
TD-∆π: A Model-Free Algorithm for Efficient Exploration

Bruno Castro da Silva and Andrew G. Barto
{bsilva,barto}@cs.umass.edu

Department of Computer Science, University of Massachusetts, Amherst, MA 01002 USA

Abstract

We study the problem of finding efficient exploration poli-
cies for the case in which an agent is momentarily not con-
cerned with exploiting, and instead tries to compute a policy
for later use. We first formally define the Optimal Exploration
Problem as one of sequential sampling and show that its so-
lutions correspond to paths of minimum expected length in
the space of policies. We derive a model-free, local linear ap-
proximation to such solutions and use it to construct efficient
exploration policies. We compare our model-free approach
to other exploration techniques, including one with the best
known PAC bounds, and show that ours is both based on a
well-defined optimization problem and empirically efficient.

1 Introduction
Balancing exploration and exploitation is a classical prob-
lem in Reinforcement Learning (RL). This problem is rel-
evant whenever one has to learn a good actuation policy,
while at the same time obtaining as much reward as possible.
Often, however, it makes sense to assume an initial training
phase during which the goal is to just explore efficiently, so
that an optimal policy can be learned fast but without nec-
essarily worrying about performing well (Şimşek and Barto
2006). This is useful whenever collecting online samples is
costly or when pre-learning a set of skills might help opti-
mizing other tasks later on. In this paper, we are interested in
finding a good exploration policy to collect revelant samples
from a Markov Decision Process (MDP) such that a reason-
able exploitation policy can be quickly constructed.

We first formally define the Optimal Exploration Problem
as one of sequential sampling by posing it as an MDP con-
structed by expanding the state space of the original one that
we want to explore. Solutions to this expanded MDP cor-
respond to paths of minimum expected length in the space
of policies and describe optimal sequential sampling trajec-
tories. We show an important property of such solutions
and a special function that can be constructed based on
them. Since directly computing these solutions is not fea-
sible, we derive a local linear approximation to the relevant
estimates and present an intuitive geometric interpretation
of its meaning. We compare our model-free approach to

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other exploration techniques, most importantly Delayed Q-
Learning (DQL) (Strehl et al. 2006) and ∆V (Şimşek and
Barto 2006), and show that ours is both based on a well-
defined optimization problem and empirically efficient.

2 Related Work
Efficient exploration in RL has been studied extensively,
usually with the objective of maximizing return in an agent’s
lifetime, thus requiring a trade-off between exploration and
exploitation. In this paper, on the other hand, we are con-
cerned with purely exploratory policies. Some of the ex-
isting approaches to tackle this are simple techniques such
as random exploration, picking actions that were selected
the least number of times, visiting unknown states, etc.
(Thrun 1992). These are inefficient due to treating the entire
state space uniformly, ignoring useful structure provided by
the value function. Other approaches for efficiently learn-
ing consider the full exploration versus exploitation prob-
lem directly. Duff (2003) proposes a Bayesian approach
for the case in which prior uncertainties about the transition
probabilities are available; Abbeel and Ng (2005) present a
method for computing a near-optimal policy assuming that
demonstrations by a teacher are available. Another model-
based Bayesian approach was proposed by Dearden, Fried-
man, and Andre (1999), where the Value of Information for
exploring states is computed considering a model and uncer-
tainty about its parameters. Finally, Kolter and Ng (2009)
present a method for constructing a belief state for the tran-
sition probabilities and obtaining a greedy approximation to
an optimal Bayesian policy.

Two techniques have been especially influential among
researchers studying efficient RL algorithms: R–Max (Braf-
man and Tennenholtz 2001), and E3 (Kearns and Singh
1998). Both give polynomial guarantees for the time to com-
pute a near-optimal policy. These techniques differ from
ours in at least two important aspects: (1) they maintain
a complete, though possibly inaccurate model of the envi-
ronment; (2) they perform expensive, full computations of
policies (via, e.g., value iteration) over the known model as
steps in their algorithms. Therefore, a direct, meaningful
comparison with our model-free approach would be diffi-
cult. Instead, we compare with Delayed Q-Learning (Strehl
et al. 2006), a model-free approach which, to the best of
our knowledge, has the best known PAC-MDP bounds and

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

886

which provably performs near-optimally in all but a polyno-
mial number of timesteps.

Other techniques relevant to this work include the Active
RL algorithm (Epshteyn, Vogel, and DeJong 2008) and the
∆V approach (Şimşek and Barto 2006). The former is sim-
ilar to ours in that it defines an exploration policy based on
a type of sensitivity analysis, namely that of the policy with
respect to perturbations to a model. It differs from ours in
that our analysis focuses, alternatively, on the impact that
collecting additional samples has on the expected evolution
of Q-values, and therefore on the ranking of actions, and
also in that Active RL assumes an initial, complete esti-
mate of a model, while we don’t. The latter approach (∆V)
shares with ours the idea of model-free exploration and uses
a similar formalization. It focuses exploration on regions
of the state space where the magnitude of the value func-
tion changes the most, implicitly maximizing the speed with
which the value function is fine-tuned. Unfortunately, it has
practical shortcomings, mainly because agents following it
become “obsessed” with fine-tuning the value of states even
when the policy is already correct. Intuitively, the specific
values of the states shouldn’t matter; the important informa-
tion to be acquired is the ranking of actions. Achieving this
type of exploration strategy is the goal of this paper.

3 Summary of the Method
We first informally describe our method and in later sec-
tions show that it constitutes a principled approximation to
a well-defined optimization problem. The algorithm that we
propose, which we call ∆π , focuses exploration not on re-
gions where the value function is changing the most, or in
which a model is being made more accurate, as several of
the works described in Section 2, but on regions where the
likelihood of a change in the policy is high. In other words,
exploration is based on how sensitive the policy is at a given
state, given that we continue to gather information about it.

The indicator of policy sensitivity that we use is based
on a simple linear extrapolation of the behavior of the Q-
function at a state, both for the action currently considered to
be optimal and for some other recently tried action. Specifi-
cally, given any unbiased estimate of how a Q-value changes
as more samples are collected (e.g., a temporal difference er-
ror), we can estimate if and when the value of some action
with a lower Q-value will surpass the value of the one cur-
rently considered to be optimal. When exploring, one should
find desirable those actions whose Q-values are soon likely
to surpass that of the action currently considered to be opti-
mal; the sooner this crossing point is predicted to occur, the
more attractive the action should be. If, on the other hand,
the evolution of Q-values indicates that the ordering of ac-
tions is likely to remain the same, then we shouldn’t find
those states attractive (Figure 1). We denote an approxima-
tion to the expected time until a policy change in a given
state by d(s, a). This value serves as a guide to how valu-
able it is to explore certain parts of the MDP based on how
likely it is that new samples from them will lead to changes
in the policy. The derivation of d(s, a) as a principled ap-
proximation and its precise definition are given in Sections
4 and 5.

Figure 1: Geometric interpretation of the expected time until
a policy change, d(s, a), represented by the intersection be-
tween lines. (a) Q-values predicted to diverge; no change ex-
pected; (b) Q-values seem to evolve at same rate; no change
expected; (c) change expected in k steps.

Notice that negative expected times until a policy change
have a natural interpretation: a change has already happened
and now the Q-values seem to be diverging (Figure 1a). Our
exploration algorithm considers small values of |d(s, a)| at-
tractive, since they either indicate that a policy change is ex-
pected soon or that one has happened recently. In the latter
case, it might be important to continue exploring the corre-
sponding states to ensure that the change was not caused by
noise in the sampling of rewards and next states. In order to
model this, we do not use d(s, a) directly as an indication of
policy sensitivity; instead, we define the following quantity:

r(s, a) =

{
exp

(
− d2(s,a)

σ

)
|d(s, a)| < λ

−p |d(s, a)| ≥ λ,
(1)

where p is a small penalty given when the action’s values
seem to have stabilized, λ quantifies how rigorous we are
when deciding whether this is the case, and σ controls the
maximum horizon of time during which we trust the predic-
tions made by our local linear approximation. In practice we
have observed that many functions other than the Gaussian
can be used to define r(s, a), as long as they are monoton-
ically increasing and decreasing in the same intervals as a
Gaussian and the resulting r(·, ·) is bounded. In systems
where noise does not play a crucial role, one might want
to favor exploration of expected future policy changes by
adding a penalty (e.g, −1) to r(s, a) in case d(s, a) < 0.

We point out that the direct use of r(s, a) as a guide for ex-
ploration provides just a myopic perspective, since it reflects
only the value of exploring one specific state and action. In
general, though, the choice of which regions to explore is a
sequential decision problem: states that do not look promis-
ing now might allow the agent to reach regions where several
corrections in the policy are expected. This can be dealt with
by using r(s, a) as a new, surrogate reward function for the
MDP that we want to explore, in which case its solutions
approximately minimize the sum of times until all policy
corrections are performed. This corresponds to executing an
exploration policy that tries to correctly rank actions as fast
as possible (see Section 4). Notice that because r(s, a) is
used as a surrogate reward function, we need to store the
original Q-function (the one related to the exploitation pol-
icy being estimated) separately. Specifically, we keep track
of two separate Q-functions: one related to the exploration

887

policy and one to the exploitation policy. The latter is con-
structed based on samples collected by the former, and the
former is updated given new estimates from the latter. This
is also the approach taken by Şimşek and Barto (2006).

4 Optimal Exploration
Let an MDP M be a tuple

(
SM , AM , RM , TM , γM

)
, where

SM is a finite set of states, AM is a finite set of actions,
RM : SM → < is a reward function, TM : SM × AM ×
SM → [0, 1] is a transition function, and γM is a discount
factor. Solving M consists of finding an optimal policy π∗M ,
i.e., a mapping from states to actions that maximizes the ex-
pected discounted sum of future rewards. Let QπM (s, a) be
the function that gives the expected total discounted reward
obtained when taking action a in s and following π there-
after. The optimal Q-function for an MDP M is denoted
by Q∗M , and an estimate of it at time t by QtM . A greedy
policy with respect to a Q-function can be derived by taking
the action that maximizes the Q-function at a given state; let
π[Q] be this deterministic greedy policy, obtained when us-
ingQ to rank actions and breaking ties randomly. Let V π(s)
be the value of state s when following policy π, and VD(π)
be the value of a policy π given an initial state distribution:
VD(π) =

∑
s∈S D(s)V π(s), where D(s) is the probability

of the MDP starting at state s.
For the problem of Optimal Exploration, we wish to find

a (possibly non-stationary) policy such that the samples it
collects allow for the identification of π∗M as quickly as pos-
sible; we note that this is different from calculating V ∗M as
quickly as possible. Specifically, an optimal exploration pol-
icy might correctly rank all optimal actions even though the
values of some (or all) states are still inaccurate. Formally,
we define the Optimal Exploration Problem as one of se-
quential sampling by posing it as an MDP constructed by
expanding the state space of the process we originally want
to explore. Solutions to this expanded MDP correspond to
paths of minimum expected length in the space of policies
and describe optimal sequential sampling trajectories. Based
on the original MDP M , we define a new MDP, M ′, such
that any optimal policy for M ′, by construction, induces an
optimal exploration strategy for M . As will become clear
shortly, optimality is defined in terms of the minimum ex-
pected number of actions (or steps) needed until enough in-
formation is collected and π∗M can be found. We construct
M ′ in a way so that trajectories in it correspond to sequences
of joint evolution of states inM and estimatesQtM ; this evo-
lution satisfies the Markov property and encodes trajectories
in the space of policies for M . M ′ is defined by:

• a state space S′ = SM × <|SM ||AM |. S′ corresponds
to the same state space of M , but augmented with the
current estimate of the optimal Q-function for M . We
denote the state s′t ∈ S′ in which M ′ is at time t as a
tuple s′t ≡

(
stM , Q

t
M

)
;

• an action space A′ = AM , i.e., the same as the action
space of the original MDP;

• Q0
M , an initial estimate of Q∗M ;

• L, an off-policy, deterministic learning mechanism that
converges to an optimal policy. Given an action a
taken in M ′, we can imagine also executing a in the
original MDP, M , and observing a sample experience(
stM , a, r

t
M , s

t+1
M

)
. L then takes this information, along

with QtM , and returns an updated estimate of the Q-
function: Qt+1

M ← L(stM , a, r
t
M , s

t+1
M , QtM , ρ), where ρ

is the set of any other data structures or parameters re-
quired by L, such as learning rates, models, etc;

• T ′, a transition function based on TM and L. Given the
current state s′t of M ′, T ′ describes the distribution over
possible next states s′t+1. Since s′t+1 is a tuple of the form(
st+1
M , Qt+1

M

)
, we can think of T ′ as computing each of

those components independently: st+1
M probabilistically

according to TM (stM , a), and Qt+1
M by applying L to the

last sample experience obtained when executing a in M .
Also, T ′ is such that all states with zero instantaneous
reward (i.e., goal states, as defined below) are absorbing;

• 0 < γ′ < 1, a (fixed) discount rate;

• R′, a reward function mapping states of M ′ to the reals:

R′(
(
stM , Q

t
M

)
) =

{
−1 if VD(π[Qt

M
]) 6= VD (π∗M)

0 otherwise.

Note that rewards in M ′ are nonnegative only in states in
which the use of the best actions, according to the ranking
induced by QtM , yields a greedy exploitation policy for M
whose value is optimal. This ensures that maximizing cu-
mulative rewards in M ′ is equivalent to efficiently reaching
a Q-function for M that allows all optimal actions to be cor-
rectly ranked. This is made rigorous in Proposition 1:

Proposition 1 An optimal policy for M ′ specifies a path of
minimum expected length in the space of policies for M ,
starting from an arbritrary initial policy and reaching an
optimal policy for M . Paths between policies are specified
by sequences of sample experiences in M .

Proposition 1 follows from the facts that (1) SM and AM
are finite and L is deterministic, and thus from any s′ ∈ S′
there exists only a finite number of possible next states in
M ′; (2) sinceR′ is bounded and 0 < γ′ < 1, the value func-
tion for M ′ is bounded, specifically in [1

log γ′ , 0]; and finally
(3) becauseL is a learning algorithm that converges to an op-
timal policy for M (even if asymptotically), there exists at
least one proper policy for M ′, that is, one that reaches the
goal state with probability 1 regardless of the initial state.
This is true because otherwise M would not be solvable.
Taken together, these observations imply that there exists a
nonempty, possibly uncountable number of proper policies
for M ′, which form a totally ordered set with respect to the
value of each policy. Because this set is bounded above, its
supremum is well-defined and there exists an optimal pol-
icy for M ′. This policy, by construction, minimizes the ex-
pected number of samples needed in order to compute π∗M .
All above-mentioned expectations are taken over all possible
trajectories in M ′. This result is similar to the more general
problem of Stochastic Shortest Paths (SSP) (Bertsekas and

888

Tsitsiklis 1991) — the main diference being that SSPs re-
quire MDPs with finite state spaces. Finally, note that M ′
is constructed in such a way that an optimal policy for M is
reached whenever the greedy policy induced by the current
estimate QtM correctly ranks all optimal actions, even if the
values of the states themselves are still inaccurate.

It should be clear that directly solving M ′ is not feasi-
ble, since R′ assumes prior knowledge of an optimal pol-
icy for M . This impossibility is not surprising: one cannot
find a truly minimal sequence of exploration actions without
knowing beforehand TM and RM , which would make ex-
ploration unnecessary. However, M ′ is useful since we can
observe general properties of its solutions and use them to
construct a principled technique for efficient exploration. In
what follows, we discuss some of these properties and derive
a local linear approximation which allows us to construct a
principled exploration strategy called ∆π .

Let φπs,a(t) be the expected value of QM (s, a) after a tra-
jectory of length t in M ′, starting from some given state
s′ ∈ S′ and following a fixed policy π for M ′. In order to
simplify the notation, we suppress the dependence on s′:

φπs,a(t) = E[QtM (s, a)]. (2)
The above expectation is taken with respect to trajectories

in M ′; the probabilities involved depend on π and T ′. φ
encodes how Q-value estimates are expected to evolve if up-
dated with samples collected by π. Let πexpl be any policy
for M ′; this policy induces an exploration policy for M . Let
us analyze the expected length k of the shortest trajectory in
M ′, when following πexpl, such that we expect a change in
the greedy policy (forM) induced by the expected Q-values:
arg mink

[
∃s ∈ S π[φπexpl (t+k)](s) 6= π[φπexpl (t)](s)

]
. If

this is generated by an optimal policy for M ′, then k is the
expected minimum number of samples from M needed to
cause a change in the current greedy policy. Similarly, we
can define the expected minimum number of samples until
the induced policy changes in a given state s ∈ S:

arg min
k

[
π[φπexpl (t+k)](s) 6= π[φπexpl (t)](s)

]
. (3)

Let us now assume we have taken an arbitrary step in
M ′ and observed a next state s′t+1 ∈ S′. This state con-
tains an updated estimate of the Q-function, namely Qt+1

M .
If the ranking of actions induced by QtM changes with re-
spect to Qt+1

M , we say a crossing has occurred. For example,
if a1 and a2 are actions and QtM (s, a1) > QtM (s, a2) but
Qt+1
M (s, a1) ≤ Qt+1

M (s, a2), then a crossing has occurred.
Note that φ is defined only in the domain of integer

timesteps. For our purposes, however, it is advantageous
to embed it in a continuous process by assuming that up-
dated Q-values change linearly and continuously between
timesteps. Viewing φ as a function of continuous time is
useful for the following reason: if QtM (s, a1) > QtM (s, a2)
butQ∗M (s, a1) ≤ Q∗M (s, a2), then for some (not necessarily
integer) k, φπ(s,a1)(t+ k) = φπ(s,a2)(t+ k), assuming that π
is a proper policy for M ′. This proposition is trivially true
because of the Intermediate Value Theorem. It allows us to

say that a crossing occurs precisely at the time k when the
Q-values of two actions are momentarily equal, before one
surpasses the other. It also helps us to interpret non-integer
values of φ, which might occur since it is an expectation. Fi-
nally, it makes it easier to meaningfully compare non-integer
expected crossing times in terms of the rate with which the
ranking of actions seems to be changing. This becomes par-
ticularly clear if using Boltzmann policies with high tem-
peratures, in which case the rate of change in action prob-
abilities of two actions, as new samples are collected, can
be shown to cross exactly when the derivatives of their Q-
values becomes equal. This connection between the rate of
change in action preferences and the derivative of their Q-
values appears again as part of the solution of Equation 5.

5 Deriving an Efficient Exploration Policy
We would now like to use the definition of φ (or an approx-
imation of it) to derive an efficient, though not necessarily
optimal, exploration strategy for M . We first observe that
because updates to the Q-function are generally not inde-
pendent, the minimum time to rank actions in all states (the
quantity minimized by π∗M ′) is not equal to the sum of the
minimum times to rank actions at each state in turn. How-
ever, we propose that a policy that minimizes the latter is
also a good approximation of the former. We further note
that because d(s, a) is an estimate of the minimum time un-
til a change in ranking at a given state, it is possible to min-
imize that latter quantity by solving a sequential decision
process in which d(s, a) (or a related quantity) serves as a
surrogate reward function for M . Under this new reward
structure, π∗M defines an efficient exploration policy which
quickly improves the ranking of actions at each state. For
more details, see Algorithm 1. We empirically show this to
be an effective approximation in Section 6 and discuss when
it might perform poorly in Section 7. Finally, note that min-
imizing d(s, a) is equivalent to minimizing the time until the
nearest crossing. Let us build on this last observation and
define c(s,a1,a2)(t), the expected difference between the Q-
values of any actions a1 and a2, for any given state s ∈ S:

c(s,a1,a2)(t) = φπ(s,a1)(t)− φ
π
(s,a2)

(t). (4)

The smallest root of c(s,a1,a2)(t) corresponds to the mini-
mum expected time at which a1 and a2 cross, and therefore
represents exactly the information required for estimating
d(s, a). However, φπ (and therefore c as well) is hard to
describe analytically since the precise understanding of how
Q-values evolve requires knowing the structure of M and of
the learning algorithm. Although we do not have a closed
form for φπ , we can use a Taylor expansion around the time
of the last sample experience, t− 1:

φ̂π(s,a)(t) ≈ φ
π
(s,a)(t− 1) +

∂φπ(s,a)(t− 1)

∂t
. (5)

We expand the series around the time of the last experi-
ence since we need to approximate the terms in Equation 5
by using sampled values; it should be clear that any statis-
tics of interest will be the most accurate if we allow the use
of all t − 1 samples observed so far. Also, note that we do

889

have unbiased samples for both terms in Equation 5: a sam-
ple of φπ(s,a)(t − 1) is simply Qt−1π (s, a), and a sample of
∂φπ(s,a)(t−1)

∂t is αMδ(s,a)(l), where δ(s,a)(l) is the TD error1

for the last time Qπ(s, a) was updated, at time l; αM is the
learning rate used in L. For any given π, these are unbiased
estimators: Qt−1π (s, a), directly because of the definition of
φπ(s,a)(t−1); and αMδ(s,a)(l), by a similar argument and by
noticing that (1) it can computed by subtracting consecutive
Q-values, and (2) expectation is a linear operator. Better,
lower-variance estimates of the derivative of φπ(s,a)(t) can
be obtained and are useful in highly stochastic problems:
one could estimate them via finite differences, by averaging
past updates to the Q-function, or by propagating updates to
other Q-values through a model. In what follows, we use
just the simplest estimates possible, as described above, and
instantiate a model-free version of ∆π called TD(0)-∆π .

Proposition 2 A local linear approximation to φπ(s, ·)(t)
induces a family of approximations for the functions
c(s,·,·)(t), whose smallest roots correspond to approxima-
tions of the minimum expected time until a crossing between
any pair of actions.

Proposition 2 follows from simple geometric reasoning
based on φ̂π being a linear approximation. Specifically, we
can show that a local linear approximation to the expected
time until the value of an action a crosses the value of the
one currently considered optimal, â∗, for some s ∈ S, is:

d(s, a) =

(
1

αM

)
Qt(s, â∗)−Qt(s, a)

δ(s,a)(Ts,a)− δ(s,â∗)(Ts,â∗)
(6)

≈ arg min
t

(
c(s,a,â∗)(t) = 0

)
where Ts,ai is the last time at which Q(s, ai) was updated.
d(s, a) is a valid approximation unless its denominator is
zero, which occurs if both Q-values seem to be changing
at the same rate — in this case, it correctly concludes that
no crossings are expected. Note also how it implements the
type of policy sensitivity indicator described in Section 3.

6 Experiments
We now compare our approach to other algorithms for ef-
ficient exploration. Our main comparisons are with ∆V
(Şimşek and Barto 2006) and Delayed Q-Learning (DQL)
(Strehl et al. 2006). ∆V is a principled, model-free way of
finding efficient, purely-exploratory policies. DQL is, to the
best of our knowledge, the model-free technique with best
PAC-MDP bounds, and provably performs near-optimally in
all but a polynomial number of timesteps. We also compare
with two baseline algorithms: (1) a Constant-Penalty (CP)
technique, which gives small penalties to each visited state
and thus implements a least-visited strategy (Thrun 1992);
and (2) ε-greedy Q-Learning (QL), for several values of ε;
this includes random exploration (ε = 1).

1TD errors are not required, though; any observed difference
between consecutive estimates of a Q-value suffice.

Algorithm 1 TD(0)-∆π
for all (s, a) do
Q0
exploit(s, a)← 0; Q0

explore(s, a)← 0;

δ(s,a)(0)← 0; Ts,a ← 0; visited(s, a)← False
end for
for t = 1, 2, 3, . . . , do

Let st be state of M at time t
Choose action at := arg maxa′∈AM Qtexplore(s, a

′)

Take at in M , observe reward rtM , next state s′
Let â∗ := arg maxa′∈AM Qtexploit(s, a

′)

if not visited(st, at) or not visited(st, â
∗) then

r(st, at) := 1
else

if |δ(st,at)(Tst,at)− δ(st,â∗)(Tst,â∗)| < λ then
r(st, at) := −p

else
Compute r(st, at) according to Eq. 1 and 6

end if
end if
Qt+1
exploit ← L(st, at, r

t
M , s

′, Qtexploit, ρexploit)

Qt+1
explore ← L(st, at, r(st, at), s

′, Qtexplore, ρexplore)

Tst,at ← t; visited(st, at)← True;
δst,at(t)← Qt+1(st, at)−Qt(st, at);

end for

The first domain in which we evaluate TD(0)-∆π con-
sists of a simple discrete 25× 25 maze with four exits. The
four usual actions are available (N,S,E,W), and each has a
0.9 probability of taking the agent to the intended direction,
and 0.1 of taking it to another uniform random direction.
Rewards are −0.001 for each action, and 1, 2 or 5 when
transitioning into one of the terminal states. Q-functions in
Algorithm 1 are learned using Q-Learning with learning rate
α = 0.1 and discount rate γ = 0.99.

Results for the value of the learned exploitation policy as
a function of the amount of exploration allowed are shown
in Figure 2 and 3, and are averages over 20 runs. Both our
approach, ∆V and DQL perform significantly better than
the baseline algorithms. We searched the space of values of
ε, for QL, and present only some sample results. ∆V ini-
tally performs better than our approach, mainly because the
random walk it performs during its initial phase finds one of
the goals faster; however, a closer look reveals that it gets
“obsessed” with fine-tuning the value of states even when
the policy for reaching them is already correct. At this mo-
ment, on the other hand, TD(0)-∆π notices that no other
policy changes are expected and proceeds to other regions
of the state space. TD(0)-∆π finds the optimal exploita-
tion policy almost 100,000 steps before ∆V . DQL takes
even longer to learn: in principle it requires (for this do-
main) m ≈1 billion samples before updating the value of
any given state–action pair, in order for its bounds to guar-
antee convergence in polynomial time. In our experiments
we used more reasonable values for m, which removed its
PAC-MDP properties but made it comparable to other ap-
proaches. DQL’s bounds also require Q-values to be ini-

890

tialized optimistically, which for this domain means setting
Q0(s, a) = 500. However, we noticed that only values of
Q0(s, a) ≤ 9 were capable of generating reasonable learn-
ing curves. Furthermore, the only way we could make DQL
perform similarly to TD(0)-∆π was to initialize its Q-values
faily close to the optimal ones, and even then it became stuck
in a local minimum 20% less efficient than the optimal ex-
ploitation policy. We searched the space of parameters of
DQL to make it perform as well as possible; a representative
sample of the learning curves is shown in Figure 3.

The second domain in which we evaluate TD(0)-∆π is a
rod positioning task (Moore and Atkeson 1993), which con-
sists of a discretized space containing a rod, obstacles, and
a target. The goal is to maneuver the rod by moving its base
and angle of orientation so that its tip touches the target,
while avoiding obstacles. We discretize the state space into
unit x and y coordinates and 10◦ angle increments; actions
move the rod’s base one unit in either direction along its axis
or perform a 10◦ rotation in either direction. Rewards are
−1 for each action and 1000 when the tip of the rod touches
the goal. We used the same learning method and parame-
ters as in the previous domain. Results for the value of the
learned exploitation policy as a function of the amount of
exploration allowed are shown in Figures 4 and 5. ∆π again
performed better than other methods; interestingly, simple
approaches like ε-greedy QL and CP performed better than
specialized ones such as ∆V and DQL — the reason being
that this domain contains only one source of positive reward,
which, when found, can be aggressively exploited without
risking overlooking others. ∆V again kept fine-tuning the
value function even when the policy was already correct,
and often got stuck in local minima 25% worse than the op-
timal exploitation policy. ∆π , on the other hand, explored
a region only while it had evidence that the policy could
still change. We searched the space of parameters of DQL
to optimize its performance; representative learning curves
are shown in Figure 5. DQL only performs well if initial-
ized with a Q-function fairly close to the optimal and if m
is set much lower than required to guarantee its PAC-MDP
bounds. After 1.8 million timesteps, it learned an exploita-
tion policy 50% worse than the optimal one.

Figure 2: Performance in the maze domain.

Figure 3: Performance in the maze (vs. DQL).

Figure 4: Performance in the rod positioning domain.

Figure 5: Performance in the rod domain (vs. DQL).

7 Discussion and Conclusions
We have presented a derivation of a local linear approxima-
tion to the expected time until a policy change and used it
to construct an efficient, model-free exploration technique.
The specific approximation used might have practical short-
comings. It is possible, for instance, to construct MDPs in
which TD(0)-∆π performs poorly by initializing it in a re-
gion of the state space where many crossings are likely to
occur but which is not part of any optimal trajectory. We be-
lieve, however, that these cases are not common in practice.
In fact, ∆V seems much more sensitive to small changes in

891

the formulation of the MDP, since simply rescaling the re-
ward function can make it perform arbitrarily slowly. DQL,
even with provably polynomial sample complexity, is a good
example of how such guarantees don’t necessarily corre-
spond to algorithms that are feasible in practice. For future
work, we would like to study model-based estimations of
Equation 5, which could have lower variance. We also be-
lieve there might be a relevant connection between Equation
6 and Advantage functions, and that PAC-MDP bounds can
be obtained. Finally, an interesting open problem is that of
deciding when to safely terminate the exploration process.

References
Abbeel, P., and Ng, A. 2005. Exploration and apprenticeship
learning in reinforcement learning. In Proceedings of the
22nd International Conference on Machine Learning (ICML
2005), 1–8. New York, NY, USA: ACM.
Bertsekas, D., and Tsitsiklis, J. N. 1991. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.
Brafman, R., and Tennenholtz, M. 2001. R-MAX - A
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3:213–231.
Şimşek, O., and Barto, A. 2006. An intrinsic reward mecha-
nism for efficient exploration. In Proceedings of the 23rd In-
ternational Conference on Machine learning (ICML 2006),
833–840. New York, NY, USA: ACM.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based bayesian exploration. In Proceedings of the 15th Con-

ference on Uncertainty in Artificial Intelligence (UAI 1999),
150–159. Stockholm, Sweden: Morgan Kaufmann.
Duff, M. 2003. Design for an optimal probe. In Proceedings
of the 20th International Conference on Machine learning
(ICML 2003), 131–138. AAAI Press.
Epshteyn, A.; Vogel, A.; and DeJong, G. 2008. Active rein-
forcement learning. In Proceedings of the 25th International
Conference on Machine Learning (ICML 2008), 296–303.
Omnipress.
Kearns, M., and Singh, S. 1998. Near-optimal reinforce-
ment learning in polynominal time. In Proceedings of the
15th International Conference on Machine Learning (ICML
1998), 260–268. Morgan Kaufmann.
Kolter, J., and Ng, A. 2009. Near-Bayesian exploration in
polynomial time. In Proceedings of the 26th International
Conference on Machine Learning (ICML 2009), 513–520.
Omnipress.
Moore, A., and Atkeson, C. 1993. Prioritized sweeping: Re-
inforcement learning with less data and less time. Machine
Learning 13:103–130.
Strehl, A.; Li, L.; Wiewiora, E.; Langford, J.; and Littman,
M. 2006. PAC model-free reinforcement learning. In Pro-
ceedings of the 23rd International Conference on Machine
learning (ICML 2006), 881–888. New York, NY, USA:
ACM.
Thrun, S. 1992. Efficient exploration in reinforcement learn-
ing. Technical Report CMU-CS-92-102, Carnegie Mellon
University, Pittsburgh, PA, USA.

892

