
Multi-Label Learning by Exploiting Label Correlations Locally∗

Sheng-Jun Huang Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210046, China
{huangsj, zhouzh}@lamda.nju.edu.cn

Abstract

It is well known that exploiting label correlations is important
for multi-label learning. Existing approaches typically exploit
label correlations globally, by assuming that the label corre-
lations are shared by all the instances. In real-world tasks,
however, different instances may share different label corre-
lations, and few correlations are globally applicable. In this
paper, we propose the ML-LOC approach which allows la-
bel correlations to be exploited locally. To encode the local
influence of label correlations, we derive a LOC code to en-
hance the feature representation of each instance. The global
discrimination fitting and local correlation sensitivity are in-
corporated into a unified framework, and an alternating solu-
tion is developed for the optimization. Experimental results
on a number of image, text and gene data sets validate the
effectiveness of our approach.

Introduction
Traditional supervised learning deals with problems where
one example is associated with a single class label. In many
real-world tasks, however, one example may simultaneously
have multiple class labels; for example, an image can be
tagged with several keywords (Boutell et al. 2004), a doc-
ument may belong to multiple topics (McCallum 1999;
Ueda and Saito 2003), and a gene may be related to multiple
functions (Elisseeff and Weston 2002). To handle such tasks,
multi-label learning has attracted much attention during the
past years (Ghamrawi and Mccallum 2005; Hsu et al. 2009;
Hariharan et al. 2010; Bucak et al. 2011).

A straightforward solution to multi-label learning is to de-
compose the problem into a series of binary classification
problems, each for one label. Such a solution, however, ne-
glects the fact that information of one label may be help-
ful for the learning of another related label; especially when
some labels have insufficient training examples, the label
correlations may provide helpful extra information. Thus,
it is not strange that the exploitation of label correlations
has been widely accepted as a key component of current
multi-label learning approaches (Tsoumakas et al. 2009;
Dembczynski et al. 2010; Zhang and Zhang 2010).

∗This research was supported by NSFC (61073097, 61021062),
973 Program (2010CB327903) and Baidu fund.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To exploit label correlations, some approaches resort to
external knowledge such as existing label hierarchies (Cai
and Hofmann 2004; Rousu et al. 2005; Cesa-Bianchi et al.
2006; Jin et al. 2008) or label correlation matrices (Hariha-
ran et al. 2010). Many other approaches try to exploit la-
bel correlations concealed in the training data. For exam-
ple, the co-occurrence of labels in training data is utilized in
(Tsoumakas et al. 2009; Petterson and Caetano 2011); the
approach in (Ghamrawi and Mccallum 2005) tries to model
the impact of an individual feature on the co-occurrence
probability of label pairs; Sun et al. (2008) proposed to use
a hypergraph to model the correlation information contained
in different labels; in (Zhang and Zhang 2010), a Bayesian
network structure is used to encode the conditional depen-
dencies of both the labels and feature set.

Although different multi-label learning approaches have
tried to exploit different orders (first-order, second-order and
high-order) of label correlations (Zhang and Zhang 2010),
they usually exploit label correlations in a global way by
assuming that the correlations are shared by all instances.
In real-world tasks, however, label correlations are naturally
local, where a label correlation may be shared by only a sub-
set of instances rather than all the instances. For example, as
shown in Figure 1, we consider the strong correlation be-
tween mountains and trees. For the image (b), trees are less
prominent and thus could be difficult to predict; in this case,
the correlation between mountains and trees can be helpful
to the learning task since the label mountains is relatively
easier to predict in this image. For the image (c), with the
trees clearly presents, this correlation turns to be misleading
since it will suggest to include the label mountains, whereas
this label is not proper for the image. Exploiting such cor-
relations globally will enforce unnecessary or even mislead-
ing constraints on instances that do not contain such correla-
tions, and therefore may hurt the performance by predicting
some irrelevant labels.

In this paper, we propose the ML-LOC (Multi-Label
learning using LOcal Correlation) approach, which tries to
exploit label correlations in the data locally. We do not as-
sume that there are external knowledge sources specifying
the locality of label correlations. Instead, we assume that the
instances can be separated into different groups and each
group share a subset of label correlations. To encode the lo-
cal influence of label correlations, we construct a LOC (LO-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

949

(a) mountains,
trees, sky, river

(b) mountains,
sky, river, trees

(c) trees, desert,
sky, camel

Figure 1: Illustration of non-global label correlations.

cal Correlation) code for each instance and use this code as
additional features for the instance. We formulate the prob-
lem by incorporating global discrimination fitting and local
correlation sensitivity into a unified framework, and develop
an alternating solution for the optimization. The effective-
ness of ML-LOC is validated in experiments.

We propose the ML-LOC approach in the next section,
and then present our experiments, followed by the conclu-
sion.

The ML-LOC Approach
The Framework
Let X = Rd be the input space and Y = {−1,+1}L
be the label space with L possible labels. We denote
by {(x1,y1), (x2,y2), · · · , (xn,yn)} the training data that
consists of n instances, where each instance xi =
[xi1, xi2, · · · , xid] is a vector of d dimensions and yi =
[yi1, yi2, · · · , yiL] is the label vector of xi, yil is +1 if xi

has the l-th label and −1 otherwise. The goal is to learn a
function f : X → Y which can predict the label vectors for
unseen instances.

We introduce a code vector ci for each instance xi to en-
code the local influence of label correlations, and expand
the original feature representation with the code. Since sim-
ilar instances share the same subset of label correlations, the
code is expected to be local, i.e., similar instances will have
similar c. Notice that we measure the similarity between in-
stances in the label space rather than in the feature space
because instances with similar label vectors usually share
the same correlations. For simplicity, we assume f consists
of L functions, one for a label, i.e., f = [f1, f2, · · · , fL],
and each fl is a linear model: fl(x, c) = 〈wl, [φ(x), c]〉 =
〈wx

l , φ(x)〉 + 〈wc
l , c〉, where 〈·, ·〉 is the inner production,

φ(·) is a feature mapping induced by a kernel κ, and wl =
[wx

l ,w
c
l] is the weight vector. Here wx

l and wc
l are the two

parts of wl corresponding to the original feature vector x
and the code c, respectively. Aiming to the global discrim-
ination fitting and local correlation sensitivity, we optimize
both f and C such that the following function is minimized:

min
f ,C

∑n

i=1
V (xi, ci,yi, f) + λ1Ω(f) + λ2Z(C) (1)

where V is the loss function defined on the training data, Ω
is a regularizer to control the complexity of the model f , Z
is a regularizer to enforce the locality of the codes C, and λ1
and λ2 are parameters trading off the three terms.

Among the different multi-label losses, in this paper, we
focus on the commonly used hamming loss and define the

loss function V as the summarization of losses across all the
labels:

V (xi, ci,yi, f) =
∑L

l=1
loss(xi, ci, yil, fl), (2)

where loss(x, c, y, f) = max{0, 1 − yf([φ(x), c])} is the
Hinge loss in SVM. For the second term of Eq. 1, we simply
implement it as:

Ω(f) =
∑L

l=1
||wl||2. (3)

The third term of Eq. 1 is utilized to enforce that simi-
lar instances have similar codes. With the previous discus-
sion we know that for a specific instance, only a subset of
label correlations are helpful whereas the others are less
informative or even harmful, and similar instances share
the same label correlations. We assume that the training
data can be separated into m groups {G1, G2, · · · , Gm},
where instances in the same group share the same subset
of label correlations. Inspired by (Zhou and Zhang 2007;
Zhou et al. 2012), the groups can be discovered via cluster-
ing. Correspondingly, we denote by Sj the subset of correla-
tions that are shared by the instances in Gj . Since label cor-
relations are usually unavailable and very difficult to obtain,
we instead represent Sj with a prototype of all the instances
in Gj , denoted by pj . As in Eq. 4, we generate the proto-
type pj in the label space by averaging the label vectors of
the instances in Gj :

pj =
1

|Gj |
∑

xk∈Gj

yk, (4)

where |Gj | is the number of instances in Gj . Then, given an
instance xi, we define cij to measure the local influence of
Sj on xi. The more similar yi and pj , the more likely that
xi shares the same correlations with instances in Gj , sug-
gesting a larger value of cij and implying a higher probabil-
ity that Sj is helpful to xi. We name the concatenated vector
ci = [ci1, ci2, · · · , cim] LOC code (LOcal Correlation code)
for xi, and define the regularizer term on the LOC codes as:

Z(C) =
n∑

i=1

m∑
j=1

cij ||yi − pj ||2. (5)

By substituting Eqs. 2, 3 and 5 into Eq. 1, the framework
can be rewritten as:

min
W,C,P

n∑
i=1

L∑
l=1

ξil + λ1

L∑
l=1

||wl||2

+ λ2

n∑
i=1

m∑
j=1

cij ||yi − pj ||2 (6)

s.t. yil〈wl, [φ(xi), ci]〉 ≥ 1− ξil
ξil ≥ 0 ∀i ∈ {1, · · · , n}, l ∈ {1, · · · , L}∑m

j=1
cij = 1 ∀i ∈ {1, · · · , n}

0 ≤ cij ≤ 1 ∀i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}
cij measures the probability that Sj is helpful to xi, thus,
it is constrained to be in the interval [0, 1], and the sum of
each ci is constrained to be 1.

950

The Alternating Solution
We solve the optimization problem in Eq. 6 in an alternating
way, i.e., optimizing one of the three variables with the other
two fixed. When we fix C and P to solve W , the third term
of Eq. 6 is a constant and thus can be ignored, then Eq. 6 can
be rewritten as:

min
W

n∑
i=1

L∑
l=1

ξil + λ1

L∑
l=1

||wl||2 (7)

s.t. yil〈wl, [φ(xi), ci]〉 ≥ 1− ξil
ξil ≥ 0 ∀i = {1, · · · , n}, l = {1, · · · , L}

Notice that Eq. 7 can be further decomposed into L opti-
mization problems, where the l-th one is:

min
wl

n∑
i=1

ξil + λ1||wl||2 (8)

s.t. yil〈wl, [φ(xi), ci]〉 ≥ 1− ξil
ξil ≥ 0 ∀i = {1, · · · , n}

which is a standard SVM model. So, W can be optimized
by independently training L SVM models.

When we fix W and P to solve C, the task becomes:

min
C

n∑
i=1

L∑
l=1

ξil + λ2

n∑
i=1

m∑
j=1

cij ||yi − pj ||2 (9)

s.t. yil〈wl, [φ(xi), ci]〉 ≥ 1− ξil
ξil ≥ 0 ∀i = {1, · · · , n}, l = {1, · · · , L}∑m

j=1
cij = 1 ∀i = {1, · · · , n}

0 ≤ cij ≤ 1 ∀i = {1, · · · , n}, j = {1, · · · ,m}

Again, Eq. 9 can be decomposed into n optimization
problems, and the i-th one is:

min
ci

L∑
l=1

ξil + λ2

m∑
j=1

cij ||yi − pj ||2 (10)

s.t. yil〈wc
l , ci〉 ≥ 1− ξil − yil〈wx

l , φ(xi)〉
ξil ≥ 0 ∀l = {1, · · · , L}∑m

j=1
cij = 1

0 ≤ cij ≤ 1 ∀j = {1, · · · ,m}

which is a linear programming and can be solved efficiently.
After the training, the c’s reflect the similarities between the
labels and the prototypes; the larger the similarity, the larger
the corresponding element of c. Due to page limit, we will
show some examples in a longer version.

Finally, as W and C are updated, the belongingness of
each instance xi to each group Gj may be changed, so the
prototype P is correspondingly updated according to:

pj =
∑n

i=1
cijyi. (11)

Notice that the classification models are trained based on
both the original feature vector and the LOC codes. Given a

Algorithm 1 The ML-LOC algorithm
1: INPUT:
2: training set {X,Y }, parameters λ1, λ2 and m
3: TRAIN:
4: initialize P and C with k-means
5: repeat:
6: optimize W according to Eq. 7
7: optimize C according to Eq. 9
8: update P according to Eq. 11
9: until convergence

10: for j=1:m
11: train a regression model Rj

12: for the j-th dimension of LOC codes
13: end for
14: TEST:
15: predict the LOC codes: ctj ← Rj(φ(xt))
16: predict the labels: ytl ← 〈wl, [φ(xt), ct]〉

test instance xt, its LOC code ct is unknown. We thus train
m regression models on the training instances and their LOC
codes, one for a dimension of LOC codes. Then, in testing
phase, the LOC code of the test instance can be obtained
from the outputs of regression models. Notice that the re-
gression models can be trained with a low computational
cost because usually m is not large.

The pseudo code of ML-LOC is presented in Algorithm 1.
P and C are initialized with the result of k-means clustering
on the label vectors. In detail, the label vectors are clustered
into m clusters and the prototype pk is initialized with the
center of the k-th cluster. cik is assigned 1 if yi is in the k-th
cluster and 0 otherwise. Here k-means is used simply be-
cause its popularity; ML-LOC can be facilitated with other
clustering approaches. Then W , C and P are updated al-
ternatingly. Since Eq. 6 is lower bounded, it will converge
to a local minimum. After that, m regression models are
trained with the original features as inputs and the LOC
codes as outputs. Given a test instance xt, the LOC code
ct = [ct1, ct2, · · · , ctm] is firstly obtained with the regres-
sion models. Then the final label vector yt is obtained by
ytl = 〈wl, [φ(xt), ct]〉.

Experiments
Comparison with State-of-the-Art Approaches
To examine the effectiveness of LOC codes, ML-LOC is
firstly compared with BSVM (Boutell et al. 2004), which
learns a binary SVM for each label, and can be considered
as a degenerated version of ML-LOC without LOC codes.
ML-LOC is also compared with three other state-of-the-
art multi-label methods: ML-kNN (Zhang and Zhou 2007)
which considers first-order correlations, RankSVM (Elisse-
eff and Weston 2002) which considers second-order correla-
tions and ECC (Read et al. 2011) which considers higher-
order correlations. Finally, we construct another baseline
ECC-LOC, by feeding the new feature vectors expanded
with LOC codes into ECC as input. For the compared meth-
ods, the parameters recommended in the corresponding lit-
eratures are used. For ML-LOC, parameters are fixed for all

951

Table 1: Results (mean±std.) on image data sets. •(◦) indicates that ML-LOC is significantly better(worse) than the correspond-
ing method on the criterion based on paired t-tests at 95% significance level. ↑(↓) implies the larger(smaller), the better.

data criteria ML-LOC BSVM ML-kNN RankSVM ECC ECC-LOC
hloss ↓ .156±.007 .179±.006• .175±.007• .339±.021• .180±.010• .165±.008•
one-error ↓ .277±.022 .291±.016• .325±.024• .708±.052• .300±.022• .249±.020◦

image coverage ↓ .175±.015 .181±.010• .194±.012• .420±.013• .200±.011• .201±.011•
rloss ↓ .152±.017 .161±.009• .177±.013• .463±.018• .247±.016• .297±.022•
aveprec ↑ .819±.014 .808±.010• .788±.014• .516±.011• .789±.014• .805±.011•
hloss ↓ .076±.003 .098±.002• .090±.003• .251±.017• .095±.004• .075±.004
one-error ↓ .179±.010 .209±.014• .238±.012• .457±.065• .232±.011• .152±.009◦

scene coverage ↓ .069±.008 .073±.005• .084±.005• .192±.032• .095±.004• .098±.006•
rloss ↓ .065±.009 .070±.005• .083±.006• .214±.039• .139±.008• .201±.011•
aveprec ↑ .891±.008 .876±.008• .857±.007• .698±.047• .846±.007• .871±.006•
hloss ↓ .009±.000 .009±.000• .009±.000• .012±.001• .014±.000• .015±.000•
one-error ↓ .638±.010 .768±.009• .740±.011• .977±.018• .666±.008• .674±.012•

corel5K coverage ↓ .474±.013 .316±.003◦ .307±.003◦ .735±.036• .746±.007• .809±.007•
rloss ↓ .218±.008 .141±.002◦ .135±.002◦ .408±.035• .601±.006• .702±.007•
aveprec ↑ .294±.005 .214±.003• .242±.005• .067±.007• .227±.004• .194±.005•

the data sets as: λ1 = 1, λ2 = 100 and m = 15. LibSVM
(Chang and Lin 2011) is used to implement the SVM models
for both ML-LOC and BSVM.

We evaluate the performances of the compared ap-
proaches with five commonly used multi-label criteria: ham-
ming loss, one error, coverage, ranking loss and average
precision. These criteria measure the performance from dif-
ferent aspects and the detailed definitions can be found in
(Schapire and Singer 2000; Zhou et al. 2012). Notice that
we normalize the coverage by the number of possible labels
such that all the evaluation criteria vary between [0, 1].

We study the effectiveness of ML-LOC on seven multi-
label data sets from three kinds of tasks: image classifica-
tion, text analysis and gene function prediction. In the fol-
lowing experiments, on each data set, we randomly partition
the data into the training and test sets for 30 times, and re-
port the average results as well as standard deviations over
the 30 repetitions.

Image Data We first perform the experiments on three im-
age classification data sets: image, scene and corel5k. They
have 2000, 2407, 5000 images, and 5, 6, 374 possible la-
bels, respectively. The performances on five evaluation cri-
teria are summarized in Table 1. Notice that for average pre-
cision, a larger value implies a better performance, whereas
for the other four criteria, the smaller, the better. First, we ex-
clude ECC-LOC, and compare ML-LOC with the baselines
without considering local correlations. On hamming loss, for
which ML-LOC is designed to optimize, our approach out-
performs the other approaches significantly on all the three
data sets. Although ML-LOC does not aim to optimize the
other four evaluation criteria, it still achieves the best per-
formance in most cases. Comparing with BSVM, which is a
degenerated version of ML-LOC without LOC codes, ML-
LOC is always superior to BSVM except for the coverage
and ranking loss on corel5K, verifying the effectiveness of

the LOC codes. It is noteworthy that BSVM outperforms
ECC on the scene data set on all the five criteria. This in-
teresting observation will be further studied later in this pa-
per. Finally, when looking at ECC-LOC, its performances
are worse than or comparable with ML-LOC. This is rea-
sonable because most helpful local correlations have already
been captured in the LOC codes, and thus little additional
gains or even misleading information could be obtained by
exploiting global correlations.

Text Data Medical is a data set of clinical texts for med-
ical classification. There are 978 instances and 45 possible
labels. Enron is a subset of the Enron email corpus (Klimt
and Yang 2004), including 1702 emails with 53 possible la-
bels. Results on these text data sets are summarized in Ta-
ble 2. It can be seen that the comparison results are similar as
that on the image data sets. ML-LOC outperforms the base-
lines in most cases, especially on hamming loss and average
precision. ECC has advantages on one error, but achieves
suboptimal performances on other criteria.

Gene Data Genebase is a data set for protein classifi-
cation; it has 662 instances and 27 possible labels. Yeast
is a data set for predicting the gene functional classes of
the Yeast Saccha-romyces cerevisiae, containing 2417 genes
and 14 possible labels. Table 3 shows the results. Again,
ML-LOC achieves decent performance and is significantly
superior to the compared approaches in most cases. ECC
achieves the best performance on one error, but is less ef-
fective on the other criteria. One possible reason is that ECC
utilize label correlations globally on all the instances and
may predict some irrelevant labels for some instances that
do not share the correlations. The incorrect predictions may
be ranked after some very confident correct predictions, and
thus do not affect the one error which cares only the top-
ranked label, whereas leading to worse performances on the
other criteria.

952

Table 2: Results (mean±std.) on text data sets. •(◦) indicates that ML-LOC is significantly better(worse) than the corresponding
method on the criterion based on paired t-tests at 95% significance level. ↑(↓) implies the larger(smaller), the better.

data criteria ML-LOC BSVM ML-kNN RankSVM ECC ECC-LOC
hloss ↓ .010±.001 .020±.001• .016±.001• .038±.001• .010±.001 .010±.001
one-error ↓ .135±.015 .290±.026• .275±.023• .735±.020• .110±.016◦ .104±.014◦

medical coverage ↓ .032±.006 .055±.006• .060±.007• .156±.007• .071±.008• .094±.012•
rloss ↓ .021±.004 .041±.005• .043±.006• .141±.006• .109±.014• .162±.022•
aveprec ↑ .898±.009 .776±.017• .788±.017• .394±.016• .866±.014• .831±.018•
hloss ↓ .048±.002 .056±.002• .051±.002• .311±.367• .055±.002• .055±.003•
one-error ↓ .257±.034 .359±.033• .299±.031• .855±.020• .228±.036◦ .212±.035◦

enron coverage ↓ .314±.017 .294±.017◦ .246±.016◦ .500±.025• .391±.021• .442±.024•
rloss ↓ .113±.009 .115±.008 .091±.008◦ .267±.019• .246±.018• .294±.019•
aveprec ↑ .662±.019 .578±.019• .636±.015• .262±.017• .637±.021• .621±.023•

Table 3: Results (mean±std.) on gene data sets. •(◦) indicates that ML-LOC is significantly better(worse) than the correspond-
ing method on the criterion based on paired t-tests at 95% significance level. ↑(↓) implies the larger(smaller), the better.

data criteria ML-LOC BSVM ML-kNN RankSVM ECC ECC-LOC
hloss ↓ .001±.000 .005±.001• .005±.001• .008±.003• .001±.001• .001±.001•
one-error ↓ .004±.003 .004±.003 .012±.010• .047±.015• .000±.001◦ .000±.001◦

genebase coverage ↓ .010±.002 .013±.003• .015±.003• .031±.011• .013±.004• .014±.004•
rloss ↓ .001±.001 .002±.001• .004±.002• .016±.007• .005±.003• .007±.004•
aveprec ↑ .997±.002 .995±.002• .989±.005• .953±.014• .994±.003• .993±.004•
hloss ↓ .187±.002 .189±.003• .196±.003• .196±.003• .208±.005• .200±.005•
one-error ↓ .216±.010 .217±.011 .235±.012• .224±.009• .180±.012◦ .169±.008◦

yeast coverage ↓ .451±.006 .461±.005• .449±.006 .473±.010• .512±.009• .517±.008•
rloss ↓ .162±.004 .169±.005• .168±.006• .172±.006• .279±.011• .290±.012•
aveprec ↑ .777±.005 .771±.007• .762±.007• .767±.007• .731±.007• .739±.007•

Influence of LOC Code Length
To examine the influence of the length of LOC codes, i.e.,
the parameter m, we run ML-LOC with m varying from 0
to 30 with step size of 5. Due to the page limit, we only re-
port the results on the scene data set in Figure 2, whereas
experiments on other data sets get similar results. Notice
that, for average precision, the larger the value, the better
the performance; but for the other four criteria, the smaller,
the better. The results of BSVM, ML-kNN and ECC are also
plotted in the figures; the result of RankSVM is not plotted
because it cannot be properly shown in the figures. As can
be seen from the figure, a short LOC code leads to a poor
performance, whereas after m grows sufficiently large, ML-
LOC outperforms the other approaches and achieves stable
performances.

Locally vs. Globally Correlations Exploiting
We have noted that on the image data set in Table 1, BSVM,
which does not exploit label correlations, outperforms ECC
which globally exploits correlations on all the five evalua-
tion criteria, whereas ML-LOC is significantly better than
both of them. This observation implies that globally exploit-
ing the naturally local label correlations may lead to negative
effects in some cases. To further understand the difference
between approaches locally and globally exploiting correla-

tions, we examine the predictions of the three approaches
on image. First, we calculate the precision and recall, which
measure, respectively, the percentage of the predicted labels
that are correct, and the percentage of true labels that are
predicted. The precision/recall of BSVM, ECC and ML-
LOC are 0.86/0.33, 0.63/0.63 and 0.80/0.50, respectively.
The low precision and high recall of ECC suggest that the
globally exploiting approach may assign many irrelevant la-
bels to the images. As the examples shown in Figure 3, for
the first image, tree is relatively difficult to be identified; by
exploiting label correlation, ECC and ML-LOC are able to
predict it, but BSVM fails as it does not exploit label corre-
lation. For the second image, ECC predicts more labels as
needed, possibly because it overly generalizes through glob-
ally exploiting label correlations.

Conclusion
In real-world multi-label learning tasks, label correlations
are usually shared by subsets of instances rather than all
the instances. Contrasting to existing approaches that ex-
ploit label correlations globally, in this paper we propose the
ML-LOC approach which exploits label correlations locally,
through encoding the local influences of label correlations
in a LOC code, and incorporating the global discrimination
fitting and local correlation sensitivity into a unified frame-

953

(a) Hamming Loss (b) One Error

(c) Coverage (d) Ranking Loss

(e) Average Precision (f) Legend

Figure 2: Influence of LOC code length on scene

image

ground-
truth

mountain, trees trees, sunset

BSVM mountain trees, sunset
ECC mountain, trees trees, sunset, mountain
ML-LOC mountain, trees trees, sunset

Figure 3: Typical prediction examples of BSVM, ECC and
ML-LOC

work. Experiments show that ML-LOC is superior to many
state-of-the-art multi-label learning approaches. It is possi-
ble to develop variant approaches by using other loss func-
tions for the global discrimination fitting and other schemes
for measuring the local correlation sensitivity. The effective-
ness of these variants will be studied in future work. There
may be better schemes than regression models to predict the
LOC codes; in particular, the labels and local correlations
may be predicted simultaneously with a unified framework.
It is also interesting to incorporate external knowledge on
label correlations into our framework.

Acknowledgements:
We thank Yu-Feng Li for helpful discussions.

References
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learn-
ing multi-label scene classification. Pattern Recognition,
37(9):1757–1771, 2004.
S. S. Bucak, R. Jin, and A. K. Jain. Multi-label learning
with incomplete class assignments. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 2801–2808, Colorado Springs,
CO, 2011.
L. Cai and T. Hofmann. Hierarchical document catego-
rization with support vector machines. In Proceedings of
the 13th ACM International Conference on Information and
Knowledge Management, pages 78–87, Washington, DC,
2004.
N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Hierarchical
classification: Combining bayes with SVM. In Proceedings
of the 23rd International Conference on Machine Learning,
pages 177–184, Pittsburgh, PA, 2006.
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2(3):1–27, 2011.
K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes
optimal multilabel classification via probabilistic classifier
chains. In Proceedings of the 27th International Conference
on Machine Learning, pages 279–286, Haifa, Israel, 2010.
A. Elisseeff and J. Weston. A kernel method for multi-
labelled classification. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 681–687. MIT Press, Cam-
bridge, MA, 2002.
N. Ghamrawi and A. Mccallum. Collective multilabel clas-
sification. In Proceedings of the 14th ACM International
Conference on Information and Knowledge Management,
pages 195–200, Bremen, Germany, 2005.
B. Hariharan, L. Zelnik-Manor, S. V. N. Vishwanathan, and
M. Varma. Large scale max-margin multi-label classifica-
tion with priors. In Proceedings of the 27th International
Conference on Machine Learning, pages 423–430, Haifa, Is-
rael, 2010.
D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label
prediction via compressed sensing. In Y. Bengio, D. Schu-
urmans, J. Lafferty, C. K. I. Williams, and A. Culotta, ed-
itors, Advances in Neural Information Processing Systems
22, pages 772–780. MIT Press, Cambridge, MA, 2009.
B. Jin, B. Muller, C. Zhai, and X. Lu. Multi-label litera-
ture classification based on the gene ontology graph. BMC
bioinformatics, 9(1):525, 2008.
B. Klimt and Y. Yang. Introducing the enron corpus. In
Proceedinds of the 1st International Conference on Email
and Anti-Spam, Mountain View, CA, 2004.
A. McCallum. Multi-label text classification with a mixture
model trained by EM. In Working Notes of the AAAI’99
Workshop on Text Learning, Orlando, FL, 1999.
James Petterson and Tiberio S. Caetano. Submodular multi-
label learning. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett,
F.C.N. Pereira, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24, pages 1512–
1520. MIT Press, Cambridge, MA, 2011.
J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classi-
fier chains for multi-label classification. Machine Learning,
85(3):333–359, 2011.

954

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor.
Learning hierarchical multi-category text classifcation mod-
els. In Proceedings of the 22nd International Conference on
Machine Learning, pages 774–751, Bonn, Germany, 2005.
R. E. Schapire and Y. Singer. Boostexter: a boosting-based
system for text categorization. Machine Learning, 39(2-
3):135–168, 2000.
L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for
multi-label classification. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 668–676, Las Vegas, NV, 2008.
G. Tsoumakas, A. Dimou, E. Spyromitros, and V. Mezaris.
Correlation-based pruning of stacked binary relevance mod-
els for multi-label learning. In Proceedings of the 1st In-
ternational Workshop on Learning from Multi-Label Data,
pages 101–116, Bled, Slovenia, 2009.
N. Ueda and K. Saito. Parametric mixture models for multi-

labeled text. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems
15, pages 721–728, Cambridge, MA, 2003. MIT Press.
M.-L. Zhang and K. Zhang. Multi-label learning by ex-
ploiting label dependency. In Proceedings of the 16th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 999–1007, Washington, DC, 2010.
M.-L. Zhang and Z.-H. Zhou. ML-kNN: A lazy learn-
ing approach to multi-label learning. Pattern Recognition,
40(7):2038–2048, 2007.
Z.-H. Zhou and M.-L. Zhang. Solving multi-instance prob-
lems with classifier ensemble based on constructive cluster-
ing. Knowledge and Information Systems, 11(2):155–170,
2007.
Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li.
Multi-instance multi-label learning. Artificial Intelligence,
176(1):2291–2320, 2012.

955

