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Abstract
Recently, besides the performance, the stability (robust-
ness, i.e., the variation in feature selection results due
to small changes in the data set) of feature selection
is received more attention. Ensemble feature selection
where multiple feature selection outputs are combined
to yield more robust results without sacrificing the per-
formance is an effective method for stable feature se-
lection. In order to make further improvements of the
performance (classification accuracy), the diversity reg-
ularized ensemble feature weighting framework is pre-
sented, in which the base feature selector is based on lo-
cal learning with logistic loss for its robustness to huge
irrelevant features and small samples. At the same time,
the sample complexity of the proposed ensemble fea-
ture weighting algorithm is analyzed based on the VC-
theory. The experiments on different kinds of data sets
show that the proposed ensemble method can achieve
higher accuracy than other ensemble ones and other sta-
ble feature selection strategy (such as sample weight-
ing) without sacrificing stability.

Introduction
The high dimensionality of data poses challenges to learn-
ing tasks due to the curse of dimensionality. In the pres-
ence of many irrelevant features, learning models tend to
overfit and become less comprehensible. Feature selection
is an important and frequently used technique in data min-
ing for dimension reduction via removing irrelevant and re-
dundant features and has been an active area for decades.
Various studies show that features can be removed with-
out performance deterioration (Ng 2004). Then feature se-
lection brings the immediate effects of speeding up a data
mining algorithm, improving learning accuracy, and enhanc-
ing model comprehensibility (Zhao 2010), and it has been
widely applied to many research fields such as genomic
analysis (Inza et al. 2004), text mining (Forman 2003), etc.
A comprehensive surveys of existing feature selection tech-
niques and a general framework for their unification can be
found in (Zhao 2010; Liu and Yu 2005; Guyon et al. 2006;
Guyon and Elisseeff 2003).

Feature selection algorithms designed with different
strategies broadly fall into three categories: filter, wrapper
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and embedded models (Liu and Yu 2005). Compared to
wrapper and embedded models, feature selection algorithms
under filter model rely on analyzing the general character-
istics of data and evaluating features without involving any
learning algorithm, therefore most of them do not have bias
on specific learner models, which is believed to be one ad-
vantage of the filter model. Another advantage of the filter
model is that it has very simple structure, generally con-
sists of straightforward search strategy and feature evalua-
tion criterion. Because of its simple structure, it is easy to de-
sign and understand for other researchers. This explains that
why most feature selection algorithms are of filter model.
Moreover, since its structure is simple, it is usually very
fast (Zhao 2010), and is always appropriate for high dimen-
sional data preprocessing. On the other hand, according to
the type of the output, feature selection algorithms can be
divided into either feature weighting algorithms or feature
ranking algorithms, such as Relief (Kira and Rendell 1992;
Kononenko 1994; Robnik-Sikonja and Kononenko 2003;
Sun 2007), Lmba (Li and Lu 2009) and SQP-FW (Takeuchi
and Sugiyama 2011), etc, or subset selection algorithms,
such as SVM-RFE (Guyon et al. 2002) and MRSF (Zhao,
Wang, and Liu 2010), etc.

Various feature selection algorithms have been developed
with a focus on improving classification accuracy while
reducing dimensionality (Zhao 2010; Liu and Yu 2005;
Guyon et al. 2006; Wasikowski and Chen 2010). Besides
high accuracy, another important issue is stability of fea-
ture selection - the insensitivity of the result of a feature
selection algorithm to variations of the training set (Saeys,
Abeel, and de Peer 2008; Han and Yu 2010; Loscalzo, Yu,
and Ding 2009). This issue is very important for the applica-
tions where feature selection is used as a knowledge discov-
ery tool to identify characteristic markers and to explain the
observed phenomena. For example, in microarray analysis,
biologists are interested in finding a small number of fea-
tures (genes or proteins) that can explain the behavior mech-
anisms of microarray samples. A feature selection algorithm
often selects largely different subsets of features under vari-
ations to the training data, although most of these subsets
are as good as each other in terms of classification perfor-
mance (Loscalzo, Yu, and Ding 2009). Such instability will
be confusion, and dampen the confidence of domain experts
in experimentally validating the selected features.
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Similar to the case of supervised learning, ensemble tech-
niques might be used to improve the robustness of fea-
ture selection techniques (Saeys, Abeel, and de Peer 2008;
Loscalzo, Yu, and Ding 2009). Indeed, for sample samples
with high dimension, it is often reported that several differ-
ent feature subsets may yield equally optimal results (Saeys,
Inza, and Larranaga 2007), and the risk of choosing an
unstable subset may be reduced by ensemble feature se-
lection. Furthermore, different feature selection algorithms
may yield feature subsets that can be considered as local op-
tima in the space of feature subsets, and result of ensemble
feature selection might be closer to the optimal subset or
ranking of features. Finally, the representational power of a
particular feature selector might constrain its search space
such that optimal subsets cannot be reached. Ensemble fea-
ture selection could alleviate this problem by integrating the
outputs of several feature selectors (Saeys, Abeel, and de
Peer 2008). Ensemble feature selection has been success-
fully applied in biomarker identification (Abeel et al. 2010).

It is important to note that robustness of feature selection
results should not be considered independently, it always
should combine with classification performance, as domain
experts are not interested in a strategy that yields very ro-
bust feature subsets, but the returned subsets do not perform
well. Hence, these two aspects (stability and performance)
need always be investigated together. Then an ensemble fea-
ture weighting algorithm with high performance and sta-
bility is our aim. In this study, especially for one type of
feature selection-feature weighting, we present a framework
about diversity regularized ensemble feature weighting, and
its sample complexity is also presented. The base feature se-
lector in ensemble is based on local learning, which is under
filter model and outputs a feature weights (measuring fea-
tures’ relevance) vector. .

Ensemble Feature Weighting
Components of Ensemble Feature Selection
Same to the ensemble models for supervised learning, there
are two essential steps in ensemble feature selection: creat-
ing a set of different feature selectors with outputs and ag-
gregating the results of all feature selectors (Saeys, Abeel,
and de Peer 2008).

To measure the effect of ensemble feature selection, we
adopt a subsampling based strategy. Consider a training set
X contains n samples, X = {xi, yi}ni=1, and each sample
xi is represented by an d-dimensional vector xi ∈ Rd and
discrete class labels yi. Then m subsamples of size βn(0 <
β < 1) are drawn randomly from X, where the parameters
m and β can be varied. Subsequently, feature selection is
performed on each of the m subsamples.

Similar to the ensemble learning, the basic idea of our
ensemble feature weighting analysis is to maximize the fit
of the feature weighting vector, while maximizing the di-
versity between vectors. Therefore, ensemble feature selec-
tion generates the feature weighting results ensemble E =
{w1,w2, · · · ,wm}, where wk(k = 1, 2, · · · ,m) represents
the outcome of the k-th base feature selector trained on k-th
subsample. Specifically, in our case, each feature selection

result wk(k = 1, 2, · · · ,m) is a feature weighting vector.
The results ensemble E can be obtained by minimizing the
following loss function:

L(E) = Lemp(E) + γ.Ldiv(E) (1)

Here, the first term Lemp(E) corresponds to the empirical
loss of E; the second term Ldiv(E) corresponds to the diver-
sity loss of E. Furthermore, γ is the cost parameter balancing
the importance of the two terms.

In this paper, we employ local learning-based logistic re-
gression to implement the base feature selectors for its high
efficiency on the huge irrelevant features (Sun, Todorovic,
and Goodison 2010), then it is effective to improve the sta-
bility of feature selection. Thus, the first term Lemp(E) in
Eq.(1) is set to measure the empirical loss of logistic regres-
sion for feature weighting:

Lemp(E) =
m∑
k=1

∑
xi∈k

log(1 + exp(
−wTk
m

zi)) (2)

where zi = |xi − NM(xi)| − |xi − NH(xi)|, and |.| is an
element-wise absolute operator. xi is a sample in k-th sub-
sample. And two nearest neighbors of sample xi, one from
the same class is called as nearest hit(NH), and the other
from the different class is called as nearest miss (NM). wTk zi
is the local margin for xi, which belongs to hypothesis mar-
gin (Crammer et al. 2002) and an intuitive interpretation of
this margin is a measure as to how much the features of xi
can be corrupted by noise (or how much xi can move in the
feature space) before being misclassified. Margin (Schapire
et al. 1998; Cortes and Vapnik 1995) is a geometric measure
for evaluating the confidence of a classifier with respect to its
decision. Margin is used both for theoretic analysis of gen-
eralization bounds and as guidelines for algorithm designs.
By the large margin theory (Schapire et al. 1998), a classifier
that minimizes a margin-based error function usually gener-
alizes well on unseen test data. Then one natural idea is to
scale each feature, and thus obtain a weighted feature space
parameterized by a vector wk, so that a margin-based error
function in the induced feature space is minimized.

For the purposes of this paper, we use the Manhattan dis-
tance to define the margin and nearest neighbors, while other
standard definitions may also be used. Note that the de-
fined margin only requires the information about the neigh-
borhood of xi, while no assumption is made about the un-
derlying data distribution. This means that we can trans-
form an arbitrary nonlinear problem into a set of locally
linear ones by local learning (Sun, Todorovic, and Good-
ison 2010). On the other hand, the optimization problem
of Eq.(2) has an interesting interpretation: if xi is correctly
classified if and only if margin wTk zi ≥ 0 (i.e., on average,
xi is closer to the samples with the same label in the train-
ing data excluding itself than to those from other classes),
then

∑
xi∈k I(wTk zi < 0) is the leave-one-out (LOO) clas-

sification error induced by wk, where I(.) is the indicator
function. Since the logistic loss function is an upper bound
of the misclassification loss function, up to a difference of a
constant factor, the physical meaning of this base feature se-
lector is to find a feature weight vector that can minimize the
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upper bound of the LOO classification error in the induced
feature space (Sun, Todorovic, and Goodison 2010).

As shown in Eq.(1), the second term Ldiv(E) is used to
characterize the diversity loss among the base feature selec-
tors. We note that, though there is no agreement on what
form of diversity should be defined, the diversity measures
usually can be defined in a pairwise form, i.e., the total di-
versity is the sum of a pairwise difference measure. Thus we
also consider a form of diversity based on pairwise differ-
ence, and then the form of diversity loss is defined as pair-
wise similarity. The more similar all outputs are, the higher
the diversity loss measure will be. The overall diversity loss
can be defined as the average over all pairwise similarity be-
tween the outputs of different feature selectors:

Ldiv(E) =
1

m(m− 1)

m−1∑
k=1

m∑
k′=k+1

Sim(wk,wk′) (3)

where Sim(wk,wk′) represents a similarity measure be-
tween feature weighting vector wk and wk′ . wk is a vec-
tor of length d, wk = (w1

k, w
2
k, · · · , wdk), where wtk(t =

1, 2, · · · , d) represents the weight for feature t in k-th base
feature selector output. Notice that the feature weighting
vector is direct related to the classification error based on
the margin as described above, and each feature weighting
vector wk is linear without the bias term, thus the direc-
tion of vector is the most important factor for the classifi-
cation performance. In the paper, the cosine similarity mea-
sure is adopted with normalized feature weights to calculate
the similarity between weighting vector wk and wk′ , then
Sim(wk,wk′) = wTk wk′ . Note that the adding of a constant
||wk||22 + ||wk′ ||22 (its value is 2) does not change the optimal
solution (Yu, Li, and Zhou 2011). In this case, the diversity
loss can be replaced by ||wk + wk′ ||22, i.e.

Ldiv(E) =
1

m(m− 1)

m−1∑
k=1

m∑
k′=k+1

||wk + wk′ ||22 (4)

and a relaxed convex optimization problem is obtain for en-
semble feature weighting loss in Eq.(1). Furthermore, the
diversity loss can be considered as a l2-norm regularization
for logistic regression, which can obtain the stable feature
weighting vectors for its robustness to the rotational varia-
tion (Ng 2004). Then the proposed diversity loss term has
positive effect on feature selection stability besides the clas-
sification performance.

In the end, ensemble feature selection aims to find the tar-
get model E∗, which minimizes the loss function in Eq.(1):

E∗ = argminwk
L(E) (5)

and the final ensemble feature weighting result we =
1
m

∑m
k=1 wk, where wk ∈ E∗.

The target model E∗ is found by employing gradient
descent-based techniques. Accordingly, the gradients of
L(E) w.r.t the model parameters Θ = {wk|1 ≤ k ≤ m}
are determined as follows:

∂L
∂Θ

= [
∂L
∂w1

, · · · , ∂L
∂wk

, · · · , ∂L
∂wm

] (6)

where

∂L
∂wk

=
1

βn

∑
xi∈k

∂ log(1 + exp(
−wT

k

m zi))
∂wk

+
2γ

m(m− 1)

m∑
k′=1,k′ 6=k

∂Sim(wk,wk′)
∂wk

(7)

and

∂ log(1 + exp(
−wT

k

m zi))
∂wk

= − 1

m

exp(
−wT

k

m zi)

1 + exp(
−wT

k

m zi)
zi (8)

∂Sim(wk,wk′)
∂wk

= 2(wk′ + wk) (9)

To initialize the ensemble, each feature selector is learned
from a bootstrapped sample of X. Specifically, the corre-
sponding feature weighting wk is obtained by minimiz-
ing the objective function wk = minwk

∑
xi∈k log(1 +

exp(−wTk zi)). Note that the ensemble can also be initialized
in other ways, such as instantiating each wk with random
values, etc.

Theoretic Analysis
Now, we will firstly show the optimization of the base fea-
ture weighting logistic loss tends to optimize the upper
bound of the ensemble logistic loss. Then we have the fol-
lowing proposition.

Proposition 1 Let w1, · · · ,wm be the base feature weight-
ing results, and we = 1

m

∑m
k=1 wk be the ensemble feature

weighting result, the loss of we is bounded as

l(we) ≤
m∑
k=1

l(wk) (10)

Proof. For a training sample xi, the loss of base feature selec-
tor is l(wk) = log(1 + exp(

−wT
k

m zi)) ≤ (1 + 1
mwTk zi) (Sun,

Todorovic, and Goodison 2010), then
∑m
k=1 l(wk) =∑m

k=1 log(1+exp(
−wT

k

m zi)) ≤ ( 1
m

∑m
k=1 wTk zi+m). While

the ensemble loss is l(we) = log(1 + exp(
−
∑m

k=1
wT
k

m zi)),
which is less than or equal to ( 1

m

∑m
k=1 wTk zi + 1). Since in

ensemble feature weighting, the number of base selectors is
generally larger than 2, i.e., m ≥ 2, the proposition is then
proved.

On the other hand, this subsection presents a theoretical
study of our algorithm’s sample complexity. The main pur-
pose of the analysis is to show the dependence of the gen-
eralization performance of the proposed algorithm on in-
put data dimensionality and the diversity between base fea-
ture weighting vectors. As one can see from Eq. (1), the al-
gorithm finds an ensemble feature weight vector and aims
at minimizing an empirical logistic loss and diversity loss.
Hence, it is a learning problem and the analysis can be per-
formed under the VC-theory framework.

Let {x, y} be a pair of instance and target (class) value,
which is sampled from a fixed but unknown joint distribu-
tion p(x, y). And y is absorbed into x for notation simplicity.
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Given a set of real valued mapping functions F = {f(x|α) :
α ∈ Θ} parameterized by α and a loss function L(f(x|α)),
we like to seek a parameter α to minimize the expected loss:
R(α) = E[L(f(x|α))] =

∫
L(f(x|α))p(x)dx. In real ap-

plications, the true distribution is rarely known, and only
a limited number of instances X = {xi}ni=1 are available,
which are independently drawn from the unknown distribu-
tion. A natural method to find a parameter α through mini-
mizing the empirical loss: R(α,X) = 1

n

∑n
i=1 L(f(xi|α)).

We like to know how well a learning algorithm trained on
a limited number of samples will perform on unseen data.
This can be studied based on the VC theory, which depends
on the uniform convergence of the empirical loss to the ex-
pected loss (Sun, Todorovic, and Goodison 2010). It has
been proved by (Vapnik 1998; Anthony and Bartlett 1999)
that if the bound supα∈Ω |R(α,X) − R(α)| is tight, then
the function that minimizes the empirical loss is likely to
have an expected loss that is close to the best in the func-
tion class. A theorem provides an upper bound on the rate of
the uniform convergence of a class of functions in terms of
its covering number (Pollard 1984). Before we present the
theorem, we first give the concept of covering number.

Definition 1 (Covering Number) Given n samples X =
{xi})ni=1 and a function space F , characterized f ∈ F using
a vector υX(f) = [f(x1), · · · , f(xn)] in a metric space Bn
with metric κ. The covering number Np(F, ε,X) is the min-
imum number g of vectors u1, · · · ,ug ∈ Bn with margin ε
such that, for all f ∈ F there exists j ∈ {1, · · · , g},

||κ(υX(f),uj)||p = (

n∑
i=1

κ(f(xi), uji)p)1/p ≤ n1/pε

(11)
and Np(F, ε, n) = supX Np(F, ε,X)

Lemma 1 ( (Pollard 1984)) For all ε > 0 and distribution
p(x), we have
P [supα∈Θ |R(α,X)−R(α)| > ε]

≤ 8E[N1(L, ε/8,X)] exp(
−nε2

128M2
) (12)

where M = supα,x L(α, x) − infα,x L(α, x) and N1 is the
1-norm covering number of function class L.

Lemma 1 indicates that the bound of generalization error
is related to the performance on the training set and the space
complexity defined by covering number.

In general, it is very difficult to estimate the covering
number of an arbitrary function class. Fortunately, there
exists a tight bound for linear function class as described
in (Zhang 2002), which can be used for estimating the cov-
ering number for our purposes.

Lemma 2 ( (Zhang 2002)) Let F = {wT x, ||w||2 ≤
a, ||x||2 ≤ b, x ∈ <d}. Then we have

log
N2(F,ε,n)
2 ≤ da

2b2

ε2
e log

(2d+1)
2 (13)

where dψe is the nearest integers of ψ towards infinity.
In our case, for a given data set X, we can obtain a

transformed data set Z = [z1, · · · , zn], z ∈ <d based on
the definition of z above. Define a class of linear functions

G = {g(z) = wT z, ||w||2 ≤ a, ||z||2 ≤ b, z ∈ <d}. And∑
xi∈k I(wTk zi < ε) is the training error with margin ε in-

duced by wk, where I(.) is the indicator function. By Defi-
nition 1 and Lemma 2, the covering number logN2(G,ε,n)

2 ≤
da

2b2

ε2 e log
(2d+1)
2 .

Moreover, for the ensemble feature weighting results we,
we consider if the diversity can constrain the norm of we,
and then affect the covering number. Define a class of en-
semble linear functions Ge = {ge(z) = weT z} satisfying
we = 1

m

∑m
k=1 wk and diversity is larger than q. We mea-

sure their diversity using the angle between them, then for all
base feature weighting vectors, we have 1− wT

kwk′
||wk||||wk′ ||

≥ q
(k, k′ = 1, · · · ,m), so that, wTk wk′ ≤ (1−q)||wk||||wk′ || ≤
(1 − q)a2. Since we = 1

m

∑m
k=1 wk and ||we||22 = weTwe,

then according to the Theorem 1 in (Yu, Li, and Zhou 2011)

||we||22 =
1

m2

m∑
k=1

||wk||22 +
2

m2

m−1∑
k=1

m∑
k′=k+1

wTk wk′

≤ 1

m
a2 + (1− q)a2 (14)

And then the covering number for the Ge is

log
N2(Ge,ε,n)
2 ≤ d

( 1
ma

2 + (1− q)a2)b2

ε2
e log

(2d+1)
2 (15)

From the definition of the covering number and Jensen’s in-
equality, we have N1 ≤ N2. Now let us consider the func-
tion class L = {l(ge(z)) : ge ∈ Ge}. In the proposed al-
gorithm, l(ge(z)) = log(1 + exp(−ge(z))) is a logistic loss
function. It is proved in (Anthony and Bartlett 1999) that the
logistic loss function is a Lipschitz function with Lipschitz
constant 1, hence

E[N1(L, ε,X)] ≤ N1(L, ε, n) ≤ N1(Ge, ε, n)

≤ N2(Ge, ε, n) ≤ (2d+ 1)d
(1+ 1

m
−q)a2b2

ε2
e (16)

By using Holder’s inequality, |l(ge(z))| = | log(1 +
exp(−ge(z)))| ≤ |weT z| + 1 ≤ ||we||2||z||2 ≤√

( 1
ma

2 + (1− q)a2)b. Hence, M = supwe,z L(we, z) −

infwe,z L(we, z) ≤ 2b
√

( 1
ma

2 + (1− q)a2)

The covering number of ensemble function and the M
value is plugged into Lemma 1, we can obtain the bound
of proposed ensemble feature weighting method as follows.

Theorem 1 For the proposed ensemble algorithm, let
x ∈ <d and corresponding transformed data z , which holds
||z||2 ≤ b, E is a feature weighting space {w1, · · · ,wm}
such that for all wk ∈ E (k = 1, 2, · · · ,m) with ||wk||2 ≤ a
and the diversity between feature weighting results is larger
than q. If W is an ensemble feature weighting space that for
a we ∈ W satisfying we = 1

m

∑m
k=1 wk. For all ε > 0 and

distribution p(x), we have
P [supwe |R(we,X)−R(we)| > ε]

≤ 8(2d+ 1)d
64(1+ 1

m
−q)a2b2

ε2
e exp(

−nε2

512((1 + 1
m − q)a2b2)

)

(17)
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Stability Analysis

To measure the stability of our proposed ensemble feature
weighting algorithm and the effect of diversity loss term on
stability, we also adopt a subsampling based strategy. Con-
sider the data set S with Q instances and d features. Then
c subsamples of size µQ(0 < µ < 1) are drawn randomly
from S, where the parameters c and µ also can be varied.
Subsequently, ensemble feature weighting is performed on
each of the c subsamples, and a measure of stability or ro-
bustness is calculated.

Consider a feature weighting vector set W =
{we1 ,we2 , · · · ,wec}, wej = (w1

ej , w
2
ej , · · · , w

d
ej )(j =

1, 2, · · · , c) is the feature weighting result of our proposed
ensemble feature weighting algorithm on j-th subsample.
However, feature weighting is almost never directly used to
measure the stability of feature selection, and instead con-
verted to a ranking based on the weights (Saeys, Abeel,
and de Peer 2008). Then we can obtain the correspond-
ing ranking set {r1, r2, · · · , rc}, rj = (r1

j , r
2
j , · · · , rdj )(j =

1, 2, · · · , c), rtj(t = 1, 2, · · · , d) represents the rank of fea-
ture t in j-th feature ranking vector. Noting that the ranking
value for a feature is set as follows: The best feature with the
largest weight is assigned rank 1, and the worst one rank d.

Here, feature stability is measured by comparing similar-
ity of the outputs of ensemble feature selection on the c sub-
samples. The more similar all outputs are, the higher the sta-
bility measure will be. The overall stability can be defined
as the average similarity over all pairwise similarity between
the different ensemble feature ranking results:

Rsta =
1

c(c− 1)

c−1∑
j=1

c∑
j′=j+1

Sim(rj , rj′) (18)

where Sim(rj , rj′) represents a similarity measure between
feature ranking results rj and rj′ . For feature ranking, the
Spearman rank correlation coefficient (Saeys, Abeel, and de
Peer 2008; Kalousis, Prados, and Hilario 2007) can be used
to calculate the similarity:

Sim(rj , rj′) = 1− 6
d∑
t=1

(rtj − rtj′)2

d(d2 − 1)
(19)

Note that, for the ensemble feature weighting process, we
like to minimize the similarity (diversity loss) between the
outputs of base feature selectors , i.e.,wk(k = 1, · · · ,m),
in each ensemble learning. While the computation of sta-
bility is on the outputs of ensemble feature weighting
(i.e.,wej (j = 1, · · · , c)) and corresponding ranking vector
(i.e., rj(j = 1, · · · , c)) on c subsamples. On the other hand,
each of the c subsamples is used as the training data set X
for the ensemble feature weighting and the size n is equal
to µQ(0 < µ < 1), i.e., n = µQ. Then there is no confu-
sion for improving ensemble learning performance through
minimizing similarity between base feature weighting vec-
tor and the stability is also kept because of the mechanism
of ensemble learning.

Experiments
In order to validate the performance of our ensemble algo-
rithm, the experiments are conducted on several real-world
data sets to show its stability and classification power. The
data sets consist of small samples with high dimension,
medium samples and large samples with low dimension,
such as Colon, Prostate, Wisconsin, Sonar, Arcene, Dia-
betes, Waveforms and Ionosphere, which are taken from
UCI ML repository (Frank and Asuncion 2010) and Colon
cancer diagnosis data set is introduced in (Alon et al. 1999).
They are described in Table 1. In this paper, the parameter γ
is set to the value 0.001 based on cross-validation.

Table 1: Description of experimental data sets

Data set ] Samples ] Features ] Classes
Arcene 200 10000 2
Colon 62 2000 2

Prostate 136 12600 2
Wisconsin 699 10 2
Ionosphere 351 34 2

Sonar 208 60 2
Waveform 5000 21 3

Pima Diabetes 768 8 2

Experimental Results for Stability
To estimate the robustness (stability) of ensemble feature
weighting algorithm, the strategy explained above was used
with c = 5 subsamples of size 0.9Q (i.e. µ = 0.9 and
each subsample contains 90% of the data). This percent-
age was chosen because we want to assess robustness with
respect to relatively small changes in the data set. Then,
the proposed ensemble algorithm and ensemble one with-
out diversity term with β = 0.9 was run on each subsam-
ple, the features are been ranking based on their weights,
and then the similarity between feature ranking results pairs
and stability is calculated using Eq.(19) and (18) respec-
tively. The ensemble feature selection have been proved
that it can improve the stability of feature selection (Saeys,
Abeel, and de Peer 2008; Abeel et al. 2010), then we only
show the stability of our ensemble feature weighting algo-
rithm(EFW) and the proposed algorithm without diversity
loss term(EFWWD) on two real-world data sets (such as
Wisconsin and Sonar) w.r.t different numbers of base feature
selectors, i.e. the value of m. The robustness of the ensem-
ble feature weighting is shown in Fig.1 for Wisconsin and
Sonar. The X-axis is the number of base feature selectors m
and Y-axis is the stability value. From the results, we can
observe that the stability value of these two ensemble fea-
ture weighting algorithms are very close and the difference
between them does not exceed 0.01. Moreover, the stabil-
ity is approaching to 1 for all values of m. For other data
sets, we only list the stability value of EFW and EFWWD
for m = 5 as follows, Arcene (0.9587, 0.9505), Pima Dia-
betes (0.9933, 0.9943), Colon (0.9661, 0.9592), Ionosphere
(0.9725, 0.9733), Prostates (0.9687, 0.9619) and Waveform
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(0.9959, 0.9966). The feature ranking stability for these data
sets is also very high and close to 1, and then our proposed
algorithms can obtain superior or at least equivalent stable
results to other ensemble methods.

Wisconsin Sonar

Figure 1: Experimental results of stability

Experimental Results for Classification
Now we will pay more attention to validate the classifica-
tion performance of our proposed EFW, and comparing with
other ensemble feature weighting algorithms, such as the
the proposed EFWWD, ensemble-Relief (E-Relief) (Saeys,
Abeel, and de Peer 2008) and newly proposed stable fea-
ture selection strategy based on variance reduction, which
is to assign different weights to different samples based on
margin, and then to obtain high stability for feature selec-
tion (Han and Yu 2010). We combine the sample weight-
ing strategy with the newly proposed feature weighting
algorithm-Lmba (Li and Lu 2009) and named as VR-Lmba.
In this part of experiments, the number of base selectors for
ensemble feature weighting is constant and set as 5 for all
algorithms, i.e., m = 5. 5-cross validation is used and the
linear SVM is adopted as classifier with C=1 (Chang and
Lin 2002). The experimental results for these data sets are
shown in Fig. 2, the X-axis is the number of selected fea-
tures according to ensemble ranking results and Y-axis is
the classification accuracy.

Observations
From the experimental results, we can observe that our pro-
posed ensemble algorithms, especially for EFW, can obtain
higher classification accuracy than other ones in most cases,
and the stability of our algorithms is also very high, then the
diversity loss term in our proposed ensemble feature weight-
ing algorithm is effective to improve the performance with-
out deceasing the stability. Thus we achieve the goal that
designing a ensemble feature weighting with high classifi-
cation accuracy and stability.

Conclusion
Both the stability and performance of feature selection are
attracted much attention. Our work is motivated by the
recognition that diversity is the key to the success of en-
semble methods and the ensemble learning can effectively
improve the robustness of models. Our main contribution is
that we provide the ensemble feature weighting framework

Arcene Wisconsin

Pima Diabetes Colon

Ionosphere Prostate

Sonar Waveform

Figure 2: Experimental results of classification accuracy

for stable feature selection with high performance (classi-
fication accuracy), and present the theoretic analysis about
the sample complexity with diversity constraints. In the pa-
per, an ensemble feature weighting algorithm based on lo-
cal learning and diversity is introduced, and the theoreti-
cal results about the sample complexity based on VC-theory
with diversity constraints are presented. The experiments on
many kinds of real-world data sets have shown its higher ac-
curacy and at least similar stability to other ensemble ones.
Then we can conclude that the diversity is also very useful
for the ensemble feature selection. In our analysis, the linear
combination is adopted in ensemble feature weighting, other
combination scheme is our future work.
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