
Sequence Labeling with Non-Negative
Weighted Higher Order Features

Xian Qian Yang Liu
The University of Texas at Dallas

qx,yangl@hlt.utdallas.edu

Abstract
In sequence labeling, using higher order features leads to high
inference complexity. A lot of studies have been conducted to
address this problem. In this paper, we propose a new exact
decoding algorithm under the assumption that weights of all
higher order features are non-negative. In the worst case, the
time complexity of our algorithm is quadratic on the number
of higher order features. Comparing with existing algorithms,
our method is more efficient and easier to implement. We
evaluate our method on two sequence labeling tasks: Optical
Character Recognition and Chinese part-of-speech tagging.
Our experimental results demonstrate that adding higher or-
der features significantly improves the performance without
much additional inference time.

Introduction
In a sequence labeling task, we are given an input sequence
of length l, x = x1 . . . xl, and need to assign each com-
ponent xt with a label to generate label sequence y =
y1 . . . yl. The sequence labeling problems arise in a vari-
ety of applications, such as assigning part-of-speech (POS)
tags to words in POS tagging tasks, labeling words in sen-
tences with their entity types and boundaries in named en-
tity recognition problems, recognizing handwritten charac-
ter images in Optical Character Recognition (OCR) tasks.
In many sequence labeling problems, there is important
structural information among the elements in the label se-
quence y. Structured learning models have been success-
fully applied in these problems because of their ability of
using arbitrary structured information, especially for dis-
criminative models that benefit from a large amount of
even redundant features, such as Conditional Random Fields
(CRFs) (Lafferty, McCallum, and Pereira 2001), Averaged
Perceptron (Collins 2002a), Max Margin Markov Networks
(Taskar, Guestrin, and Koller 2003), online Passive Aggres-
sive Learning (Crammer et al. 2006). In these models, a fea-
ture or model of order k encodes the dependency between x
and (k + 1) consecutive elements in y. Using higher order
features in sequence labeling can potentially lead to an expo-
nential computational complexity in inference. Hence, struc-
tured information is usually assumed to exist only between
adjacent components of y, resulting in first order Markov

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models that are much less expressive and have been widely
adopted for various sequence labeling tasks.

In this paper, we propose a new decoding algorithm un-
der the following assumption: weights of higher order fea-
tures are non-negative. Such an assumption is reasonable in
cases where higher order features are derived by human prior
knowledge (since we usually expect these features show
positive effect on predictions), or the frequent transition fea-
tures are extracted from training data. For example, in the
named entity recognition task, one higher order feature is
true if the word sequence between “professor” and “said”
is labeled as a person name. We expect that adding this fea-
ture will generate more person names, thus its weight should
be non-negative. Note that this is not always true. Take the
following sentence as an example: the professor and the stu-
dent said. In this case, we expect that other local features
(e.g., word ‘and’ is unlikely to be part of a person name) are
dominant and can help make a correct decision.

The basic idea behind our algorithm is simple: given a set
S and its maximal element e∗, if we increase the value of an
element e′ ∈ S, then the updated maximum is either e∗ or e′,
and there is no need to consider the other elements. There-
fore, if all higher-order features are non-negative weighted,
then we can derive the best label sequence y∗ in the follow-
ing way. For each component xt, we first neglect the higher
order features and use standard Viterbi algorithm to obtain
a suboptimal label sequence y′1y

′
2 . . . y

′
t; then we update the

scores of some label sequences that have higher order fea-
tures. The optimal label sequence is among y′1 . . . y

′
t and the

ones with updated scores.
We conduct experiments on OCR and Chinese POS tag-

ging tasks. For the OCR task, we demonstrate that frequent
higher order transition features can significantly improve the
performance while requiring only 30% additional time. For
the POS tagging task, we manually designed a small number
of higher order features based on observations of the train-
ing corpus. Our experiments show that adding these features
results in 5.3% relative error reduction at the cost of about
10% additional time. Our result is the best reported perfor-
mance for this task.

Related Work
Existing inference algorithms for higher order models can
be divided into five categories: approximate inference, can-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1098

didate reranking, semi-Markov model, Lagrange relaxation,
and sparse higher order models.

The approximate algorithms such as Loopy Belief Propa-
gation (LBP), Gibbs sampling (Finkel, Grenager, and Man-
ning 2005), Integer Linear Programming (Roth and Yih
2005) are efficient in practice; however, they are not guar-
anteed to converge to a good approximation, or they may
not even converge.

Reranking methods (Collins 2002b; Dinarelli, Moschitti,
and Riccardi 2012) adopt a two-step framework where
higher order features are incorporated in the second step to
rerank candidate predictions generated by local models in
the first step. This method is computationally efficient; how-
ever the effectiveness of the reranking module is restricted
by the performance of the local models and the number of
candidates.

For Semi-Markov models such as semi-CRF (Sarawagi
and Cohen 2004), the inference is exact and in polynomial
time; however, the high order features in these models have
to be in the form of ‘segments’ and other types can not be
handled.

Dual decomposition (Rush et al. 2010) is a special case
of Lagrangian relaxation. It relies on standard decoding al-
gorithms as oracle solvers for sub-problems, together with a
simple method for forcing agreement between the different
oracles. It has been successfully applied in several parsing
and joint learning tasks, however, it is a general method and
inefficient for special cases.

Similar to dual decomposition, cascaded inference
(Weiss, Sapp, and Taskar 2010) also ensembles tractable
sub-models as part of a structured prediction cascade. It does
not enforce agreement between sub-models, but rather filter
the space of possible outputs by simply adding and thresh-
olding the max-marginals of each constituent model.

Recently, sparse higher order models are proposed, such
as Sparse Higher Order CRFs (SHO-CRFs) (Qian et al.
2009). They learn and predict with high order features ef-
ficiently under the pattern sparsity assumption. Though the
complexity is not polynomial, SHO-CRFs are still efficient
in practice because of the feature sparsity. Furthermore, the
inference has been demonstrated to be polynomial when all
the features depend on consecutive label sequences (Ye et al.
2009). The main drawback of this method is that it needs to
induce partitions of label sequences before inference. Such
induction is even more time consuming than inference, and
is difficult to implement.

Unlike SHO-CRFs, our algorithm does not require the
state partition information, rather it only needs the relations
in the label sequences that higher order features depend on.
In addition, our method is much easier to implement.

Problem Definition
Given a sequence x = x1, . . . xl, the structured linear clas-
sifier assigns a score to each label sequence y = y1, . . . , yl,
defined as:

score(x,y) =
∑
t

∑
i

wifi(x,ys:t)

where ys:t denotes the label sequence ys, ys+1, . . . , yt, and
fi(x,ys:t) is the feature function that encodes the depen-
dency between x and ys:t, and wi is the weight of feature
fi.

In this paper, for simplicity, we will focus on the case of
binary features. However, our results extend easily to the
general real valued cases. Generally, the feature function has
the following form:

fi(x,ys:t) =

{
b(x, t)I(ys:t, z) if ys:t = z

0 otherwise

where both b(·) and I(·) are indicator functions. b(x, t) can
be used to represent information such as whether xt is capi-
talized or matches a particular word in language processing
tasks. z is a label sequence specified by feature fi, for exam-
ple, [verb, noun] in POS tagging, capturing state transition
verb→ noun. I(ys:t, z) indicates whether ys:t = z. We use
the same terminology as in (Ye et al. 2009), calling the se-
quence of z the label pattern of fi.

The product of wifi(x, zs:t) is the score of pattern zs:t,1
denoted as φ(x, zs:t). For binary features, the score is sim-
ply wi. The order of the feature/pattern is the length of
its label pattern minus one, i.e., t − s. For example, in
first order Markov model, the transition feature f(x, yt−1:t)
is an order-1 feature. We call a feature/pattern low order
feature/pattern if its order is ≤ 1, or higher order fea-
ture/pattern, if its order is > 1.

We use averaged perceptron for model training (i.e.,
weight estimation) in this study. In decoding, the input is
the observation x, feature functions {fi} and their weights
{wi}, and the output is the label sequence with the highest
score: y∗ = argmaxy score(x,y). The problem is equiva-
lent to searching for y∗ given the scores of all patterns.

Without loss of generality, in the remainder, we assume
that all the features are non-negative. If not (i.e., fi < 0),
we can derive an equivalent model by replacing fi with
f ′i = −fi and w′i = −wi. Then under the assumption of
non-negative features, the non-negative weight assumption
is equivalent to φ(x, zj) ≥ 0 (φ is the product of weight and
feature), for any higher order pattern zj .

Decoding Algorithm
We use the following additional notations in our decoding
algorithm.

y[zs:t] denotes a label sequence y1:t ending with zs:t, i.e.,
ys:t = zs:t. Specially, for the optimal sequence y∗,

y∗[zs:t] = argmaxy1:t
score(x,y[zs:t])

Let y1 ⊕ y2 denote the concatenation of two se-
quences. The cost function cost(x,ys:t) is the
sum of the weights of state and transition features
within ys:t (as used in first-order Markov models):

cost(x,ys:t) =

t∑
r=s+1

∑
i

wifi(x, yr) +
∑
j

wjfj(x,yr−1:r)

For a pattern zj , its score φ(x, zj) is simplified as φj .

1When there is no ambiguity, we use fi(x, zs:t) to represent
feature fi(x,ys:t) when the subsequence of y matches z: ys:t = z.

1099

Figure 1: Algorithm for one higher order pattern zs:t =
1243. Gray line denotes the suboptimal y′[zt] derived by
Viterbi algorithm, solid line denotes the optimal y∗[zs],
dashed line denotes zs:t. Optimal y∗[zt] is either the gray
line or the concatenation of black and dashed lines.

One Higher Order Pattern Case
In this section, we study the simplest case, where only one
higher order pattern zs:t exists. The algorithm starts at the
first node x0, and finds the optimal label sequence y∗[yr]
for each r < t and yr ∈ Y using the standard Viterbi al-
gorithm. For the tth node with label zt, we first obtain the
suboptimal label sequence y′[zt] using low order features by
enumerating yt−1:

y′t−1 = argmax
yt−1

{score(x,y∗[yt−1]) + cost(x, yt−1zt)}

y′[zt] = y∗[y′t−1]⊕ zt
Then the optimal y∗[zt] is either the original y′[zt] or

y∗[zs]⊕ zs+1:t:

y∗[zt] ={
y∗[zs]⊕ zs+1:t if score(x,y′[zt]) ≤ score(x,y∗[zs])

+cost(x, zs:t) + φ(x, zs:t)
y′[zt] otherwise

This equation still holds if the suboptimal y′[zt] and
y∗[zs] ⊕ zs+1:t are the same. In such cases, we only need
to update the score of y′[zt].

The algorithm is illustrated in Figure 1.

Two Pattern Case
Suppose there are two higher order patterns z1s1:t1 , z

2
s2:t2 .

Without loss of generality, we assume t1 ≤ t2, and s1 ≤ s2
if t1 = t2. There are four relations between them: separated,
disjoint, subsequence, pre-sequence.

z1, z2 are separated, if t1 ≤ s2. We could use the algo-
rithm for one pattern case twice: get y∗[z1t1] when neglecting
z2, and get y∗[z2t2] when neglecting z1. See Figure 2.
z1, z2 are disjoint, if t1 > s2 and z1s2:t1 6= z2s2:t1 . For

example, in POS tagging task, two transition patterns verb
→ conjunction → verb and noun → conjunction → noun
for a word trigram are disjoint. The algorithm is the same
as the separated case, since there is no label sequence y1:l

satisfying ys1:t1 = z1s1:t1 and ys2:t2 = z2s2:t2 , which means
that the scores of all y[z2s2:t2] (including the optimal y∗) are
not affected by φ1. See Figure 3.

Figure 2: Separated case: z1s1:t1 (solid) and z2s2:t2 (dashed)
are separated. Get y∗[zt1 = 3] and y∗[zt2 = 2] indepen-
dently.

Figure 3: Disjoint case: z1s1:t1 (solid) and z2s2:t2 (dashed) are
disjoint. Get y∗[zt1 = 2] and y∗[zt2 = 2] independently.

z1 is subsequence of z2 if s1 ≥ s2 and z1s1:t1 = z2s1:t1 .
In other words, all label sequences y[z2s2:t2] satisfy ys1:t1 =

z1s1:t1 , hence we could use the same algorithm as the sepa-
rated case by letting φ2 = φ2 + φ1. See Figure 4.

z1 is pre-sequence of z2 if s1 < s2 < t1 < t2 and
z1s2:t1 = z2s2:t1 . For example, in POS tagging task, for words
have a red book, transition pattern verb→ article→ adjec-
tive is the pre-sequence of the pattern article→ adjective→
noun . Note that if t1 = t2, then z2 is the subsequence of z1.

For the pre-sequence case, the algorithm is similar to the
separated case, except that now we need to consider the com-
bination of patterns when searching for y∗[z2s2:t2].

First we get the best y∗[z2s2:t1]:

y∗[z2s2:t1] = y∗[z1s1]⊕ z1s1+1:t1 if score(x, y∗[z1s1]) + φ1 + cost(x, z1)
> score(x,y∗[z2s2]) + cost(x, z2s2:t1)

y∗[z2s2]⊕ z2s2+1:t1 otherwise

Then the optimal y∗[z2t2] is

y∗[z2t2] = y∗[z2s2:t1]⊕ z2t1+1:t2 if score(x,y∗[z2s2:t1]) + φ2
+cost(x, z2t1:t2) > score(x,y′[z2t2])

y′[z2t2] otherwise

where y′[z2t2] is the suboptimal label sequence obtained by
low order patterns. See Figure 5.

1100

Figure 4: Subsequence case: z1s1:t1 (solid) is subsequence of
z2s2:t2 (dashed). Let φ2 = φ2 + φ1, then get y∗[zt1 = 2] and
y∗[zt2 = 2] independently.

Figure 5: Pre-sequence case: z1s1:t1 (solid) is pre-sequence
of z2s2:t2 (dashed). We first get y∗[z2s2:t1] (ending with the
common sequence of the solid and dashed), then get y∗[z2t2].

General Case
As discussed in the previous section, the only case that we
can not treat the patterns independently is the pre-sequence
case. Therefore, in the general case, for each higher order
pattern zs:t, we need to consider all of its pre-sequences
before getting y∗[zt]. Formally, suppose P = {zisi:ti} are
the pre-sequences of zs:t, then y∗[zs:t] can be derived recur-
sively. For s < r ≤ t, y∗[zs:r] is from one of the two cases:
(i) y∗[zs:r−1] ⊕ zr whose score is score(x,y∗[zs:r−1]) +
cost(x, zr−1:r); (ii) y∗[zksk]⊕ zksk+1:r, where

k = argmaxj,zj∈P,tj=rscore(x,y
∗[zj])

score(x,y∗[zj]) =

score(x,y∗[zjsj :r−1]) + φj + cost(x, zjr−1:r) (1)

The label sequence with the highest score is selected. An
example is illustrated in Figure 6.

Finally we summarize the decoding algorithm in Al-
gorithm 1. Steps 1-7 find the pre-sequences and subse-
quences of each higher order pattern. Step 8 adds the subse-
quence scores to the corresponding patterns. Then for each
t, yt ∈ Y , steps 11 and 12 search the suboptimal label se-
quence y′[yt] using low order patterns. Steps 13-18 update
y′[yt] by considering all higher order patterns ending with
yt. The optimal y∗[yt] is obtained in step 19. Steps 20-27
search y∗[zisi:t], the best label sequence ending with the pre-
sequence of higher order pattern zi satisfying zit = yt.

Figure 6: General case: z1s1:t−2 (gray) and z2s2:t−1 (solid)
are pre-sequences of zs:t (dashed), meanwhile z1 is the pre-
sequence of z2. The best label sequence ending with the
dashed line is the extension of the best one ending with the
dashed segment, from s to t − 1, y∗[zs:t−1]. y∗[zs:t−1] is
one of the two sequences: the extension of the best one with
the first dashed segment y∗[zs:t−2]; the other is the best one
ending with solid line y∗[z2] which is obtained the same
way as the dashed line.

Complexity Analysis
We use the following notations:
• l: sequence length.
• |z|: length of pattern z.
• L: max length of pattern z.
• n: number of higher order patterns
• |Y|: size of label set
Time complexity for finding the pre-sequences and subse-
quences of each pattern is bounded by L · n2 (there are
at most L comparisons for each pattern pair). There are
n patterns, and for each zs:t, there are at most n − 1
pre-sequences and L sequences to compare (steps 25,26).
The complexity for Viterbi decoding is l|Y|2 (steps 11-12).
Therefore the total complexity of our algorithm is bounded
by (n+ L)n+ Ln2 + l|Y|2, which is square in n.

Experiments
We conduct experiments on the Optical Character Recog-
nition (OCR) task and Chinese POS tagging task. We use
averaged perceptron in training, and the iteration number is
50 for OCR and 10 for POS tagging. To guarantee that all
higher order features {fi} are positively weighted, we sim-
ply project the their weights onto non-negative space.

Optical Character Recognition
We use the same data and settings as in (Taskar, Guestrin,
and Koller 2003), where 6100 handwritten words with an
average length of around 8 characters were divided into 10
folds, each with 600 training and 5500 testing examples. The
words were segmented into characters, with the first capital
character removed. Each character was depicted by an im-
age of 16×8 binary pixels. In this labeling problem, each
xi is the image of a character, and each yi is a lower-case
letter. The low order features we used are pixel features (in-
cluding single pixels and combination of 2 adjacent pixels)

1101

Algorithm 1 Decoding Algorithm with Non-Negative Weighted Higher Order Features
Input: Sentence x = x1, . . . , xl, low order patterns and their scores, i.e., cost(x, yt−1yt), higher order patterns {zisi:ti |ti ≤ ti+1}ni=1

and their scores {φi}ni=1

Output: Label sequence y∗ with the highest score
0: Initialize the pre-sequences and subsequences for higher order patterns Pi = ∅, Si = ∅, 1 ≤ i ≤ n
1: for 1 ≤ i < j ≤ n do C find pre-sequences and subsequences for each higher order pattern
2: if si < sj < ti < tj AND zisj :ti = zjsj :ti do
3: Pj = Pj ∪ {zi} C pattern zi is the pre-sequence of zj

4: else if sj ≤ si ≤ ti ≤ tj AND zisi:ti = zjsi:ti do
5: Sj = Sj ∪ {zi} C pattern zi is the subsequences of zj

6: end if
7: end for
8: φi = φi +

∑
zj∈Si

φj , 1 ≤ i ≤ n C Add the scores of subsequence patterns.
9: for t = 1, . . . , l do

10: for yt ∈ Y do
11: y′t−1 = argmaxyt−1{score(x,y∗[yt−1]) + cost(x, yt−1yt)}
12: y′[yt] = y∗[y′t−1]⊕ yt
13: foreach zisi:ti satisfying ti = t and zit = yt do
14: if score(x,y′[yt]) < score(x,y∗[zisi:t−1]) + cost(x, zit−1:t) + φi do
15: score(x,y′[yt]) = score(x,y∗[zisi:t−1]) + cost(x, zit−1:t) + φi

16: y′[yt] = y∗[zisi:t−1]⊕ yt
17: end if
18: end foreach
19: y∗[yt] = y′[yt] C get the optimal sequence
20: foreach zisi:ti satisfying si < t < ti and zit = yt do
21: Let Q = {zjsj :tj |z

j ∈ Pi, tj = t}
22: foreach zj ∈ Q
23: score(x,y∗[zjsj :t]) = score(x,y∗[zjsj :t−1]) + φj + cost(x, zit−1:t)

24: end foreach
25: k = argmaxj{score(x,y∗[zjsj :t])}zj∈Q

26: y∗[zisi:t] =

{
y∗[zksk]⊕ zksk−1,t if score(x,y∗[zksk:t]) > score(x,y∗[zisi:t−1]) + cost(x, zit−1:t)
y∗[zisi]⊕ zisi−1,t otherwise

27: end foreach
28: end for
29: end for

system Order Accuracy Sec./iter #iter
M3N (Cubic Kernel) 1 87.5% - -

(Ye et al. 2009) 5 85.5% 85∗ 40
(Qian et al. 2009) 7 88.52% 5.8∗ 300

Dual Decomposition 7 86.75% 1.04 50
Ours 7 88.53% 0.390 50

Ours (baseline) 1 82.42% 0.319 50

Table 1: Results for OCR task. ∗Time is not directly compa-
rable to this paper due to different hardware platforms.

and first order transition features. For higher order features,
we simply use all the transition features that appeared in the
training data with frequency > 10 and order < 8. To study
the effect of feature orders, we gradually add features of or-
der 1, 2, . . . , 7.

For performance evaluation, we use the averaged char-
acter accuracy and running time over the 10 folds. Table 1
shows the results. For our system, we also report the base-
line results (without incorporating high order features). For
comparison, performance of several state-of-the-art systems
is also listed. M3N denotes Max Margin Markov Networks

with cubic kernel (Taskar, Guestrin, and Koller 2003). For
the dual decomposition algorithm, we treat each higher or-
der pattern as a slave, and the linear chain model with local
features as a slave. Viterbi algorithm is used for searching it-
eratively until all slaves agree. We found that, dual decompo-
sition hardly converges due to lots of slaves, hence we set the
maximum iteration number with 10 for efficiency. We can
see that in our system, adding higher order features signif-
icantly improves the performance, and requires only about
30% additional time. Compared with the best reported sys-
tem (Qian et al. 2009), our system is competitive and much
more efficient.

Figure 7 and 8 show the results when changing the max-
imum order of features. The gain from adding high order
features is more noticable at the beginning, and become less
after order 5. We can see that our algorithm is scalable for
higher order features, as the running time appears to grow no
more than linearly with the maximum order of the features.

Chinese POS Tagging
For POS tagging, to compare with other systems, we use the
same split as in SIGHAN2008 using the Chinese Tree Bank

1102

Figure 7: Accuracy on OCR task using different orders of
features.

Figure 8: Training/testing time on OCR task using different
orders of features.

(CTB) corpus (Jin and Chen 2008). Data statistics are show
in Table 2.

The low order features are: (i) word level features, includ-
ing surrounding word unigrams, bigrams, and word length;
(ii) character level features, such as the first and last charac-
ters of words; (iii) transition features.

The higher order features we used are manually designed.
We derived some linguistic characteristics by examining the
training corpus and represented them as binary higher order
features. Some example are listed in Figure 9.

Table 3 shows the POS tagging results using our method,
as well as from two best systems in the official evaluation
using this same corpus. We can see that using the higher or-
der feature yields 5.3% relative error reduction at the cost
of only about 10% additional training/testing. The improve-
ment from using higher order features over the low order
model is statistically signficant (based on McNemar’s test;
p < 0.01). Our result is the best for this task. Note that the
best official system (Wu et al. 2008) benefits from model
combination – they combined the results of CRFs (94.0%)

and TBL (92.7%) for better performance, while our system
is a single model.

system Accuracy Train
Sec.

Test
Sec.

Official Best 94.28 - -
Official Second 94.01 - -
Ours (higher order) 94.41 7431 26.2
Ours (low order) 94.04 6919 23.4

Table 3: Results for Chinese POS tagging.

Discussion about Negative Weighted Features
Our algorithm could not be applied to cases where negative
weighted features exist. One example is shown in Figure 10,
where there are two negative patterns: z10,2 and z21,3. Sup-
pose at t = 2, we get y∗[z12] = y∗[z21:2] (i.e., sequence end-
ing with z21:2), and at t = 3, we find that the suboptimal
y′[z23] derived by low order patterns ended with z2. Since
φ2 < 0, we need to check if y′[z23] is better than the sec-
ond best y[z23]. It is possible that the second best sequence
we identified is: y[z23] = y∗[z1 ⊕ z23]. In this case, since
φ1 < 0, the optimal y∗[z23] may be neither y∗[z1 ⊕ z23]
nor y′[z23]. We should search for the best y[z23], satisfying
y0:2 6= z1 and y1:3 6= z2 to see which one is the optimal.
This is equivalent to dividing {y0:3} into 3 partitions, and
search for the best y[z23] from each partition. Hence, state
partition is necessary for negative patterns, which is time-
consuming as studied by previous work (Qian et al. 2009;
Ye et al. 2009).

Figure 10: Our algorithm is not designed for cases where
negative patterns exist: z10,2 and z21,3 are negative patterns.

Conclusion
In sequence labeling, incorporating higher order structural
information often helps improve labeling performance, how-
ever, it is computationally expensive. In this paper, we
present a novel exact decoding algorithm for sequence label-
ing with non-negative weighted higher order features. This
assumption often holds in real applications. We demonstrate
the efficiency of the algorithm both theoretically and empir-
ically. Experiments on the OCR and Chinese POS tagging
tasks show that, the time cost of our algorithm is compet-
itive comparing with the standard Viterbi algorithm, while
significantly improving the performance.

1103

Token WT TT ATN OOV ROOV MTIV RMT IV

Training 642246 42133 37 1.1690 334317 0.5205
Testing 59955 9797 35 1.1227 3794 0.0633 30513 0.5089

Table 2: Chinese POS tagging data statistics. WT: number of word type; TT: number of tag type. ATN: Average Tag Number
per word. MTIV : number of In-Vocabulary (IV) Multi-Tag word.RMT IV : coverage rate of IV Multi-Tag words.ROOV : Out
of Vocabulary (OOV) word rate.

Figure 9: Examples of higher order features for POS tagging.

Our algorithm could be directly applied to tree structures
or semi-Markov models. However, it is invalid for general
structures with circles. One may combine it with other ap-
proximate techniques like tree-reweighted message-passing
techniques.

Acknowledgments
We thank the three anonymous reviewers for valuable sug-
gestions. This work is supported by DARPA under Con-
tract No. HR0011-12-C-0016. Any opinions expressed in
this material are those of the authors and do not necessar-
ily reflect the views of DARPA.

References
Collins, M. 2002a. Discriminative training methods for hid-
den markov models: Theory and experiments with percep-
tron algorithms. In Proceedings of Empirical Methods in
Natural Language Processing, 1–8.
Collins, M. 2002b. Ranking algorithms for named entity
extraction: Boosting and the voted perceptron. In ACL, 489–
496.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online passive-aggressive algorithms.
Journal of Machine Learning Research 7:551–585.
Dinarelli, M.; Moschitti, A.; and Riccardi, G. 2012. Dis-
criminative reranking for spoken language understanding.
Audio, Speech, and Language Processing, IEEE Transac-
tions on 20(2):526 –539.
Finkel, J. R.; Grenager, T.; and Manning, C. D. 2005. Incor-
porating non-local information into information extraction
systems by gibbs sampling. In ACL.
Jin, G., and Chen, X. 2008. The fourth international chinese
language processing bakeoff: Chinese word segmentation,
named entity recognition and chinese pos tagging. In Pro-

ceedings of Sixth SIGHAN Workshop on Chinese Language
Processing, 69–81.
Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 282–289.
Qian, X.; Jiang, X.; Zhang, Q.; Huang, X.; and Wu, L. 2009.
Sparse higher order conditional random fields for improved
sequence labeling. In ICML, 107.
Roth, D., and Yih, W.-T. 2005. Integer linear programming
inference for conditional random fields. In ICML, 736–743.
Rush, A. M.; Sontag, D.; Collins, M.; and Jaakkola, T.
2010. On dual decomposition and linear programming re-
laxations for natural language processing. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, 1–11. Cambridge, MA: Association for
Computational Linguistics.
Sarawagi, S., and Cohen, W. W. 2004. Semi-markov condi-
tional random fields for information extraction. In NIPS.
Taskar, B.; Guestrin, C.; and Koller, D. 2003. Max-margin
markov networks. In NIPS.
Weiss, D.; Sapp, B.; and Taskar, B. 2010. Sidestepping
intractable inference with structured ensemble cascades. In
NIPS, 2415–2423.
Wu, X.; Lin, X.; Wang, X.; Wu, C.; Zhang, Y.; and Yu, D.
2008. An improved crf based chinese language processing
system for sighan bakeoff 2007. In Proceedings of Sixth
SIGHAN Workshop on Chinese Language Processing.
Ye, N.; Lee, W. S.; Chieu, H. L.; and Wu, D. 2009. Con-
ditional random fields with high-order features for sequence
labeling. In NIPS, 2196–2204.

1104

