `1-norm are often used as surrogates of matrix rank and
the `0-norm, respectively. We relax Problem 2 into Prob-
lems 3 of

min
L,S
‖L‖∗ + λ‖Ω ◦ S‖1; s.t. L + S = D; LT = W. (3)

Taking into account the potential noises in the input
monochrome image W, we formulate Problem 3 in a more
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Figure 2: Combine low-rank method and local-color-consistency method.

Algorithm 1 The ALM Algorithm
1: Input: W, D and Ω, parameters λ and η.
2: j = 0; Y

(0)
1 = Y

(0)
2 = sgn(D)/max

{
‖D‖2, ‖D‖∞/λ

}
;

L(0) = 0; S(0) = 0; X(0) = 0; µ(0)
1 > 0; µ(0)

2 > 0; ρ > 1;
T = [α1In, α2In, α3In]T ;

3: repeat

4: ZL ←
(
Y

(j)
1 +Y

(j)
2 +µ

(j)
1 (D−S(j))+µ

(j)
2 X(j)

)
µ
(j)
1 +µ

(j)
2

;

5: L(j+1) ← S
1
/(
µ
(j)
1 +µ

(j)
2

)(ZL

)
;

6: ZS ← 1

µ
(j)
1

Y
(j)
1 + D(j) − L(j+1);

7: S(j+1) ← Ω ◦ D
λ/µ

(j)
1

(
ZS

)
+ Ω̄ ◦ ZS;

8: ∂LX
∂X

= X(j)(ηTTT + µ
(j)
2 I) − ηWTT + Y

(j)
2 −

µ
(j)
2 L(j+1);

9: X(j+1) ← solution to ∂LX
∂X

= 0;

10: Y
(j+1)
1 ← Y

(j)
1 + µ

(j)
1

(
D− L(j+1) − S(j+1)

)
;

11: Y
(j+1)
2 ← Y

(j)
2 + µ

(j)
2

(
X(j+1) − L(j+1)

)
;

12: µ
(j+1)
1 ← ρµ

(j)
1 ; µ

(j+1)
2 ← ρµ

(j)
2 ; j ← j + 1;

13: until convergence
14: Output: L(j+1) and S(j+1).

robust form:

min
L,S

‖L‖∗ + λ‖S ◦Ω‖1 + η
2‖LT−W‖2F ;

s.t. L + S = D. (4)

With this robust formulation, we are able to handle the data
noises in the monochrome image and the outliers in the la-
bels. Thus, we define colorization as Problem 4 and we are
concerned with its solution.

It is worth mentioning that although our model has two
tuning parameters, selecting the parameters is not trouble-
some at all. We will show later that our method is indeed not
very sensitive to the parameters. In particular, we prespecify
the parameters to be λ = η = 10 in all the experiments.

Solution

In order to solve Problem 4, a slack matrix X ∈ Rm×n is
introduced to decouple the terms containing L in the objec-
tive function. The problem is then equivalently defined as

follows.

min
L,S,X

‖L‖∗ + λ‖S ◦Ω‖1 + η
2‖XT−W‖2F ;

s.t. L + S = D;

L = X. (5)

We solve Problem 5 by the augmented Lagrange multi-
plier (ALM) algorithm (Lin et al. 2009). The corresponding
augmented Lagrange function is

L(L,S,X,Y1,Y2)

= ‖L‖∗ + λ‖S ◦Ω‖1 +
η

2
‖XT−W‖2F

+ < Y1,D− L− S > +
µ1

2
‖D− L− S‖2F

+ < Y2,X− L > +
µ2

2
‖X− L‖2F . (6)

The ALM algorithm solves Problem 5 by alternately mini-
mizing the augmented Lagrange function w.r.t. L, S, X and
maximizing w.r.t. Y1 and Y2. This procedure is shown in
Algorithm 1, and the derivation is elaborated in Appendix.

In each iteration the ALM algorithm solves a regularized
nuclear norm minimization problem w.r.t. L. We resort to the
singular value shrinkage operator defined in (Cai, Candès,
and Shen 2010). For τ ≥ 0, the singular value shrinkage
operator Sτ is defined as[

Dτ (A)
]
ij

= sgn(Aij)(|Aij | − τ)+,

Sτ (B) = UBDτ (ΣB)VT
B, (7)

where B = UBΣBVT
B is the singular value decomposi-

tion (SVD) of B. The optimality of Dτ and Sτ is shown in
Proposition 2 in Appendix.

Remark: The computation cost of Algorithm 1 in each iter-
ation is dominated by the SVD in Line 5. Our off-line exper-
iments show that the algorithm gets convergence in less than
50 iterations, i.e. performs less than 50 SVDs, for images of
all small and large sizes (from 150 × 200 to 1500 × 2000
pixels).

Combining Low-rank and Local-color-consistency
Methods
In the experiments we notice that our low-rank method
works well when there are sufficient labeled pixels,
but the performance deteriorates with the decreasing of
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(a) Original (b) LR 10% (c) LL 10% (d) LR 1% (e) LL 1%

Figure 3: Figure (b) (d) are computed by the Low-Rank (LR)
method and (c) (e) by Low-rank+Local-color-consistency
(LL) method. The percentage denotes the proportion of la-
beled pixels.

labeled-pixel proportion. On the contrary, the local-color-
consistency method (Levin, Lischinski, and Weiss 2004) is
less sensitive to the labeled-pixel-proportion. This motivates
us to combine the advantages of the low-rank method and
local-color-consistency method.

Our intuition is to make use of local-color-consistency
along with the robustness of our low-rank method to im-
prove colorization ability. First, for each unlabeled pixel
(i, j), we find all its neighboring labeled pixels with
monochrome intensity close to pixel (i, j), and then label
pixel (i, j) with the weighted sum of those labeled neigh-
bors. The weight should be positively correlated with their
intensity similarity and negatively correlated with their dis-
tance. Notice that some pixels are still unlabeled and some
may be incorrectly labeled after this process; this problem
can be handled by our robust low-rank method. By taking
these labels as well as the initially given labels as inputs, the
low-rank method can complete the colorization. This proce-
dure is illustrated in Figure 2.

The comparison of the low-rank method and low-
rank+local-color-consistency method is shown in Figure 3.
The results clearly show that the low-rank+local-color-
consistency method still works well even if very few labeled
pixels are given, while the low-rank method fails. Since the
low-rank+local-color-consistency method performs signifi-
cantly better than the low-rank method, in the next sections
we mainly compare our low-rank+local-color-consistency
with the local-color-consistency method of Levin, Lischin-
ski, and Weiss (2004).

Related Work
In this section we discuss the connection of our method with
existing matrix completion methods. We show that the col-
orization problem is a matrix completion problem with an
additional regularization term. With this term, the matrix
completion problem can be solved much more accurately.

Candès and Recht (2009) proposed to solve the matrix
completion problem via the following convex optimization
model:

min
L
‖L‖∗; s.t. Ω ◦ (L−D) = 0. (8)

Later on, Candès et al. (2011) formulated a robust version of

(a) R 20% (b) R 30% (c) R 50% (d) LR 10% (e) LL 1%

Figure 4: Figure (a) (b) (c) are computed by RPCA (with-
out exploiting monochrome image) with 20%, 30%, and
50% pixels labeled; Figure (d) (e) are computed respectively
by our Low-Rank (LR) method and Low-rank+Local-color-
consistency (LL).

Problem 8 by assuming the potential data noises are sparse:

min
L
‖L‖∗ + λ‖Ω ◦ S‖1; s.t. L + S = D, (9)

which is well known as the RPCA model. With an additional
regularization term ‖LT−W‖2F , the RPCA model becomes
Problem 4.

Given a monochrome image, i.e. the average of the three
components in our case, we can add an extra regulariza-
tion term to the matrix completion problem formulation,
with which the matrix recovery accuracy is significantly im-
proved. Figure 4 gives a comparison of matrix completion
results with and without exploiting the monochrome image.
The results clearly demonstrate that with the information of
the monochrome image encoded in our model, the matrix
completion problem is solved much more accurately.

Our work suggests that the matrix completion formula-
tion 9 is extensible; with encoding some other knowledge
than the given entries, the matrix completion accuracy can
be largely improved.

Experiments
In this section we carry out a set of experiments on natural
images to demonstrate the performance of our method. We
also conduct comparison with the method of Levin, Lischin-
ski, and Weiss (2004), which we will denote by LLW for
description simplicity. The sample images that we used are
shown in Figure 5. Recall that the monochrome image is de-
fined as a weighted sum of the R, G, and B components.
Without loss of generality, we average the three components
to obtain the monochrome image.

The first set of experiments are conducted on all the sam-
ple images in Figure 5 to measure the image recovery accu-
racy. The monochrome image is obtained by averaging the
R, G, and B components. We randomly hold a certain per-
centage of pixels (uniformly) of the original image as the
observed part (labels). Using the monochrome image and
the labels, we run our two methods and the LLW method
for comparison. We define the relative square error (RSE) to
measure the recovery accuracy:

RSE =
‖L∗ − [R̃, G̃, B̃]‖F
‖[R̃, G̃, B̃]‖F

,
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: Sample images from the Berkeley Segmentation Dataset (Martin et al. 2001).

(a) LL, 0.1% (b) LLW, 0.1% (c) LL, 1% (d) LLW, 1% (e) LL, 10% (f) LLW, 10%

Figure 6: Results of colorization using our Low-rank+Local-color-consistency (LL) method and the method of Levin, Lischin-
ski, and Weiss (2004) (LLW). The percentage of each figure denotes the proportion of labeled pixels.

where R̃, G̃ and B̃ are the three color components of origi-
nal image while L∗ is the recovered image obtained by each
colorization method. The RSE versus labeled-pixel propor-
tion of each sample image is shown in Figure 7. We also
present visual comparisons between our low-rank+local-
color-consistency (LL) method and LLW in Figure 6. Al-
though these two methods can recover the color given suffi-
cient labels, a detailed look at the recovered images reveals
differences in intensity, illumination, and some other details.
The visual results and the RSEs all demonstrate that the
images restored by our Low-rank+local-color-consistency
method are closer to the original image.

In the second set of experiments, we manually label some
pixels of the monochrome images with corresponding col-
ors. We show in Figure 9 the results obtained by each
method from two manually labeled images: one with few
but relatively correct labels, the other with many noisy la-
bels. From the results we can see that our two methods are
more robust than the LLW method.

Finally, we demonstrate that our low-rank method is in-
sensitive to the tuning parameters λ and η of Problem 4. We
use the image in Figure 5(a) with 1%, 5%, and 10% pix-
els being labeled respectively as the input of our method;
with one parameter fixed while the other varies, we plot the
RSE against the parameter value in Figure 8. Our off-line ex-
periments on a variety of images, small and large sizes, all
demonstrated that our method is insensitive to λ and η. From
150×200 small images up to 1500×2000 large images, the
results of simply setting λ = η = 10 are always quite near
those obtained by carefully tuning the two parameters.

Future Work
As aforementioned, our low-rank method requires sufficient
labeled pixels (say more than 10%) as inputs, thus we seek to
improve the performance via a preprocessing step to gener-
ate more labels as inputs for our low-rank method. Although
the generated labels are potentially noisy, it does not hurt the
performance because our low-rank method is very robust.
We have successfully employed the local-color-consistency
method of Levin, Lischinski, and Weiss (2004) to gener-
ate more labels, and the performance has been significantly
escalated. Similarly, other approaches can also be incorpo-
rated in the same way. For example, we can make use of the
color labeling scheme proposed by Luan et al. (2007) which
groups not only neighboring pixels with similar intensity but
also remote pixels with similar texture.

Moreover, an improvement can be made to deal with the
generated labels. Since the generated labels are potentially
more noisy, we can discriminate between the generated la-
bels and the original labels by reformulating Problem 4 as

min
L,S

‖L‖∗ + λ1‖S ◦Ω1‖1 + λ2‖S ◦Ω2‖1

+η
2‖LT−W‖2F ;

s.t. L + S = D, (10)

where the original labels are indexed by Ω1 and the gener-
ated labels by Ω2, and λ1 > λ2 > 0.

Finally, our method can also be applied to video coloriza-
tion and batch image colorization, as well as single im-
age colorization. Such tasks can be fulfilled by stacking the
video frames or a batch of images together as a single image
followed by colorizing the stacked image. This approach is
reasonable because it exploits the similarity among the re-
lated frames or images.
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(a) image 5a (b) image 5b

(c) image 5c (d) image 5d

(e) image 5e (f) image 5f

(g) image 5g (h) image 5h

Figure 7: Relative square errors (RSE) of colorization using
the three methods on the sample images in Figure 5.

(a) η = 10 (b) λ = 10

Figure 8: Relative square errors (RSE) of the low-rank
method versus the tuning parameters λ and η of Problem 4.

Conclusions
In this paper we have proposed a matrix completion ap-
proach to the colorization problem. Our proposal is built
on the robust principal component analysis idea. In partic-
ular, we have formulated colorization as a convex optimiza-
tion problem and devised an augmented Lagrange multiplier
algorithm to solve the optimization problem. Our approach
is flexible because it can be combined with the local-color-
consistency leading to better colorization results. The exper-
iments have demonstrated that our method can produce bet-
ter performance in comparison with the existing state-of-art
method.
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Derivation of Algorithm 1
The optimality of Sτ is shown in Proposition 2, which
guarantees the optimality of minimizing the augmented La-
grange function (6) w.r.t. L.

Proposition 2. For any τ ≥ 0, A,B ∈ Rm×n, Dτ and Sτ
defined in (7) obey

Dτ (B) = argmin
A

τ‖A‖1 +
1

2
‖A−B‖2F , (11)

Sτ (B) = argmin
A

τ‖A‖∗ +
1

2
‖A−B‖2F . (12)

Based on Equation (11), we give a similar result in Propo-
sition 3 which guarantees the optimality of minimizing (6)
w.r.t. S.

Proposition 3. Given any τ ≥ 0, A,B ∈ Rm×n, Ω ∈
{0, 1}m×n. Let Dτ be defined in (7) and Ω̄ be an m × n

matrix whose the (i, j)-th entry is 1−Ωij , then the solution
to the following optimization problem

Â = argmin
A

τ‖A ◦Ω‖1 +
1

2
‖A−B‖2F .

is Â = Ω ◦ Dτ (B) + Ω̄ ◦B.
The augmented Lagrange function of Problem 5 is shown

in Equation 6. In the augmented Lagrange function the terms
containing L is LL:

LL = ‖L‖∗ +
µ1 + µ2

2
‖L− ZL‖2F , (13)

ZL =
1

µ1 + µ2

(
Y1 + Y2 + µ1(D− S) + µ2X

)
.(14)

Optimizing LL w.r.t. L lead to the solution S1/(µ1+µ2)(ZL),
as guaranteed by Proposition 2.

The terms containing S is LS:

LS = λ‖S ◦Ω‖1 +
µ1

2
‖S− ZS‖2F , (15)

ZS =
1

µ1
Y1 + D− L. (16)

Optimizing LS w.r.t. S lead to the solution Ω◦Dλ/µ1
(ZS)+

Ω̄ ◦ ZS, as guaranteed by Proposition 3.
The terms containing X is

LX =
η

2
‖XT−B‖2F+ < Y2,X− L > +

µ2

2
‖X− L‖2F .

The derivative of LX w.r.t. X is
∂LX

∂X
= X(ηTTT + µ2I)− ηWTT + Y2 − µ2L,

setting which to zero leads to the optimal value of X. This
linear system can be solved efficiently by the conjugate gra-
dient algorithm.
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