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Abstract

Humans have an uncanny ability to learn new concepts with
very few examples. Cognitive theories have suggested that
this is done by utilizing prior experience of related tasks. We
propose to emulate this process in machines, by transforming
new problems into old ones. These transformations are called
metaphors. Obviously, the learner is not given a metaphor, but
must acquire one through a learning process. We show that
learning metaphors yield better results than existing transfer
learning methods. Moreover, we argue that metaphors give a
qualitative assessment of task relatedness.

Introduction
Despite its incredible success, machine learning still falls
short of the human ability to recognize and induce new con-
cepts from merely a few examples. Even state-of-the-art ma-
chine learning algorithms require significant amounts of data
in order to learn a new non-trivial concept. Inevitably, we
ask the age-old question of artificial intelligence: "How do
humans do it?". Among many theories regarding the manner
in which humans acquire new concepts, one has attracted
particular attention within the machine learning community
- Transfer Learning (Brown 1990). This theory claims that
humans learn new concepts by relating them to old, familiar
concepts, and utilizing known facts from those domains.

Many algorithms have been proposed for using existing
(source) data while learning from new (target) examples.
Existing state-of-the-art methods can be roughly categorized
into three main approaches, depending on their assumptions
(Pan and Yang 2010): Common Inductive Bias, inductive
bias that performed well on the source should perform well
on the target; Common Instances, certain instances of the
source data can be used as examples in the target; Com-
mon Features, features that were discriminating in the source
data should be discriminating in the target. These methods
have been shown to improve the learning rate when their as-
sumptions hold. Nevertheless, each method makes its own
assumptions on the underlying relation between the source
and the target, and these assumptions do not necessarily co-
incide. As a matter of fact, all of these assumptions are too
strict to grasp a general notion of concept relatedness.
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The question persists: how should we define whether two
concepts are related? Though several studies have been con-
ducted on when transfer learning should be used (Thrun and
O’Sullivan 1996; Rosenstein et al. 2005), and some metrics
for measuring relatedness between learning tasks have been
proposed (Silver 1996; Eaton, desJardins, and Lane 2008;
Ben-David and Borbely 2008), we still lack a qualitative
definition of concept relatedness.

This study presents a computational framework for solv-
ing the problem of transfer learning, based on an understand-
ing of how concepts are related to one another. The core no-
tion of our framework is the metaphor - a transformation
that converts one feature space into another.

One of the most striking examples of knowledge trans-
fer in children, is their amazing ability to learn new animals
from very few examples. Take a hypothetical three year-old
child, for instance. Like most children his age, he can recog-
nize horses, and classify every animal he sees as "horse" or
not with superb accuracy. What if we were to take this child
to the zoo, and show him a zebra for the first time in his life?
It is only reasonable to assume that the child will make some
sort of association between the never-before-seen zebra and
his old acquaintance, the horse. A new rule for zebra classi-
fication could theoretically form in the child’s mind: a zebra
is a horse with stripes. In the future, the child will be able to
classify zebras as accurately as he is able to classify horses.

A metaphor is a mapping of instances from a new problem
(target) into instances of an old problem (source). Zebras, for
example, would be mapped into horses by removing their
stripes. Once an instance has been transformed from target
to source, a source classifier (hypothesis) classifies it, and
its result should indicate whether the original target instance
belongs to the target concept. In our example, the metaphor
would remove the white stripes of any given animal, and
classify the result according to the horse classifier. A zebra
would come out positive, while a tiger would not.

As mentioned earlier, the untackled issue of transfer
learning is how to determine when two learning tasks are re-
lated. The notion of metaphors sheds new light on the very
definition of concept relatedness. Instead of "measuring the
distance" between two concepts, metaphors describe the dif-
ference; they can explain how concepts relate to one another.
Learning a metaphor from one concept to another is, in ef-
fect, learning their difference.
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Problem Definition
First, let us define the notions of domain and concept learn-
ing. A domain D is a trio 〈X,P, f〉 where X denotes a fea-
ture space, P a probability distribution overX , and f : X →
{0, 1} a characteristic function of some subset of X . Intu-
itively, a real-world object is represented as a point in X ,
while P tells us how likely we are to encounter it. The label-
ing function f designates which instances belong to a special
subset of X , known as the concept.

Let D be a domain. Given a loss function ` : {0, 1}2 →
[0, 1], and a sample S ⊆ X × {0, 1} drawn from P and
labeled by f , find a hypothesis h : X → {0, 1} for which the
expected lossEx∼P [` (f (x) , h (x))] is as small as possible.
A concept learning problem is also called a learning task
and is denoted by T = 〈D, `, S〉.

Let 〈Ts, Tt〉 be two learning tasks, source and target, re-
spectively. The transfer learning problem is to solve Tt, but
instead of utilizing only target domain data, the learner can
use source data as well. We will assume that the learner is
better acquainted with the source task (|Ss| � |St|).

Metaphors: Theoretical Background
A metaphor is a mapping from the target learning task to the
source, which preserves label and probability.

Perfect Metaphor Let 〈Xs, Ps, fs〉, 〈Xt, Pt, ft〉 be two
domains, source and target. A function µ : Xt → Xs

is a perfect metaphor if:

1. ft (xt) = fs (µ (xt)) for all xt ∈ Xt.
2. xt ∼ Pt ⇒ µ (xt) ∼ Ps for all xt ∈ Xt.

Perfect metaphors contain two very powerful assump-
tions. The first assumption, label preservation, demands that
x is part of the target concept if and only if µ (x) is part of
the source concept. This, however, is not enough; for a trans-
formation to be a perfect metaphor, it must also preserve
the probability of sampling instances. This means that a set
of instances sampled from Pt must be translated into a set
that is distributed by Ps. Without this criterion, a metaphor
might convert target instances into unexplored regions of the
source feature space, where hs may perform poorly.

One may notice the similarity between metaphors and re-
ductions (from complexity theory). In effect, they represent
the same principle: solving problems by translating their
instances into those of other, previously-solved, problems.
So technically, if we were to obtain a perfect metaphor, we
would be able to solve a given transfer learning problem at
least as well as we can solve the source learning problem.

The Perfect Metaphor Theorem Let:

1. 〈Ts, Tt〉 be a transfer learning problem.
2. hs be a hypothesis for Ts with less than εs loss.
3. µ : Xt → Xs be a perfect metaphor.

Then ht (x) = hs (µ (x)) is a hypothesis for Tt with less
than εs loss.

This result is theoretically encouraging, but has little sig-
nificance in practice; having a perfect metaphor at hand is

very improbable. That said, obtaining an approximated per-
fect metaphor (a metaphor) seems more feasible. Our main
theoretical result shows that even non-perfect metaphors can
perform well in conjunction with a source hypothesis.
ε-Perfect Metaphor Let 〈Xs, Ps, fs〉, 〈Xt, Pt, ft〉 be two

domains, source and target. A function µ : Xt → Xs is
an ε-perfect metaphor if:

1. Pt (ft (xt) 6= fs (µ (xt))) < εf
2. ‖µ (Pt)− Ps‖ < εP
3. εf + εP < ε

The Metaphor Theorem Let:
1. 〈Ts, Tt〉 be a transfer learning problem.
2. hs be a hypothesis for Ts with less than εs loss.
3. µ : Xt → Xs be an ε-perfect metaphor.
Then ht (x) = hs (µ (x)) is a hypothesis for Tt with less
than εs + ε loss.
Thus, the problem of obtaining a metaphor becomes our

core focus. Given a transfer learning problem 〈Ts, Tt〉, a
metaphor learning problem is to find an ε-perfect metaphor
such that ε is as small as possible. According to the
Metaphor Theorem, we can solve a transfer learning prob-
lem by composing a learnt metaphor with a previously learnt
hypothesis: ht = µ◦hs. We have now transformed the trans-
fer learning problem into a metaphor learning problem.

So why should learning a metaphor be any easier than
simply learning the concept? Because metaphors represent
the difference between concepts. Each concept may be over-
whelmingly intricate by itself, but fairly easy to explain us-
ing an already known concept. A fundamental assumption
of this research is that if two concepts are closely enough
related, the associated metaphor will be a relatively simple
function, and therefore, considerably easier to learn than the
entire target concept.

How to Learn Metaphors
The common approach in many machine learning scenarios
is to select an appropriate hypothesis space and search it for
the best hypothesis with respect to some utility function. We
present a similar framework for learning metaphors.

Metaphor Spaces
Metaphor spaces define the family of possible transforma-
tions. This is a key ingredient when learning metaphors;
they must be generic enough to capture the relation between
the target and source concepts. On the other hand, metaphor
spaces must have a limited amount of degrees of freedom to
render them learnable from small target samples.

Metaphor spaces are also a means of inserting
representation-specific bias. For example, if the transfer
learning problem is that of image recognition, optical ma-
nipulations (such as rotation) may be used. Other represen-
tations, such as text, will have no use for optical manipula-
tions, but may have their own specific metaphors. Below are
a few examples of metaphor spaces.
Orthogonal Linear Transformations (Mlin) Perform a

linear transformation on each feature independently.

992



Orthogonal Polynomial Transformations (Mpol(n)) Per-
form a polynomial transformation on each feature inde-
pendently. Divided into sub-spaces by degree.

Feature Reordering (Mord) Re-order features, reassign-
ing the values of each feature. For example, rearranging
pixels in a bitmap image is a feature reordering. Another
example is word-by-word translation from two different
bag-of-words representations.

Linear Transformations (Mmat) Generate new feature
spaces by applying matrix multiplication.

Geometric Transformations (Mgeo) Perform geometric
manipulations based on rotation, scaling, translation, and
reflection. Using the family of geometric metaphors as-
sumes that the data represents images.

Note that some of these metaphor spaces contain oth-
ers. For example, ∀p :Mpol(p) ⊂ Mpol(p+1). While larger
metaphor spaces increase our descriptive power, they may
also hinder our ability to generalize by over-fitting.

Metaphor Evaluation
The Metaphor Theorem dictates that a good metaphor ad-
heres to two criteria: label and distribution preservation.
To assure label preservation, we would like to minimize
Pt (ft (x) 6= fs (µ (x))). This value can be estimated by the
empirical error over the target training set. For regression
problems, mean square error (MSE) is a fine estimate.

Distribution preservation demands that we minimize the
distance between µ (Pt) and Ps. The statistical distance
between two samples has many empirical estimates. We
will use the method of moments (Hansen 1982) to estimate
distribution parameters and measure the statistical distance
by comparing these parameters. This metric is easily com-
putable, and has strong analytical properties.

Combining these two metrics by weighted sum is prob-
lematic, since label preservation and statistical distance may
have entirely different scales, rendering their sum meaning-
less. Instead, we propose a different strategy for combining
label and distribution preservation: calculate the statistical
distance per class. In other words, positive target instances
are compared only to positive source instances. In the case
of a binary class:

SD (St, Ss) = SD
(
S+
t , S

+
s

)
+ SD

(
S−
t , S

−
s

)
where SD is the statistical distance metric and the sign nota-
tion indicates that only instances of that class are considered.
This metric (the metaphor heuristic) can easily be general-
ized to accommodate multiple classes, and combined with
binning techniques for regression problems.

Algorithms for Metaphor Learning
Given a metaphor spaceM, we can use the metaphor heuris-
tic to search for the most suitable metaphor µ ∈ M. This is
a de-facto optimization problem, where search algorithms
from the hill-climbing/gradient-descent family can be used.
While these algorithms have proven themselves empirically
across many domains, we can actually tailor efficient algo-
rithms to certain metaphor spaces, by using the analytical

properties of the heuristic. For example, finding the best or-
thogonal linear transformation can be reduced to n differ-
ent optimization problems, one for each feature, which are
solvable by partial derivatives. Another example is feature
reordering metaphors, which can be described as an assign-
ment problem with weighted edges (costs). Polynomial-time
solutions such as the Hungarian algorithm (Kuhn 1955) may
be used to find the best feature reordering that minimizes the
metaphor heuristic.

Automatic Selection of Metaphor Spaces
Selecting a suitable metaphor space is critical to the learner’s
success. Alas, matching a metaphor space to a given prob-
lem is not a trivial task. For the metaphor framework to be
truly robust, we require a method of selecting a metaphor
space - that fits the problem at hand - from the arsenal of
available spaces.

Given multiple metaphor spacesM1, ...,Mm, we will re-
quire that they be sorted by preference. Informally, this pref-
erence relation will be called complexity, and its goal is to
bias our choice of metaphor space towards simpler spaces,
coinciding with Occam’s Razor. While there are many def-
initions of complexity, our algorithm does not require that
the ordering be dependent on one specific metric or another.

The algorithm learns the best metaphor from each space,
with respect to the metaphor heuristic, and evaluates each
metaphor’s accuracy on the target sample. However, the se-
lected metaphor is not chosen by maximal accuracy alone, as
that may result in over-fitting. Instead, a pairwise compari-
son of metaphors using McNemar’s test (1947) is conducted;
metaphors that originated in complex spaces are preferred to
simpler metaphors only if they are significantly better, be-
yond a predetermined significance parameter α. Hence, the
selection algorithm will only select a complex metaphor if it
is significantly better than its simpler counterparts.

Accuracy was chosen as a means of evaluation to avoid
over-fitting. Had we used the metaphor heuristic instead, we
would be giving an unfair advantage to complex metaphor
spaces, which have more degrees of freedom.
Algorithm Metaphor Space Selection Algorithm
Input: source data Ss, target data St, source hypothesis hs,

the metaphor heuristic SD, list of metaphor spaces
M1, ...,Mm, significance α.

Output: The simplest metaphor that classifies significantly better.
1. for eachMi: µi = argmin

µ∈Mi

SD (µ (St) , Ss)

2. µ = µ1

3. for i = 2 to n
4. if µi ◦ hs classifies St better than µ ◦ hs with α sig-

nificance: µ = µi
5. return µ

Empirical Evaluation
Though our theoretical results are encouraging, the algo-
rithms presented in the previous section are of a heuristic
nature, and must be evaluated empirically.

Methodology
Protocol An excellent method of determining how well an
algorithm performs with small sample sizes is by observ-
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ing its learning curve. In our setting, the size parameter will
affect only the amount of target instances available to the
algorithm. The amount of source instances will remain con-
stant at a large number (1000), since we are always under the
core assumption of metaphor learning: the source concept is
well-known and can be classified with small error.

Performing classic cross-validation is insufficient, be-
cause the minimal target training set is half of the original
set. Since we are interested in understanding how metaphor
learning performs under very small sample sizes, a varia-
tion was used. In essence, we partition the pool of target in-
stances into chunks of size 2n, and perform two-fold cross-
validation on each chunk. This gives us an amount of results
that is double the number of chunks, and can then be used
for testing statistical significance. Apart from the protocol’s
versatility in terms of training set size, it also ensures that
each instance is trained upon once and tested upon once (ex-
actly). This protocol was used in every experiment, with a
source dataset of 1000 instances and a pool of 600 instances
from the target task (with the exception of Latin and Cyrillic,
which has 100 target instances).

A variety of base learners was reviewed for each domain,
including SVM, C4.5, Naive Bayes, and Nearest Neighbor.
We used WEKA’s implementation for these algorithms with
their default parameters (Hall et al. 2009). Results based on
the Nearest Neighbor learner will be presented. Similar be-
havior was observed across base classifiers.

Transfer Learning Tasks Transfer learning tasks are
composed of two samples from the source and target do-
mains. These domains must be related; there is no sense in
trying to learn one concept based on another when there is
no clear relation between the two. To truly evaluate algo-
rithms in transfer learning conditions, the domains must also
be significantly different from one another. Finally, we will
also assume that all features (excluding the class feature)
are numerical. While we have also looked into metaphors
for nominal features, numerical features simplify the ex-
perimental process due to the continuous nature of many
metaphor spaces. Summing up, we would like our transfer
learning tasks to be related, different, and numerical.

The research literature lists only few transfer learning
tasks. However, even these few do not satisfy the above cri-
teria. In addition, we would like to examine transfer learning
tasks in which the source and target feature spaces differ, but
unfortunately, were unable to find such datasets. Therefore,
we present several new transfer learning tasks.

Negative Image The source task is that of the optical digit
recognition dataset from the UCI ML Repository (Frank
and Asuncion 2010). While the source data consisted of
black ink on a white background, the target data is in-
verted - white on black.

Higher Resolution This scenario simulates the case where
we have much data from a low resolution camera, and lit-
tle data of high resolution. The target data will be the orig-
inal digits dataset. To create the lower resolution source
data, we will merge each two-by-two quad of pixels into
one pixel, where its intensity is their average. Note that

the source feature space consists of only 16 dimensions,
while the target feature space has 64.

Latin and Cyrillic The source data contains images of
typeface uppercase Latin characters where only those de-
picting the letter ’R’ are labeled positive. Similarly, the
target consists of uppercase Cyrillic letters in which ’�’
is labeled positive and any other letter negative.

Wine The wine quality prediction task (Cortez et al. 2009)
is a regression problem that consists of two distinct
datasets: red wine (source) and white wine (target).

Reference Methods Three baseline methods were com-
pared against metaphor learning algorithms: Target Only
learns only from the target dataset; Identity Metaphor learns
only from the source dataset; Merge learns from the union of
source and target datasets. An additional three state-of-the-
art algorithms were compared: Frustratingly Easy Domain
Adaptation (FEDA) (Daumé III 2007); Multi-Task Learn-
ing (MTL) (Caruana 1997) using an implementation by (Tu,
Fowler, and Silver 2010); TrAdaBoost (Dai et al. 2007). Be-
sides Target Only, all methods are applicable only when both
source and target feature spaces are identical.

Performance of Metaphor Learning
We will show that when we are given a suitable metaphor
space, heuristic search finds a good metaphor that describes
this relation. Moreover, we shall demonstrate that classifiers
based on these metaphors are more accurate than classifiers
generated by other transfer learning algorithms.

Metaphor Space Selection To meet the assumption that
our metaphor spaceM contains an adequate metaphor, we
must select one that is generic enough on one hand, yet spe-
cific enough to enable some form of bias. We will later relax
the specificity demand when discussing automatic selection
of metaphor spaces.

In the negative images task, each pixel in the target do-
main relates to a corresponding pixel in the source; there-
fore, orthogonal linear transformations are a good choice.
The same metaphor space was used for wine, which also
requires feature alignment. Intuitively, the Latin and Cyril-
lic tasks are related by mirroring, so the family of geometric
transformations should be suitable. Changes in resolution re-
quire metaphors that can handle different source and target
feature spaces: non-orthogonal linear transformations.

Where applicable (Mpol and Mord), we used analyti-
cal methods to find the best metaphor. Steepest-ascent hill-
climbing was used to search the remaining metaphor spaces.

The previous section describedMgeo in a manner that is
too abstract to reconstruct, so we shall therefore elaborate.
The base transformations are: 3 rotations (90◦, 180◦, 270◦),
16 translations (8 horizontal, 8 vertical), and 2 reflections
(horizontal axis, vertical axis). This space is closed un-
der composition, allowing a combination of several base
transformations to be a metaphor in Mgeo. The hill-
climbing algorithm starts with no transformations (the iden-
tity metaphor) and fuses base transformations with the cur-
rent state until a local minimum has been reached. This state
(metaphor) is eventually returned.
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Table 1: Metaphor invocation across target sample sizes

Quantitative Results Figure 1 shows the performance of
each method on each transfer learning task, as a function of
the target sample size. Metaphors dominated all other meth-
ods with 95% significance in nearly all sample sizes. Nev-
ertheless, with sufficient amounts of target data, metaphors
will eventually fail to provide better classification than the
target-only method, as can be seen in figure 1(d). This was
also observed among the other datasets when the target sam-
ple size was substantially larger than 20. The phenomenon
coincides with human cognition; when learning some con-
cept for the first time, we will attempt to project it onto an-
other concept, but eventually, we will become experts from
studying the relevant data alone.

Another interesting observation is that state-of-the-art
methods did not perform better than baseline methods.
While it has been demonstrated in previous work that these
methods perform well, this claim does not hold when the
data does not meet the methods’ underlying assumptions.

Qualitative Analysis A closer look at the actual
metaphors that were found should provide a broader un-
derstanding of how metaphors work. An arbitrary target in-
stance was selected from Negative Image and Higher Res-
olution, on which we invoked actual metaphors that were
found for different sample sizes. Table 1 shows the input
(target instance) and the outputs (translated instances).

It can be observed that even a few target instances are
enough to learn a good metaphor. With only two exam-
ples, the outputs already resemble the source data, and five
are sufficient for nearly perfect classification. The learning
curve is most visible with the Negative Image task, where
one target example creates an unintelligible image, two al-
ready form the general shape of 6, and five remove any
shadow of a doubt regarding the digit’s class.

Performance Across Base Classifiers We repeated the
experiments across three other base classifiers: C4.5, Naive
Bayes, and Linear SVM. Changing the source classifier did
not have a significant effect on the metaphor learner’s per-
formance. Metaphors are indifferent to the base classifier’s
type because the metaphor heuristic is independent of the
base classifier; the same metaphors will be selected by the
algorithm, regardless of the base classifier. As long as each
of the base classifier’s inductive bias is general enough to
capture the source concept with small error, classification
by metaphors will display the same performance across base
classifiers.

Sample Size Mgeo Mord Mlin Mpol(2)

1 100% 0% 0% 0%
2 100% 0% 0% 0%
3 100% 0% 0% 0%
4 71.3% 5.3% 20.7% 2.7%
5 25.8% 11.7% 55% 7.5%
6 13% 14% 71% 2%
7 2.4% 9.5% 85.7% 2.4%
8 1.4% 10.8% 86.4% 1.4%
9 0% 6.1% 87.8% 6.1%

10 0% 8.3% 88.4% 3.3%
11 0% 1.9% 98.1% 0%
12 0% 4% 96% 0%
13 0% 0% 100% 0%

Table 2: Metaphor space selection (Negative Image)

Automatic Selection of Metaphor Spaces
After evaluating the metaphor framework under the assump-
tion of a single metaphor space, we shall proceed to gener-
alize this setting by testing the Metaphor Space Selection
Algorithm. We selected two optical recognition tasks (Neg-
ative Image; Latin and Cyrillic) and four metaphor spaces
that were applicable (Mgeo; Mord; Mlin; Mpol(2)). The
metaphor spaces were given in order of complexity, and a
significance threshold of α = 90% was used.

In Latin and Cyrillic, Mgeo was selected at every fold.
Not only did the space of geometric manipulations bene-
fit from the algorithm’s bias, it was also the best metaphor
space for the task at hand. The Negative Image task was not
as simple, since geometric manipulations do not describe
the negative image relation. The space of orthogonal lin-
ear transformations (Mlin), however, proves as a signifi-
cantly better metaphor space as the number of target exam-
ples grows. Note that while three examples or less do not
provide 90% significance in McNemar’s test, five target ex-
amples are enough to convince the algorithm to select the
Mlin more than half of the time. Table 2 shows the portion
of folds in which each metaphor space was selected, by tar-
get sample size, in the Negative Image task.

These results show quick convergence into the best
metaphor space, even when the algorithm is strongly biased
towards simple spaces. The Metaphor Space Selection Algo-
rithm’s performance in classification also suggests that the
algorithm converges into the right metaphor space within a
small amount of target examples.

Related Work
The problem of learning from few examples has three main
approaches, all of which add additional information beyond
the original examples; however, they differ by the type of
that information. Explanation-based learning (DeJong and
Mooney 1986; Mitchell, Keller, and Kedar-Cabelli 1986)
claims that by relying on known rules (axioms), one can
logically deduce a hypothesis that explains an observation.
Thus, a learner equipped with enough axioms can grasp
entire concepts from a single observation. Semi-supervised
learning (Board and Pitt 1989; Blum and Mitchell 1998) as-
sumes that in addition to a few labeled examples, the learner
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(a) Negative Image (b) Higher Resolution (c) Latin and Cyrillic (d) Wine

Figure 1: Comparison of transfer learning methods as function of target sample size

is given many unlabeled examples. Understanding the data
from these unlabeled examples may assist the learner in
forming a better hypothesis. The transfer learning setting
incorporates prior knowledge as an additional dataset of a
related concept. Metaphors fall into this category.

Many methods of transfer learning have been suggested.
An interesting conclusion of Pratt’s work (1991) was that the
same inductive bias performed well on related tasks. This
paved the way to additional methods (Thrun and Mitchell
1995; Ando and Zhang 2005; Eaton, desJardins, and Lane
2008; Ruckert and Kramer 2008) that used the parameters
of a source classifier as an inductive bias for learning the
target. An additional approach that assumes that certain in-
stances of the source data can be used as examples in the
target, has been demonstrated on SVMs (Wu and Dietterich
2004) and in a Bayesian framework (Daumé III and Marcu
2006). A series of boosting algorithms (Rettinger, Zinke-
vich, and Bowling 2006; Dai et al. 2007) have also proven
to be effective when this assumption holds. A third approach
harnesses discriminating features that are common to all
tasks (Caruana 1997; Daumé III 2007; Raina et al. 2007;
Pan, Kwok, and Yang 2008).

Metaphors do not assume that the source and target have
anything in common, but rather that a transformation func-
tion from one to another exists. In this sense, metaphors dif-
fer dramatically from previous methods.

The notion of metaphors and analogies in human cogni-
tion had been studied by Gentner throughout the 80’s (Gen-
tner 1983). At the same time, Analogical Reasoning (also
called Computational Metaphors) was developed by Car-
bonell and others (Carbonell 1981; Holyoak and Thagard
1989). Their prime focus was to use prior knowledge to as-
sist reasoning tasks (such as logical deduction and planning)
in new domains. In inductive learning, an instance-based
method that incorporates analogical reasoning was recently
introduced (Miclet, Bayoudh, and Delhay 2008).

While there are some similarities between metaphors and
previous work in Case-Based Reasoning (CBR) (Riesbeck
and Schank 1989), it is important to notice the fundamental
differences. While CBR maps target problems to previously
observed source problems, metaphors may translate target
instances into never-before-seen instances in the source fea-
ture space. Metaphors are not necessarily similarity-based
(as in CBR), and do not even require the source and target
feature spaces to be identical. Another disparity is that CBR
retrieves a different set of source problems for each given

target problem, while metaphors translate the entire target
feature space.

Discussion
We presented a novel transfer learning approach, inspired
by human cognition: metaphors. The Metaphor Theorem
shows that if two concepts are related by metaphor, the
new (target) concept can be classified as accurately as the
original (source) concept. Metaphor spaces and their auto-
matic selection, alongside the metaphor heuristic and our
efficient search methods, provide a robust toolbox for learn-
ing metaphors. These tools were tried and tested in a real
transfer learning setting, and performed better than state-of-
the-art transfer learning methods.

When the target and source concepts are not related,
metaphors do not work; neither will they perform well in
a scenario where the concepts are too distant for a simple
metaphor to describe their relation. If translating from tar-
get to source requires a sophisticated metaphor, we might as
well learn the target without using the source at all. Even hu-
mans are sometimes required to learn entirely foreign con-
cepts, and in these particular situations, tabula rasa is the
only way to go. We can therefore conclude that if a clear re-
lation between target and source does not exist, the problem
at hand does not fit the definition of a transfer learning task.

However, when such a relation exists, metaphors double
our profit. Not only are we rewarded with better classifica-
tion, we are also provided with an explanation as to how
the new concept relates to the old. Metaphors provide a
unique assessment of task relatedness - a qualitative differ-
ence rather than a numerical measure.

Since relatedness between concepts may take on many
forms, the selection of a suitable metaphor space is criti-
cal. Selecting an appropriate metaphor space is not a triv-
ial choice, and one may question the amount of engineering
involved in this process. For this precise reason, we have
designed and tested the automatic Metaphor Space Selec-
tion Algorithm. As demonstrated, the algorithm is able to
select the best metaphor space from a variety of spaces after
observing a very small amount of examples. Nevertheless,
we must re-ask the question at a higher level: how does one
go about selecting an adequate kernel function, hypothesis
space, or even feature space? Much research has been de-
voted to answering these questions, and their answers should
easily be applicable to metaphor spaces without prejudice.
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