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Abstract

Common spatial patterns (CSP) is a popular feature ex-
traction method for discriminating between positive and
negative classes in electroencephalography (EEG) data.
Two probabilistic models for CSP were recently devel-
oped: probabilistic CSP (PCSP), which is trained by ex-
pectation maximization (EM), and variational Bayesian
CSP (VBCSP) which is learned by variational approx-
imation. Parameter expansion methods use auxiliary
parameters to speed up the convergence of EM or the
deterministic approximation of the target distribution
in variational inference. In this paper, we describe
the development of parameter-expanded algorithms for
PCSP and VBCSP, leading to PCSP-PX and VBCSP-
PX, whose convergence speed-up and high performance
are emphasized. The convergence speed-up in PCSP-
PX and VBCSP-PX is a direct consequence of parame-
ter expansion methods. The contribution of this study
is the performance improvement in the case of CSP,
which is a novel development. Numerical experiments
on the BCI competition datasets, III IV a and IV 2a
demonstrate the high performance and fast convergence
of PCSP-PX and VBCSP-PX, as compared to PCSP and
VBCSP.

Introduction
Electroencephalography (EEG) is the recording of electrical
potentials at multiple sensors placed on the scalp, leading to
multivariate time series data reflecting brain activities. EEG
classification is a crucial part of non-invasive brain computer
interface (BCI) systems, enabling computers to translate a
subject’s intention or mind into control signals for a device
such as a computer, wheelchair, or neuroprosthesis (Wolpaw
et al. 2002; Ebrahimi, Vesin, and Garcia 2003; Cichocki et
al. 2008).

Common spatial patterns (CSP) is a widely-used discrimi-
native EEG feature extraction method (Blankertz et al. 2008;
Koles 1991; Müller-Gerking, Pfurtscheller, and Flyvbjerg
1999; Kang, Nam, and Choi 2009), also known as the
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Fukunaga-Koontz transform (Fukunaga and Koontz 1970),
where we seek a discriminative subspace such that the vari-
ance for one class is maximized while the variance for the
other class is minimized. CSP was recently cast into a
probabilistic framework (Wu et al. 2009), where a linear
Gaussian model for each of the positive/negative classes was
considered and the maximum likelihood estimate of the ba-
sis matrix shared across two models (positive and negative
class models) was shown to yield the same solution as CSP.
Bayesian models were also proposed for CSP (Wu et al.
2010; Kang and Choi 2011), where posterior distributions
over variables of interest are estimated by variational ap-
proximation.

We revisit two probabilistic models for CSP. One is prob-
abilistic CSP (PCSP) (Wu et al. 2009) where the maxi-
mum likelihood estimate is determined by the expectation
maximization (EM) optimization and the other is variational
Bayesian CSP (VBCSP) (Kang and Choi 2011) where the
posterior distributions over variables in the model are com-
puted by variational inference in the framework of Bayesian
multi-task learning (Heskes 2000). EM and variational in-
ference, while successful, often suffer from slow conver-
gence to the solution. Parameter eXpanded-EM (PX-EM)
(Liu, Rubin, and Wu 1998) is a method for accelerating EM,
using the over-parameterization of the model. The under-
lying idea in PX-EM is to use a covariance adjustment to
correct the analysis of the M step, thereby exploiting extra
information captured in the imputed complete data. Simi-
larly, Parameter eXpanded-VB (PX-VB) (Qi and Jaakkola
2007) expands a model with auxiliary parameters to reduce
the coupling between variables in the original model, so that
it accelerates the deterministic approximation of the target
distribution in variational Bayesian inference.

In this study, we employ the parameter-expansion meth-
ods of (Liu, Rubin, and Wu 1998; Qi and Jaakkola 2007;
Luttinen and Ilin 2010) in order to develop parameter-
expanded algorithms for PCSP and VBCSP, leading to
PCSP-PX and VBCSP-PX. By capitalizing on the conver-
gence speed-up by parameter-expansion methods, we show
that the expanded models, PCSP-PX and VBCSP-PX, con-
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(a) PCSP (b) VBCSP

Figure 1: Graphical representation of PCSP and VBCSP models.

verge to solutions faster than PCSP and VBCSP. In addition,
we show that the generalization performance of PCSP-PX
and VBCSP-PX is better than that of PCSP and VBCSP.
In PCSP and VBCSP, feature vectors are constructed us-
ing only variances of the expected latent variables so that
the information on covariances is neglected. In contrast,
the auxiliary parameters in PCSP-PX and VBCSP-PX re-
duce such information loss by simultaneous diagonalization
of the second-order moments of the latent variables. This
is found to improve the generalization performance in the
classification. Numerical experiments on the BCI competi-
tion datasets, III IVa and IV 2a, confirmed that PCSP-PX and
VBCSP-PX not only speed-up the computations but also im-
prove the classification performances of the feature vectors,
as compared to PCSP and VBCSP.

Probabilistic Models for CSP

We briefly review two probabilistic models, PCSP (Wu et
al. 2009) and VBCSP (Kang and Choi 2011). The graphical
representations of these models are shown in Fig. 1(a) and
1(b), respectively.

Suppose that EEG signals involving two different mental
tasks (c ∈ {1, 2}) recorded atD electrodes over multiple tri-
als constitute aD-dimensional vector x(c)

t for t = 1, . . . , Tc,
where Tc represents the number of samples obtained over
multiple trials. We denote the EEG data matrix by X(c) =[
x
(c)
1 , ...,x

(c)
Tc

]
∈ RD×Tc . The probabilistic model for CSP

assumes that data matricesX(c) are generated by

X(c) = AY (c) +E(c), (1)

where A = [a1, . . . ,aM ] ∈ RD×M is the basis matrix
shared across two classes (c = 1, 2),

Y (c) =
[
y
(c)
1 , . . . ,y

(c)
Tc

]
∈ RM×Tc ,

is the encoding matrix (corresponding to latent variables),
and E(c) =

[
ε
(c)
1 , . . . , ε

(c)
Tc

]
∈ RD×Tc is the noise matrix.

Latent variables and noise are assumed to follow zero-mean

Gaussian distributions,

y
(c)
t ∼ N

(
y
(c)
t

∣∣∣ 0, [Λ(c)
]−1)

,

ε
(c)
t ∼ N

(
ε
(c)
t

∣∣∣ 0, [Ψ(c)
]−1)

,

where Λ(c) = diag
(
λ
(c)
1 , . . . , λ

(c)
M

)
∈ RM×M and Ψ(c) =

diag
(
ψ
(c)
1 , . . . , ψ

(c)
D

)
∈ RD×D are precision matrices for

c = 1, 2.

PCSP
In PCSP, the basis matrix A is treated as a matrix of pa-
rameters, and their maximum likelihood estimate ÂML

is determined by EM, where the E-step involves com-
puting the expectation of the complete-data log-likelihood
log p

(
{X(c)}, {Y (c)}

∣∣∣A, {Λ(c)}, {Ψ(c)}
)

with respect to

the posterior distribution p
(
{Y (c)}

∣∣∣ {X(c)}
)

and the M-
step re-estimates A as well as other model parameters{

Λ(c),Ψ(c)
}

. It was shown in (Wu et al. 2009) that Â
−>
ML is

equal to the linear transformation matrix computed in CSP,
in the case of zero noise limit and when A is a square ma-
trix. CSP feature vectors are constructed by taking loga-
rithms of top-n variances of the projected variables for each
class within each trial. In the case of PCSP, CSP features are
computed using logarithms of top-n variances for each class
of posterior means over latent variables in each trial.

VBCSP
In VBCSP, the basis matrix A is treated as a matrix of ran-
dom variables, and the automatic relevance determination
(ARD) prior is applied to it, i.e.,

p (A|Dβ) =
M∏
m=1

N
(
[A]:,m|0, β−1m ID

)
, (2)

where ID ∈ RD×D is the identity matrix, Dβ ∈ RM×M =
diag(β1, . . . , βM ), and the precision hyperparameters βm
are assumed to follow Gamma distribution:

βm ∼ Gam
(
aβ0 , b

β
0

)
. (3)
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Inferring posterior distributions over βm leads us to predict
an appropriate number of columns in A. ARD priors are
also applied to {λ(c)m } and {ψ(c)

d } (which are diagonal entries
of precision matrices Λ(c) and Ψ(c)):

λ(c)m ∼ Gam
(
aλ0 , b

λ
0

)
, ψ

(c)
d ∼ Gam

(
aψ0 , b

ψ
0

)
. (4)

Variational posterior distributions are determined by varia-
tional Bayesian inference (Kang and Choi 2011). Again,
logarithms of top-n variances for each class of the varia-
tional posterior means of latent variables within each trial
are used as the CSP features.

Parameter-Expanded Algorithms
In this section, we present the main contribution of this
paper, parameter-expanded algorithms for both PCSP and
VBCSP. First, we introduce the parameter-expanded mod-
els (PCSP-PX and VBCSP-PX), as shown in Fig. 2(a) and
2(b), inspired by (Luttinen and Ilin 2010). Then we de-
velop a parameter-expanded EM algorithm for PCSP-PX
and parameter-expanded variational Bayesian inference for
VBCSP-PX.

We introduce an invertible matrix R ∈ RM×M . We de-
fine A∗ = AR and Y (c)

∗ = R−1Y (c). Then, we can write
the model (1) as

X(c) = A∗Y
(c)
∗ +E(c), (5)

for c = 1, 2, since A∗Y (c)
∗ = ARR−1Y (c). The invertible

matrix R introduces a transformation of the encoding ma-
trix

{
Y (c)

}
while preserving the conditional distribution

p
(
X(c)

∣∣A,Y (c)
)

. We optimize the auxiliary parameters
R such that the expected complete-data log-likelihood (for
PCSP-PX) or the variational lower-bound (for VBCSP-PX)
is maximized.

PCSP-PX
We present a parameter-expanded EM algorithm to estimate
the model parameters

{
A∗,Λ

(c),Ψ(c)
}

as well as auxiliary
parameters R. The basis matrix A in the original model
(1) is recovered by A∗R−1. To this end, we consider the
complete-data likelihood in the expanded model (5) (shown
in Fig. 2(a)):

p
({
X(c)

}
,
{
Y (c)
∗

} ∣∣A∗,{Λ(c)
}
,
{

Ψ(c)
}
,R
)

=
∏2
c=1 p

(
X(c)

∣∣Y (c)
∗ ,A∗,Ψ

(c)
)
p
(
Y (c)
∗
∣∣Λ(c),R

)
,

where

p
(
X(c)

∣∣∣Y (c)
∗ ,A∗,Ψ

(c)
)

=
∏Tc

t=1N
(
x
(c)
t

∣∣∣A∗y(c)
∗t ,
[
Ψ(c)

]−1)
,

p
(
Y (c)
∗

∣∣∣Λ(c),R
)

=
∏Tc

t=1N
(
y
(c)
∗t

∣∣∣ 0, [R>Λ(c)R
]−1)

.

In the E-step, we compute the expected complete-data
log-likelihood 〈Lc〉

2∑
c=1

〈
log p

(
X(c),Y (c)

∗
∣∣Θ)〉 ,

where the expectation 〈 · 〉 is taken with respect
to the posterior distribution over latent variables
p
(
Y (c)
∗
∣∣X(c)

)
given the current estimate of param-

eters Θ =
{
A∗,Λ

(c),Ψ(c),R
}

. In the M-step, we
re-estimate parameters Θ that maximize 〈Lc〉 computed
in the E-step. The EM iteration for PCSP-PX, which is
summarized in Algorithm 1, alternates between the E-step
and M-step until convergence.

In contrast to PCSP, the auxiliary parameters R should
also be optimized. The stationary point equation for R is
given by

∂ 〈Lc〉
∂R

=

(
2∑
c=1

Tc

)
R−> −

2∑
c=1

Λ(c)R
〈
Y (c)
∗ Y

(c)>
∗

〉
= 0, (6)

leading to
2∑
c=1

Λ(c)R
〈
Y (c)
∗ Y

(c)>
∗

〉
R> =

(
2∑
c=1

Tc

)
IM , (7)

which is solved for R by simultaneous diagonalization of
the second-order moments of encodings

〈
Y (1)
∗ Y

(1)>
∗

〉
and〈

Y (2)
∗ Y

(2)>
∗

〉
, followed by re-scaling.

The posterior distribution over latent variables in the orig-
inal model is easily computed by

p
(
y
(c)
t

∣∣x(c)
t

)
= N

(
y
(c)
t

∣∣Rµ(c)
t ,RΣ(c)R>

)
,

where µ(c)
t and Σ(c) are calculated in the E-step in Algo-

rithm 1. We compute CSP features using posterior means
Rµ

(c)
t = RΣ(c)R>A>Ψ(c)x

(c)
t that correspond to pro-

jected variables in CSP. Given test trial data X ∈ RD×T ,
we first compute T M -dimensional posterior mean vectors
over latent variables, constructing posterior mean matrices
Y

(c) ∈ RM×T for c = 1, 2,

Y
(c)

= RΣ(c)R>A>Ψ(c)X.

To model the project variables in CSP, we average Y
(c)

of
the two classes considering the class prior probability as
p(X ∈ (c)) = Tc

T1+T2
,

Y =
2∑
c=1

Tc
T1 + T2

Y
(c)
. (8)

Then, we build a vector z ∈ RM , the m-th entry of which is
computed by

[z]m = log

(
1

T

[
Y Y

>]
m,m
−
(

1

T

[
Y 1T

]
m

)2
)
, (9)
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(a) PCSP-PX (b) VBCSP-PX

Figure 2: Graphical representation of PCSP-PX and VBCSP-PX models.

Algorithm 1 EM for PCSP-PX

Input: EEG data {X(c)}.
Output: estimate of parameters Θ = {A∗,Λ(c),Ψ(c),R}

initialize Θ = {A∗,Λ(c),Ψ(c),R}.
repeat

E-step Calculate the posterior distribution over latent
variables p

(
y
(c)
∗t
∣∣x(c)

t

)
:

p
(
y
(c)
∗t
∣∣x(c)

t

)
= N

(
y
(c)
∗t
∣∣µ(c)

t ,Σ(c)
)
,

µ
(c)
t = Σ(c)A>∗Ψ(c)x

(c)
t ,[

Σ(c)
]−1

= R>Λ(c)R+A>∗Ψ(c)A∗.

M-step Re-estimate Θ:
- Update {A∗,Λ(c),Ψ(c)}:

[A∗]d,: =

(
2∑
c=1

ψ
(c)
d [X(c)]d,:

〈
Y (c)>
∗

〉)
(

2∑
c=1

ψ
(c)
d

〈
Y (c)
∗ Y

(c)>
∗

〉)−1
,

[
ψ
(c)
d

]−1
=

1

Tc

[
XcX(c)> − 2X(c)

〈
Y (c)>
∗

〉
A>∗

+A∗

〈
Y (c)
∗ Y

(c)>
∗

〉
A>∗

]
d,d
,[

λ(c)m

]−1
=

1

Tc

[
R
〈
Y (c)
∗ Y

(c)>
∗

〉
R>
]
m,m

.

- Solve (7) for R by simultaneous diagonalization of〈
Y (1)
∗ Y

(1)>
∗

〉
and

〈
Y (2)
∗ Y

(2)>
∗

〉
to updateR.

until convergence.

where 1T ∈ RT is the vector of all ones. We choose 2n
[z]m’s withm corresponding to n largest and n smallest val-
ues of the ratio λ(1)m /λ

(2)
m to construct the CSP feature vector

f ∈ R2n.

VBCSP-PX
We present a parameter-expanded variational Bayesian
inference to speed up the deterministic approximation
of the posterior distributions over variables Z ={
Y (c)
∗ ,A∗, βm,Ψ

(c),Λ(c)
}

with auxiliary parameters R.

Variational posterior distributions over A and Y (c) in the
original model are easily recovered by variable transforma-
tion: A = A∗R

−1 and Y (c) = RY (c)
∗ . We write the

joint distribution over
{
X(c)

}
andZ in the expanded model

(shown in Fig. 2(b)) with prior distributions defined in (2),
(3), and (4) as

p
({
X(c)

}
,
{
Y (c)
∗

}
,A∗, {βm} ,

{
Λ(c)

}
,
{

Ψ(c)
} ∣∣R)

=
2∏
c=1

p
(
X(c)

∣∣Y (c)
∗ ,A∗,Ψ

(c)
)
p
(
Y (c)
∗
∣∣Λ(c),R

)
p
(
Λ(c)

)
p
(
Ψ(c)

)
p(A∗|Dβ ,R)

M∏
m=1

p(βm),

where

p
(
Y (c)
∗

∣∣∣Λ(c),R
)

=

Tc∏
t=1

N
(
y
(c)
∗t

∣∣∣ 0, [R>Λ(c)R
]−1)

.

The prior distribution over A∗ ∈ RD×M is assumed to be
matrix-variate Gaussian since it is not column-wise inde-
pendent in contrast to (2). Thus we assume

p (A∗|Dβ ,R) = ND×M
(
A∗
∣∣ 0, ID ⊗R>D−1β R) ,

where matrix-variate Gaussian distribution for a random ma-
trix B ∈ RD×M with mean matrix M ∈ RD×M and
covariance matrix ΩD ⊗ ΩM (ΩD ∈ RD×D and ΩM ∈
RM×M ) takes the form
ND×M (B |M ,ΩD ⊗ΩM )

= (2π)−
DM
2 |ΩD|−

M
2 |ΩM |−

D
2

exp

[
−1

2
tr
(
Ω−1D (B −M)Ω−1M (B −M)>

)]
.

Note that the prior distribution overA in the original model,
given in (2), can also be written as

p (A|Dβ) = ND×M
(
A
∣∣ 0, ID ⊗D−1β ) .
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The variational inference involves the maximization of a
lower-bound on the marginal log-likelihood given by

log p
({
X(c)

} ∣∣R)
= log

∫
p
({
X(c)

}
,Z
∣∣R) dZ

≥
∫
q(Z) log

p
({
X(c)

}
,Z
∣∣R)

q(Z)
dZ

≡ F(q|R), (10)
where variational posterior distribution q(Z) is assumed to
factorize as
q(Z)

= q (A∗) q
({
y
(c)
∗t

})
q ({βm}) q

({
ψ
(c)
d

})
q
({
λ
(c)
m

})
.

Variational posterior distributions over each variable are al-
ternatively updated such that the lower-bound F(q|R) is
maximized. Updating equations are summarized in Algo-
rithm 2. In addition, auxiliary parameters R are optimized
by the maximization of F(q|R), given the variational pos-
terior distribution q(Z). We consider the terms involvingR
in the lower-bound F(q|R), given by∑2

c=1 Tc −D
2

log
(
|R|2

)
−1

2

2∑
c=1

tr
(〈

Λ(c)
〉
R
〈
Y (c)
∗ Y

(c)>
∗

〉
R>
)

−1

2
tr
(
〈Dβ〉R−>

〈
A>∗ A∗

〉
R−1

)
. (11)

Suppose aβ0 and bβ0 are set to small values so that 〈βm〉 can
be approximated as

〈βm〉 =
aβm

bβm
=

aβ0 +D/2

bβ0 + 1
2

[
R−>

〈
A>∗ A∗

〉
R−1

]
m,m

' D[
R−>

〈
A>∗ A∗

〉
R−1

]
m,m

,

implying that

tr
(
〈Dβ〉R−>

〈
A>∗ A∗

〉
R−1

)
=

M∑
m=1

〈βm〉
[
R−>

〈
A>∗ A∗

〉
R−1

]
m,m

'MD. (12)
Applying the approximation (12) to (11), as in (Luttinen and
Ilin 2010), we have the stationary point equation forR given
by
∂F(q|R)

∂R

=

(
2∑
c=1

Tc −D

)
R−> −

2∑
c=1

〈
Λ(c)

〉
R
〈
Y (c)
∗ Y

(c)>
∗

〉
= 0. (13)

Again, we can solve the equation for R by simultaneous
diagonalization of the second-order moments of encodings〈
Y (1)
∗ Y

(1)>
∗

〉
and

〈
Y (2)
∗ Y

(2)>
∗

〉
, followed by re-scaling,

as in PCSP-PX.

Algorithm 2 Variational Bayesian Inference for VBCSP-PX

Input: EEG data {X(c)}
Output: approximated posterior q(Z) for variables Z =

{A∗,Y (c)
∗ ,Λ(c),Ψ(c)} and the auxiliary parameterR

initialize q(Z).
repeat

- Update q(A∗) =
∏D
d=1N ([A∗]d,:|ν̄d,Ωd) by

[Ωd]
−1

= R−1 〈Dβ〉R−>

+
2∑
c=1

〈
ψ
(c)
d

〉〈
Y (c)
∗ Y

(c)>
∗

〉
,

ν̄d =
2∑
c=1

〈
ψ
(c)
d

〉
[X(c)]d,:

〈
Y (c)>
∗

〉
Ωd.

- Update q
(
y
(c)
∗t

)
= N

(
µ

(c)
t ,Σ(c)

)
by[

Σ(c)
]−1

= R>Λ(c)R+
〈
A>∗Ψ(c)A∗

〉
,

µ
(c)
t = Σ(c)

〈
A>∗

〉〈
Ψ(c)

〉
x
(c)
t .

- Update q (βm) = Gam
(
aβm, b

β
m

)
by

aβm = aβ0 +D/2,

bβm = bβ0 +
1

2

[
R−>

〈
A>∗ A∗

〉
R−1

]
m,m

.

- Update q
(
ψ
(c)
d

)
= Gam

(
a
ψ(c)
d , b

ψ(c)
d

)
by

a
ψ(c)
d = aψ0 + Tc/2,

b
ψ(c)
d = bψ0 +

1

2

[
X(c)X(c)>

−2 〈A∗〉
〈
Y (c)
∗

〉
X(c)>

+
〈
A∗Y

(c)
∗ Y

(c)>
∗ A>∗

〉]
d,d
.

- Update q
(
λ
(c)
m

)
= Gam

(
a
λ(c)
m , b

λ(c)
m

)
by

aλ(c)m = aλ0 + Tc/2,

bλ(c)m = bλ0 +
1

2

[
R
〈
Y (c)
∗ Y

(c)>
∗

〉
R>
]
m,m

.

- Solve (13) for R by simultaneous diagonalization of〈
Y (1)
∗ Y

(1)>
∗

〉
and

〈
Y (2)
∗ Y

(2)>
∗

〉
to updateR.

until convergence.

The approximated posterior over latent variables in the
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original model is computed by

q
(
y
(c)
t

)
= N

(
y
(c)
t

∣∣Rµt,RΣ(c)R>
)
,

where µt and Σ(c) are calculated as in Algorithm 2.
We compute a CSP feature vector f for a test trial
X ∈ RD×T using the posterior means Rµ

(c)
t =

RΣ(c)
〈
A>∗

〉〈
Ψ(c)

〉
x
(c)
t ,

Y
(c)

= RΣ(c)R>
〈
A>
〉〈

Ψ(c)
〉
X.

We compute Y and [z]m as in (8) and (9). Then we se-
lect [z]m’s withm corresponding to n-largest and n-smallest
values of the ratio of

〈
λ
(1)
m

〉
/
〈
λ
(2)
m

〉
to construct the CSP

feature vector f ∈ R2n.

Numerical Experiments
We compared the performances of PCSP, VBCSP, PCSP-
PX, and VBCSP-PX on the BCI competition datasets, III
IVa (Blankertz et al. 2006)1 and IV 2a 2. Both datasets
consist of the EEG measurements of several subjects during
motor imagery tasks. The EEG data was pre-processed by
band-pass filtering, to emphasize important frequency bands
for recognizing the motor imagery tasks. Every trial was di-
vided into the same number of time intervals after each vi-
sual cue, which contains EEG variation caused by the imag-
ination of the subject.

We extracted feature vectors f ∈ R2n using PCSP,
VBCSP, PCSP-PX, and VBCSP-PX, and we applied the lin-
ear discriminant analysis (LDA) to transform these feature
vectors down to scalar values which are fed into a minimum
distance classifier. We set D = M and n = 3 for every
model. The classification performance of each model is rep-
resented by the prediction accuracy of the LDA classifier on
the test trials. The accuracy was calculated as the ratio of
the number of correctly classified trials to the total number
of test trials. We repeated the experiments 10 times, varying
the number of training trials, while the number of test trials
was fixed. We selected half of the trials in each data as the
test trials, and randomly selected some of the remaining tri-
als as the training trials. The classes were strictly balanced
by selecting the same number of trials from each class.

BCI competition III IVa dataset was collected from five
subjects using 118 electrodes (D = 118) during the im-
agery movements of the right hand and right foot. The trials
were separated by up to 3.5s after each cue, and we used the
down-sampled version (100 Hz) of the data. 140 trials were
conducted for each subject and each class. BCI competition
IV 2a dataset contains 4 motor imagery tasks of 9 subjects,
recorded using 22 electrodes (D = 22). We considered only
the binary classification problem so that we selected the im-
agery left/right hand movement classes. The trials were sep-
arated by from 3.5s to 5.5s after each cue, and the sampling
rate was 250 Hz. 144 trials were conducted for each subject
and each class.

1http://www.bbci.de/competition/iii/
2http://www.bbci.de/competition/iv/

Compared to PCSP and VBCSP, parameter-expanded
algorithms PCSP-PX and VBCSP-PX perform additional
computation to optimize R at every iteration. However,
PCSP-PX and VBCSP-PX converge in a smaller number of
iterations; hence, they are faster than PCSP and VBCSP, re-
spectively (Table 1). In general, the classification perfor-
mance of PCSP-PX and VBCSP-PX was also higher than
that of PCSP and VBCSP (Fig. 3).

Conclusions
We have presented two new parameter-expanded algorithms
for PCSP and VBCSP, leading to PCSP-PX and VBCSP-
PX, where we expanded the models using auxiliary parame-
ters R to speed up the convergence as well as to improve
the performance. The auxiliary parameters R were esti-
mated by simultaneous diagonalization of

〈
Y (1)
∗ Y

(1)>
∗

〉
and

〈
Y (2)
∗ Y

(2)>
∗

〉
, reducing the coupling so that the conver-

gence was accelerated and the performance was improved,
while CSP features determined by PCSP or VBCSP ignored
off-diagonal entries of the empirical second-order moment
matrix of posterior mean vectors. Numerical experiments
on the BCI competition datasets, III IVa and IV 2a, demon-
strated the high performance of PCSP-PX and VBCSP-PX,
as compared to their counterparts PCSP and VBCSP.
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