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Abstract

Recently, graph-based ranking algorithms have received
considerable interests in machine learning, computer vi-
sion and information retrieval communities. Ranking
on data manifold (or manifold ranking, MR) is one of
the representative approaches. One of the limitations of
manifold ranking is its high computational complexity
(O(n3), where n is the number of samples in database).
In this paper, we cast the manifold ranking into a Breg-
man divergence optimization framework under which
we transform the original MR to an equivalent optimal
kernel matrix learning problem. With this new formula-
tion, two effective and efficient extensions are proposed
to enhance the ranking performance. Extensive experi-
mental results on two real world image databases show
the effectiveness of the proposed approach.

Introduction
Graph-based ranking algorithms have received consider-
able interests in machine learning, computer vision and in-
formation retrieval communities recently. Ranking on data
manifold (or manifold ranking, MR) (Zhou et al. 2004a;
2004b) is one of the representative approaches and has been
widely applied in various information retrieval and machine
learning applications.

The core idea of MR is to rank the data with respect to the
intrinsic geometric structure collectively revealed by a large
amount of (unlabeled) data. By taking both the labeled (the
query) and unlabeled data (the database) into account, MR
assigns each data point a relative ranking score which can
be regarded as the relevance degree to the query. Unlike the
pairwise similarities or distances used in many traditional
methods, the ranking score is more meaningful to measure
the semantic relevance expressed within the underlying ge-
ometric structure of the data set. A number of works have
shown that MR has excellent performance and feasibility on
a variety of data types, such as image (He et al. 2004), text
(Wan, Yang, and Xiao 2007), and vedio (Yuan et al. 2006).
Moreover, it has been shown that for the task of ranking data
on a connected and undirected graph without queries, MR
yields the same ranking list with the famous PageRank (Brin
and Page 1998) algorithm (Zhou et al. 2004b).
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One of the main drawbacks of manifold ranking is its high
computational complexity. Given a query, MR constructs an
affinity graph and propagate the ranking scores on the graph
which leads to a O(n3) complexity, where n is the num-
ber of samples in the database. If the query is already in the
database, MR can use off-line pre-computation to reduce the
on-line cost. However, for a query out of the database, the
expensive ranking score propagation step needs to be per-
formed in the on-line stage which is usually referred as the
out-of-sample problem (Bengio et al. 2004). Recently, many
MR extensions have been proposed to improve the algorithm
in different aspects. For example, He et al. (He et al. 2006)
proposed to use the nearest neighbors of the query as the in-
put to avoid the out-of-sample problem. Xu et al. (Xu et al.
2011) introduced a low-rank adjacency matrix approxima-
tion and leverage its properties to reduce the computational
cost. Cheng et al. (Cheng et al. 2011) tried to increase the
ranking diversity by turning ranked objects into sink points
to prevent redundant objects receiving a high rank.

In this paper, we cast the manifold ranking algorithm into
a Bregman divergence optimization framework under which
we obtain a new understanding and viewpoint of the algo-
rithm. That is, the optimal ranking function can be built
by learning an optimal kernel matrix under the Bregman
matrix divergence metric. With this new formulation, we
propose two efficient and effective extensions to improve
the ranking performance. Meanwhile, our extensions have
a closed form solution and is friendly to the out-of-sample
data. We applied our method to the content-based image re-
trieval (CBIR) application. Extensive experiment results on
two real world image databases demonstrate the effective-
ness of our proposed algorithms.

The main contributions of this paper include: (1) We are
the first to formulate the manifold ranking algorithm as a
Bregman divergence optimization problem; (2) With which,
we get a new understanding of MR’s object – to learn an op-
timal kernel matrix; (3) With this new formulation, we pro-
pose two efficient and effective extensions, named DMRE
and DMRC , to improve the performance of traditional MR.
(4) In the second extension DMRC , we are able to utilize
the information of pairwise constraints inducted from user
feedbacks to guide the ranking, which is a promising way
for semi-supervised ranking algorithms.
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Preliminaries
In this section, we briefly review some preliminary knowl-
edge which are highly related to our work.

Manifold Ranking
Given a data set X = [x1,x2, . . . ,xn] ∈ Rm×n where
each column is a sample vector. The manifold ranking
(MR) first builds an affinity graph on the data (e.g., kNN
graph). Let W ∈ Rn×n denote the weight matrix of the
graph with wij saving the weight of each edge. A com-
mon way to compute the weight is using the heat kernel
wij = exp[−d2(xi,xj)/2σ

2)] if there is an edge linking xi
and xj , otherwise wij = 0. Function d is a distance metric,
such as the Euclidean distance.

Let f be a ranking function which assigns to each point
xi a ranking score fi. MR defines an initial vector f0 =
[f01 , . . . , f

0
n]T , in which f0i = 1 if xi is a query and f0i =

0 otherwise. The cost function associated with f in MR is
defined to be (Zhou et al. 2004a)

O(f) =
1

2
(

n∑
i,j=1

wij(
fi√
Dii

− fj√
Djj

)2 +µ‖f − f0‖2), (1)

where µ > 0 is the regularization parameter and D is a di-
agonal matrix with Dii =

∑
j wij . The algorithm can also

be designed as an iterative form as follows
f(t+ 1) = βSf(t) + (1− β)f0, (2)

where S = D−1/2WD−1/2 and β = µ/(1 + µ). During
one iteration t, each data point receives information from
its neighbors and retains its initial assignment. At last, the
algorithm converges to

f∗ = (In − βS)−1f0 = Kf0. (3)
It is important to note that the parameter β should stay in the
range of [0, 1)1, otherwise the algorithm cannot converge.

The advantages of manifold ranking (MR) are as follows:
• In Eq.(3), if the query is in the database (i.e., the query

is one of the column of X), the matrix K can be pre-
computed, which makes the online computation process
light weight;

• MR’s input is a query list which makes it quite suitable
for the relevance feedback, i.e., a user provides some rel-
evant/irrelevant samples in the initial results returned by
the system and the system ranks the database again. It is
very convenient for MR to take the advantages of rele-
vance feedback – just simply change the query vector f0.

Meanwhile the algorithm has some disadvantages:
• The pre-computation is useful for the queries in the

database. However, for the queries out of the database
(out-of-sample), we have to re-compute the matrix K,
which leads to O(n3) computational complexity. Thus,
MR is not friendly to the new data samples.

• It is not clear for MR that how to accumulate the users
feedbacks for future searches. Actually, the feedbacks
provided by the users can be regarded as relevance con-
straints of the database and naturally can help to improve
the ranking for a future query (Si et al. 2006).
1when β = 0, f∗ is always equal to the initial f0

Bregman Matrix Divergence
The Bregman divergence (Bregman 1967) can be used to
measure the closeness of two vectors. Let ϕ : ∆ → R be a
continuously differentiable, real-valued strictly convex func-
tion defined on a convex set ∆, The Bregman divergence
associated with ϕ is defined as

Dϕ(x,x0) = ϕ(x)− ϕ(x0)− (x− x0)T∇ϕ(x0). (4)

Intuitively, this definition can be regarded as the difference
between the value of ϕ at point x and the value of the first-
order Taylor expansion of ϕ around point x0 evaluated at
point x. For example, if ϕ(x) = xTx, then the correspond-
ing Bregman divergence is the squared Euclidean distance:
Dϕ(x,x0) = ‖x − x0‖2. The definition of Bregman diver-
gence can be naturally extended to real-valued symmetric
n × n matrices (Kulis, Sustik, and Dhillon 2006). Given a
continuously differentiable, strictly convex function ϕ, the
Bregman matrix divergence is defined as

Dϕ(X,X0) = ϕ(X)−ϕ(X0)− 〈∇ϕ(X0), X −X0〉. (5)

Similarly, if ϕ(X) = ‖X‖F , the Frobenius norm of a ma-
trix, then Dϕ(X,X0) = ‖X −X0‖2F .

In this paper, we focus on the convex log-determinant
function ϕ(X) = − log detX , which is the Burg entropy
of X’s eigenvalues, i.e., ϕ(X) = −

∑
i log λi. The result-

ing Bregman matrix divergence is

D`d(X,X0) = tr(XX−10 )− log det (XX−10 )− n, (6)

which is called the Log-Determinant divergence (Kulis,
Sustik, and Dhillon 2006).

A New Derivation of Manifold Ranking
In this section, we will derive the MR algorithm from a
Bregman divergence optimization framework. Based on the
new formulation, some extensions can be naturally derived
to overcome the shortcomings of the traditional MR ap-
proach.

Let Y = [y1, . . . ,yn] ∈ Rp×n be the data representation
in a new feature space of the data samples. That is to say
yi = Ψ(xi), for i = 1, . . . , n, where Ψ is a transformation
function of the data to the new feature space. We define the
matrirx K as

K = Y TY. (7)
It is easy to check that the matrix K is always positive semi-
definite, since for any vector v, vTKv = ‖Y v‖2 ≥ 0 holds.
Now we present our main theorem as follows:

Theorem 1 The matrix K in the manifold ranking formu-
lation (Eq.(3)) is the solution of the following optimization
problem:

min
K

D`d(K, I)

s.t.
∑
i,j

‖ 1√
Dii

yi − 1√
Djj

yj‖2wij ≤ δ,

K � 0,

(8)

where δ is a parameter controlling the smoothness con-
straint which makes the nearby samples having close dis-
tances in the new space.
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The optimization problem (8) finds a K closest to the
identity matrix measured by the Log-Determinant diver-
gence with a normalized Laplacian smoothness constraint.
Note that the first constraint can be written as a matrix form
(Zhou et al. 2004a):∑

i,j

‖ 1√
Dii

yi −
1√
Djj

yj‖2wij = tr(Y LY T ), (9)

where L = I − S (S = D−1/2WD−1/2) is the normalized
graph Laplacian (Chung 1997).

Substituting the objective function with Eq. (6) and using
Lagrange multiplier, the optimization problem (8) has the
equivalent formulation as follows:

min
K�0

tr(KI−1)− log det(K) + αtr(Y LY T ), (10)

where α ≥ 0 is the Lagrange multiplier for the constraint.
Since tr(Y LY T ) = tr(Y TY L) = tr(KL), we can further
simplify the optimization problem (10) as

min
K�0

tr(KB)− log det(K), (11)

whereB = I+αL is a positive-definite matrix. The optimal
solution K∗ of the above optimization problem is (Hoi, Liu,
and Chang 2010):

K∗ = B−1 = (I + αL)−1. (12)

Note that B = I + αL = (1 + α)(I − α
(1+α)S), then

K∗ = (I − βS)−1, (13)

where β = α
1+α . The positive constant part (1 + α)−1 is

ignored because it is simply a scaling factor and does not in-
fluence the ranking. The parameter β = α

1+α is in the range
of [0, 1), when α ≥ 0. Thus, K∗ is exactly equal to the ma-
trix K in Eq.(3). So we have our Theorem 1.

New Extensions of Manifold Ranking
The above Bregman divergence optimization view of man-
ifold ranking shows that MR essentially learns an optimal
matrix K “closest” to the identity matrix under certain con-
straints. We name this formulation as DMR (divergence
view of MR) for distinguish. In this section, we propose two
effective extensions.

Extension 1: An Efficient Extension
MR learns an optimal matrixK “closest” to the identity ma-
trix, which is not informative. We can naturally use other
matrices (derived from the data) instead of the identity ma-
trix. In this paper, we use a Gaussian kernel matrix and we
want the optimal matrix to be close to the Gaussian kernel
matrix under certain constraints. Each element of the Gaus-
sian kernel matrix is calculated by

KG
ij = exp

(
−d2(xi,xj)/2σ

2
)
, (14)

where σ is the window size parameter and d(xi, xj) returns
the Euclidean distance between xi and xj . Replacing the ma-
trix I in Eq.(10) by KG, the object of DMR becomes

min
K�0

tr(KH)− log det(K) + αtr(Y LY T ), (15)

where H = KG−1. The solution of the above problem

K∗ = (H + αL)−1. (16)

If matrix BE
.
= H + αL is not positive-definite, one can

simply add a ridge term as B̃E = BE + rII to replace it,
where rI is a positive constant.

So far, we still need to inverse a n × n matrix H + αL.
Assume the mapping fromX to Y is linear, i.e., Y = UTX ,
where U is a m× p matrix, we have

tr(KH)− log det(K) + αtr(Y LY T )
= tr(XTUUTXH)− log det(XTUUTX)

+αtr(UTXLXTU)
= tr(AXHXT )− log det(XXT )− log det(A)

+αtr(AXLXT ),

where A = UUT � 0 and the second equality use the prop-
erty that det(AB) = det(A) det(B).

Thus, the optimization problem (15) becomes

min
A�0

tr(A(XHXT + αXLXT ))− log det(A), (17)

where A is a m×m matrix. To solve this problem, we only
need to inverse a matrix of size m ×m, which remains the
same as the size of the data set (n) grows.

It is not hard to see that we actually learned a distance
metric dA:

d2A(xi,xj) = ‖UTxi − UTxi‖2
= (xi − xj)

TUUT (xi − xj)
= (xi − xj)

TA(xi − xj).
(18)

With the learned metric matrix A, K can be computed as
K = Y TY = XTAX . However, the linear mapping from
X to Y is too restricted. To narrow down the gap between the
linear and nonlinear mapping, we use the learned distance
metric dA to estimate a new Gaussian kernel matrix. This is
reasonable because our goal is finding a matrix “close to”
the Gaussian kernel matrix. Then each element of the final
matrix K∗ is computed by

K∗ij = exp
(
−d2A(xi,xj)/2σ

2
)
. (19)

Similar to Eq.(3), we can use the learned K∗ for ranking as
follows:

f∗ = K∗f0. (20)
where f0 is the query vector and f∗ is the ranking score.

Given a sample point out of the database (e.g., a new
query), instead of updating the entire matrix K∗, we only
need to compute a new column (and row) of the matrix.
Without loss of generality, let X̂ = [X xt] ∈ Rm×(n+1)

be the new data matrix where xt is the new sample. Then
the new optimal matrix K̂∗ ∈ R(n+1)×(n+1) has the form of

K̂∗ =

[
K∗ knt
kTnt 1

]
. (21)

And we only need to compute the vector knt ∈ Rn based on
Eq. (19).

In MR, the most computational expensive step is the in-
version of a n×nmatrix, which has a complexity ofO(n3).
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While in our extension, we optimize a much smaller matrix
A of size m ×m (m � n). Then we use A to estimate the
K∗. As a result, the complexity of the proposed extension
is O(m3) +O(n2). Moreover, given a new query, the tradi-
tional MR still needs O(n3) to propagate the ranking score.
Our extension only needs O(n) to update the matrix K∗ as
in Eq. (21).

The proposed extension is much more efficient than the
traditional MR algorithm and we use DMRE (stands for Ef-
ficient DMR) to denote it.

Extension 2: Incorporating Pairwise Constraints
Our first extension uses a distance metric learning formula-
tion to speed up traditional MR. It inspires us to further ex-
tend our algorithm to utilize the pairwise constraints, which
have been fully studied in semi-supervised clustering and
metric learning works (Xing et al. 2002; Yang et al. 2006;
Davis et al. 2007; Hoi, Liu, and Chang 2008; 2010).

Assume that we are given two sets of pairwise constraints
among the data set X:

S = {(i, j) | xi and xj are judged to be similar}
D = {(i, j) | xi and xj are judged to be dissimilar}

where S is the set of similar pairwise constraints andD is the
set of dissimilar pairwise constraints. In a retrieval system, it
is not hard to accumulate these knowledge. For example, we
can get the pairwise constraints from the click-through data
or the relevance feedback.

The pairwise constraints require the pairs in S having
shorter distances and the pairs in D having longer distances
under the distance metric dA. Following (Si et al. 2006;
Hoi, Liu, and Chang 2008), we formulate the optimization
problem (17) with pairwise constraints as:

min
A�0

tr(A(XHXT + αXLXT ))− log det(A)

+γs
∑

(i,j)∈S
dA(xi,xj)

2 − γd
∑

(i,j)∈D
dA(xi,xj)

2,

(22)
where parameters γs ≥ 0 and γd ≥ 0 control the strength of
the constraints. Similar as before, the solution can be com-
puted as

A∗ = (XHXT + αXLXT + γsM − γdC)−1. (23)

where the matrices M and C are defined as:

M =
∑

(i,j)∈S
(xi − xj)(xi − xj)

T

C =
∑

(i,j)∈D
(xi − xj)(xi − xj)

T .
(24)

If the matrix to be inversed in Eq. (23) is not positive-
definite, one can simply add a ridge term rII (Hoi, Liu, and
Chang 2010)

Similar to Extension 1, we can use Eq.(19-21) to estimate
the matrix K and ranking the database given a query. We
use DMRC (stands for DMR with Constraints) to denote
the second extension.

Table 1: Basic statistics of the two image data sets.

COREL Caltech101
# of images 5,000 9,094
# of categories 50 101
# of images per category 100 (avg)90

Experimental Results
In this section, we use content-based image retrieval as an
example to demonstrate the effectiveness of the proposed
approach. The proposed DMRE is compared with several
state-of-the-art unsupervised (without constraints) ranking
methods and the proposed DMRC is compared with sev-
eral state-of-the-art semi-supervised (with constraints) rank-
ing methods.

Data Set and Experimental Setup
Our experiments are performed on two real world image
data sets: COREL and Caltech101. The COREL data set is
widely used in many CBIR works (Cai, He, and Han 2007a;
2007b; He et al. 2007; He, Cai, and Han 2008; Hoi, Liu,
and Chang 2008; He 2010; Xu et al. 2011). We use a subset
which consists of 5,000 images in 50 semantic categories,
and each category has exactly 100 images. The Caltech101
data set2 has 9,094 images belonging to 101 categories with
about 40 to 800 images per category. Table 1 shows some
important statistics of the data sets.

Image Features Image feature extraction is a key step for
CBIR. A wide variety of global features were proposed in
the past decades. In our experiments, we extract four kinds
of effective features, and as a result, a 297-dimensional vec-
tor is used for each image (Zhu et al. 2008).

• Grid Color Moment: Each image is partitioned into 3×3
grids. For each grid, the color moments: mean, variance
and skewness are extracted in each color channel (R, G,
and B) respectively. Finally, we have an 81-dimensional
grid color moment vector for each image.

• Edge: The Canny edge detector (Canny 1986) is used to
obtain the edge map for the edge orientation histogram,
which is quantized into 36 bins of 10 degrees each. An
additional bin is to count the number of pixels without
edge information. Hence, a 37-dimensional vector is used.

• Gabor Wavelets Texture: Each image is first scaled to
64×64 pixels. The Gabor wavelet transform (Lades et al.
1993) is then applied on the scaled image with 5 levels and
8 orientations, which results in 40 subimages. For each
subimage, 3 moments are calculated: mean, variance and
skewness. Thus, a 120-dimensional vector is used.

• Local Binary Pattern: The LBP (Ojala, Pietikäinen, and
Harwood 1996) is a gray-scale texture measure derived
from a general texture definition in a local neighborhood.
A 59-dimensional LBP histogram vector is adopted.

2http://www.vision.caltech.edu/Image Datasets/Caltech101
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Evaluation Metric There are many metrics to evaluate the
performance of a CBIR system. In reality, images in top
returned pages receive most of the interests and attentions
from the users. Thus the Precision at K (P@K) metric is very
practical to evaluate the retrieval performance. In addition,
we also use NDCG and MAP values.

NDCG is a wildly used metric to evaluate a ranked list
(Manning, Raghavan, and Schutze 2008). NDCG@K is de-
fined as:

NDCG@K =
1

IDCG
×

K∑
i=1

2ri−1

log2(i+ 1)
, (25)

where ri is 1 if the item at position i is a relevant item and 0
otherwise. IDCG is chosen so that the perfect ranking has a
NDCG value 1.

MAP (Mean Average Precision) provides a single-figure
measure of quality across recall levels (Manning, Raghavan,
and Schutze 2008). For a single query j, Average Precision
is the average of precisions computed at the point of each
correctly retrieved item (d1, . . . , dmj) in the ranked list, and
this value is then averaged over the query set U :

MAP (U) =
1

|U |

|U |∑
j=1

1

mj

mj∑
k=1

Precision(Rjk), (26)

where Rjk is the set of ranked results from the top result
until you get to item dk. In our experiments, only the the top
200 returned images for each query are used.

Experiments without Constraints
We first compare some ranking methods without using pair-
wise constraints. These methods include dimensionality re-
duction algorithms, metric learning algorithms, and the orig-
inal MR approach. Specifically, they are:
• Eud: the simple baseline method using Euclidean dis-

tance for ranking.
• PCA: the most popular linear unsupervised dimensional-

ity reduction method (Shlens 2005). The reduced dimen-
sion is set to 30 in the experiment.

• Mah: a standard distance metric method for which the ma-
trix A = C−1, where C is the sample covariance matrix.

• MR: the original manifold ranking which is the most im-
portant comparison, since we are just want to improve it.

• DMRE : the first extension proposed in this paper.

Results on COREL and Caltech Each image in the
COREL data set is used as a query and the remaining im-
ages are served as the database. The retrieval performance is
averaged over all the queries. In the left part of Table 3, we
record the Precision, NDCG and MAP values of all the ap-
proaches. Each figure in the table has two parts: the left part
is the mean value and the right part is the relative improve-
ment over the baseline Eud method. The best result in each
row for the corresponding group of methods is in bold type.
Similarly, for the Caltech101 data set, we use each image as
a query and the retrieval performance is averaged. In the left
part of Table 4, we record the Precision, NDCG and MAP
values of all the approaches. We will provide a detailed anal-
ysis in the next subsection.

Table 2: Statistics of the generated constraints.

COREL Caltech101
# of queries 300 606
# of judgements per query 20 20
# of total positive judgements 2,147 1,730

Experiments with Constraints
Constraints Generation A real CBIR system can always
ask the users to provide feedbacks on their queries. These
feedback information can naturally be used as pairwise con-
straints for future search.

In our experiment, we simulate this procedure to generate
the constraints. We randomly select some images from the
database as the queries. For each query, we automatically
generates 20 feedback images (closest to the query image
in Euclidean distance). The candidate images are assigned
positive or negative to the query according to their labels.
These information are stored in the system as the constraints.

We use 300 random selected images as queries in COREL
database and 606 images in Caltech101 database (6 queries
for each category). Some statistics of the generated con-
straints are listed in Table 2.

Compared Methods With constraints information, we
compare our proposed approach with several state-of-the-
art semi-supervised metric learning algorithms listed as fol-
lows:

• Xing: a well known distance matric learning approach,
which minimizes the similar pair distances and maxi-
mizes the dissimilar pair distances (Xing et al. 2002). The
learned distance metric is used for image retrieval.

• ITML: information theoretic metric learning with pair-
wise constraints (Davis et al. 2007). We run it over vari-
ous parameters and select the best one. The learned metric
distance is used for image retrieval.

• LRML: the laplacian regularized metric learning with
pairwise constraints, which utilizes both the labeled and
unlabeled data (Hoi, Liu, and Chang 2008; 2010). The
learned distance metric is used for image retrieval.

• DMRC : the second extension proposed in this paper.

Results on COREL and Caltech Similar to the settings
of the previous experiment, we record the results of all the
above methods on COREL and Caltech101 in the right part
of Table 3 and Table 4 respectively. The detailed analysis of
these results will be provided later.

Parameter Selection
There are three important parameters in our algorithms: α,
γs and γd. They control the balance between unconstrained
and constrained data. Since simultaneously tuning three pa-
rameters is too complex, we use a simpler strategy. First of
all, we find the best α for DMRS and fix it for DMRC . Then
we assume that γd is a ratio of γs, i.e., γd = r · γs. Similar
to (Si et al. 2006; Hoi, Liu, and Chang 2008), we use r = 1

3
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Table 3: Performance Comparisons on COREL data set for all the algorithms in terms of Precision (P), NDCG (N) and MAP.
For each result, we record the mean value (%) of all the queries and the relative improvement over the baseline method Eud.
The best result in each row is indicated by the bold font.

Methods without constraints Methods with constraints
Method Eud PCA Mah MR DMRE Xing ITML LRML DMRC

P@10 42.12 40.19 -4.57% 40.05 -4.91% 42.92 +1.90% 44.55 +5.77% 33.55 -20.35% 46.23 +9.78% 49.56 +17.67% 51.21 +21.58%
P@20 35.98 34.74 -3.46% 33.20 -7.74% 38.00 +5.59% 38.15 +6.03% 28.39 -21.10% 41.41 +15.08% 44.03 +22.36% 45.75 +27.14%
P@30 32.17 31.25 -2.86% 29.10 -9.53% 34.67 +7.77% 34.06 +5.88% 25.17 -21.77% 38.13 +18.54% 40.42 +25.65% 42.09 +30.83%
N@10 44.98 42.90 -4.64% 43.34 -3.66% 45.70 +1.59% 47.51 +5.61% 36.21 -19.5% 48.60 +8.04% 52.10 +15.83% 53.81 +19.61%
N@20 39.67 38.11 -3.92% 37.36 -5.81% 41.26 +4.02% 41.98 +5.83% 31.65 -20.20% 44.38 +11.88% 47.32 +19.31% 49.06 +23.68%
N@30 36.17 34.92 -3.47% 33.56 -7.22% 38.20 +5.62% 38.25 +5.76% 28.67 -20.75% 41.42 +14.52% 44.07 + 21.83% 45.76 +26.50%
MAP 33.49 32.38 -3.31% 32.96 -1.59% 36.07 +7.71% 35.44 +5.82% 27.67 -17.37% 37.71 +12.58% 40.14 +19.84% 41.65 +24.35%

Table 4: Performance Comparisons on Caltech101 data set for all the algorithms in terms of Precision (P), NDCG (N) and
MAP. For each result, we record the mean value (%) of all the queries and the relative improvement over the baseline method
Eud. The best result in each row is indicated by the bold font.

Methods without constraints Methods with constraints
Method Eud PCA Mah MR DMRE Xing ITML LRML DMRC

P@10 35.50 34.03 -4.15% 37.34 +5.18% 34.98 -1.48% 38.93 +9.65% 33.92 -4.45% 37.49 +5.59% 39.82 +12.16% 41.82 +17.80%
P@20 32.52 31.27 -3.86% 33.75 +3.77% 32.47 -0.15% 35.72 +9.85% 30.75 -5.44% 35.10 +7.93% 36.91 +13.51% 38.84 +19.44%
P@30 30.73 29.55 -3.83% 31.54 +2.63% 30.88 +0.47% 33.73 +9.77% 28.77 -6.38% 33.50 +9.02% 35.05 +14.07% 36.96 +20.26%
N@10 37.28 35.63 -4.43% 39.26 +5.30% 36.79 -1.31% 40.77 +9.37% 35.56 -4.62% 38.93 +4.42% 41.53 +11.41% 43.55 +16.83%
N@20 34.55 33.12 -4.15% 36.06 +4.35% 34.38 -0.50% 37.87 +9.60% 32.76 -5.21% 36.74 +6.33% 38.89 +12.54% 40.85 +18.21%
N@30 32.85 31.51 -4.08% 33.99 +3.50% 32.84 -0.02% 36.00 +9.59% 30.92 -5.87% 35.26 +7.34% 37.14 +13.08% 39.08 +18.97%
MAP 33.25 31.56 -5.07% 34.46 +3.66% 35.23 +5.98% 36.65 +10.25% 31.36 -5.68% 35.36 +6.37% 38.34 +15.31% 39.54 +18.94%

for COREL. Finally, for COREL data set, we use α = 5,
γs = 2, and r = 1

3 . For Caltech101 data set, we use α = 1,
rs = 1 and r = 1

4 . In addition, k = 5 for the construction of
kNN graph and σ = 1 for the Gaussian kernel function and
rI = 100.

Results Analysis
For the COREL data set, the used image features are very
good for discrimination, so the baseline method (simply uses
the Euclidean distance) performs reasonably well. In the
group of unsupervised methods, we can easily see from Ta-
ble 3 that DMRE and MR are better than rest of the three.
DMRE is slightly better than MR. In the group of semi-
supervised methods, DMRC outperforms all the other meth-
ods. This is probably because DMRC utilizes the geometric
structure of the data (the graph Laplacian), the constraint in-
formation, as well as the initial Gaussian kernel matrix. The
relative low performance of Xing and ITML algorithms are
mainly caused by the over-fitting problem (Si et al. 2006),
since they only learn from the ’labeled’ points which are a
very small portion of the data in our experiment.

For the Caltech101 data set, the performance of the base-
line Eud method becomes worse, simply because of the
larger number of categories, the unbalanced category size,
and the complicated content in the images. Thus, directly
using the Euclidean distance is not good for ranking. Since
the graph used in MR is based the Euclidean structure of the
data, the performance of MR is also not good. Our approach
DMRE significantly outperforms all the other unsupervised
methods. When the constraints are introduced, our method

DMRC archives better performance. And it is better than
the rest semi-supervised methods. This demonstrates that the
constraints (feedbacks) are really useful in a CBIR system.

Conclusion and Future Work
We present a new viewpoint of manifold ranking – it learns
an optimal kernel matrix under the Bregman matrix diver-
gence metric. Based on this new formulation, two efficient
and effective extensions, named DMRE and DMRC , are
proposed. For the sake of efficiency, we transform the kernel
matrix learning problem to a metric learning problem. More-
over, the constraints can easily be used in our framework
to derive a better ranking algorithm. Extensive experiments
on COREL and Caltech101 demonstrate the effectiveness of
our approach. In the future work, we will investigate the re-
lationship of our work to many learning to rank literatures
(Liu 2009), which is a hot research topic in recent years.
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