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Abstract
In this paper, we address the problem of data description
using a Bayesian framework. The goal of data descrip-
tion is to draw a boundary around objects of a certain
class of interest to discriminate that class from the rest
of the feature space. Data description is also known as
one-class learning and has a wide range of applications.
The proposed approach uses a Bayesian framework
to precisely compute the class boundary and therefore
can utilize domain information in form of prior knowl-
edge in the framework. It can also operate in the ker-
nel space and therefore recognize arbitrary boundary
shapes. Moreover, the proposed method can utilize un-
labeled data in order to improve accuracy of discrimi-
nation.
We evaluate our method using various real-world
datasets and compare it with other state of the art ap-
proaches of data description. Experiments show promis-
ing results and improved performance over other data
description and one-class learning algorithms.

Introduction
A critical assumption for many supervised learning algo-
rithms is presence of training data from all classes under
study. It means that, for example a binary classification al-
gorithm requires training samples of both classes in order to
work properly. In scenarios where this condition is not met,
performance degrades considerably or even algorithm fails
to run. A well-known example of such scenarios is the prob-
lem of image retrieval (with relevance feedback) in which
the system is given only rare samples of the relevant class
and therefore traditional supervised learning algorithms are
not suitable for this problem.

The aforementioned problems are known as data descrip-
tion or one-class learning problems and have a wide range
of applications from pattern recognition to data mining and
image processing. Information retrieval, video surveillance,
outlier detection and object detection are all among applica-
tions of one-class learning algorithms.
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As well as presence of samples of only one class (which
is called target class), there are also other scenarios in which
one-class learning can be beneficial. Another implicit as-
sumption of many supervised learning algorithms is that the
prior probabilities of different classes in the training set (and
whole feature space) are equal or at least very close. How-
ever, this is also violated in many real-word situations such
as spam detection in which the proportion of spam mes-
sages and regular e-mail is quite different in a fair data sam-
ple. One-class learning algorithms can also be beneficial in
this case since they do not assume this and are designed for
databases in which the proportion or other properties of dif-
ferent classes (like statistical distribution) are quite different.
Examples of other problems of this kind are industrial fault
detection and information retrieval.

Several one-class learning algorithms have been proposed
so far. The work in (Khan and Madden 2010) is a recent sur-
vey on current trends in one-class learning. Many of these
algorithms are extensions of traditional classification algo-
rithms adapted to work in one-class settings. For example,
in (Bishop 1994) an approach based on neural networks is
proposed for novelty detection. Also in (Li and Zhang 2008)
a variant of decision tree has been used for one-class learn-
ing. In (Yang et al. 2010) the k nearest neighbors algorithm
has been used for one-class learning. Although such algo-
rithms are simple and easy to understand, they are usually
inefficient on complicated real-world data.

A major class of one-class learning algorithms are based
on statistical density estimation. These approaches assume
a parametric statistical model for the target class and then
estimate the parameters of that model. The likelihood of a
data sample measures the degree that the sample belongs to
the target class. In (Cohen, Sax, and Geissbuhler 2008) ap-
proaches based on Parzen or kernel density estimation have
been proposed. Also in (Nuez et al. 2009), Gaussian mixture
models have been utilized for novelty detection. The princi-
pal advantage of these methods is the rigid theoretical foun-
dations behind them. However, they can not directly operate
in the kernel space and therefore have some limitations in
modeling the complex boundary shapes.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

907



Since the introduction of support vector machines (Burges
1998) and kernel methods (Shawe-Taylor and Cristian-
ini 2004), there has been a growing interest in adapting
kernel-based approaches to one-class learning. Scholkopf
in (Schlkopf et al. 2001) presented one-class SVM. It is
a variation of traditional binary SVM which tries to sepa-
rate target data from the axis origin. (Tax and Duin 2004)
proposed support vector data description. In this method, a
hypersphere of minimum volume is sought to surround the
target samples. In (Grnitz, Kloft, and Brefeld 2009), it is
shown that the two approaches yield the same solution when
the used kernel is isotropic. Kernel methods yield good re-
sults in most problem and model different kinds of bound-
ary shapes utilizing flexibility of the kernel space. However,
domain knowledge can not be easily embedded into kernel
methods. Moreover, these methods can not directly utilize
unlabeled data to improve accuracy.

Utilizing unlabeled data in the process of one-class learn-
ing has also been of interest in recent years. (Zhang and
Zuo 2008),(Yu 2005) and (Elkan and Noto 2008) have uti-
lized unlabeled samples as well as positive target samples in
the process of one-class learning. These methods try to in-
fer a set of confident negative samples from the unlabeled
set and then perform a traditional binary classification algo-
rithm. (Grnitz, Kloft, and Brefeld 2009) and (Tax and Duin
2004) have utilized outlier samples in addition to targets in
the process of learning. The relation between support vector
methods and density based approaches has been discussed
in (Munoz and Moguerza 2004). In (Lee et al. 2007), the lo-
cal density around target point has been used to improve the
SVDD.

The Gaussian process regression method has been
adapted for one-class learning in (Kemmler, Rodner, and
Denzler 2011). Moreover, among the probabilistic ap-
proaches to one class learning, (Ting, D’Souza, and Schaal
2007) has used a Bayesian approach which defines a regres-
sion model over data samples. In (Coughlan and Yuille 2003;
Varbanov 1998) Bayesian approaches have been used for
outlier detection. In (Dong 2010) a Bayesian approach has
been used to detect outliers in ordinal data. These methods
are more flexible since they allow uncertainty in the model
and use domain knowledge in constructing the classifier.
However, their principal drawback is their computational in-
efficiency and lack of sparseness.

In this paper, we propose a novel Bayesian approach to
the data description problem. The principal contribution of
our work is twofold: First we develop a Bayesian framework
which can benefit from advantages of both probabilistic and
support vector approaches. For example our approach can
generate sparse solutions and in addition, we propose a prin-
cipled method for utilizing prior knowledge in the process of
one-class learning. The second contribution of our work is
that the proposed approach can benefit from unlabelled data
in improving the accuracy of classification.

In the rest of this paper, after reviewing SVDD, a well-
known data description algorithm, we propose our approach
and study its properties and extensions. Then, we thoroughly
test our approach against other one-class learning algorithms
under various conditions.

The Traditional Support Vector Data
Description

Support vector data description is a well-known algorithm
for one-class learning which has been widely used in various
applications. It is a kernel-based approach which tries to find
a hypersphere which is as small as possible and meanwhile
contains as much target data as possible, hereby avoiding
outlier samples. This goal is achieved by solving a convex
optimization problem over the target data points in the ker-
nel space, in a way very similar to the well-known support
vector machine algorithm.

We describe SVDD briefly in the rest of this section. For a
more detailed explanation, refer to the seminal work of Tax
and Duin.

Suppose we are given a dataset {x1, . . . , xn} which con-
sists of the training set. The main idea of support vector data
description is to find a hypersphere in the feature space con-
taining as many of the training samples as possible while
having minimum possible volume. To achieve this goal, data
are first transformed to a higher dimensional kernel space in
which support of the data is a hypersphere.

The sphere is characterized by its center C and radius
R > 0. The minimization of the sphere volume is achieved
by minimizing its square radius R2. Data samples outside
the hypersphere are penalized in the objective function. To
consider the penalty, slack variables ξi ≥ 0 are introduced
and the optimization problem is formulated as:

minR∈R,ξi∈Rn,C∈F R
2 +

1

Nν

N∑
i=1

ξi (1)

such that

||φ(xi)− C|| ≤ R2 + ξi and ξi ≥ 0 (2)

.
In the above formula, φ is the transformation which maps

data points to the higher dimensional. The parameter ν con-
trols the trade-off between the hypersphere volume and the
proportion of samples in the hypersphere. It can also be used
to control the sparseness of the solution of the optimization
problem (Grnitz, Kloft, and Brefeld 2009).

Introducing Lagrangian multipliers to account for con-
straints, we obtain the following dual problem:

minα α
tKα− αtdiag(K) (3)

such that
0 ≤ αi ≤

1

Nν
and

∑
αi = 1 (4)

In (3), K is the kernel matrix in which Ki,j =<
φ(xi), φ(xj) > and diag(K) is the main diagonal of K.
One may notice that it is not needed to explicitly transform
data to the kernel space and only defining a kernel function
(dot product between transformed data) in terms of original
points is sufficient. We call this function K(., .). Therefore,
K(xi, xj) =< φ(xi), φ(xj) >.

Solving the dual optimization problem yields vector α in
which most of the values are 0. Samples xi with positive
αi are called support vectors of the SVDD. center C of the
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hypersphere can be specified in term of Lagrange multipliers
αi as:

C = Σiαiφ(xi) (5)
.

We can rank test samples by their proximity to the center
of the hyper sphere. The ranking function f is defined as
below in which smaller values of f mean more similarity to
the target class.

f(z) = ΣiΣjαiαjK(xi, xj) +K(z, z)− 2ΣiαiK(xi, z)
(6)

The Bayesian Approach
As we saw in the previous section, the support vector data
description algorithm finally reduces to finding center of
the surrounding hypersphere in the embedded space as a
weighted average of sample target points in which many of
the weights are zero.Data points for which the correspond-
ing weight is non-zeros are called support vectors.

In this section we derive the proposed Bayesian data de-
scription method. We look at the problem of data description
from a different point of view. Later we show that the inter-
pretation of data and parameters in our model is equivalent
to that of SVDD.

Our method is based on the same set of parameters as
the SVDD (in its dual form), i.e we will try to find a vec-
tor of weights, one for each data sample. Assume that we
transform all data samples using the mapping φ to a higher
dimensional embedded (kernel) space in which transformed
data follow a Gaussian distribution with covariance matrix I
and mean Σiαiφ(xi). i.e.:

φ(xj) ∼ N (Σiαiφ(xi), I) (7)
We limit αi values to form a convex set, i.e. 0 < αi < 1

and Σiαi = 1. Later, we will discuss the reason behind this
assumption.

The main difference between the estimation in (7) and the
conventional Gaussian density estimation is that the mean
is limited to be a weighted average of training target points.
Hereafter, we call this model the weighted Gaussian model.

The principal correspondence between the weighted
Gaussian model and the SVDD is that the mean of the
weighted Gaussian is equivalent to the center of the hy-
persphere in the SVDD. Therefore, distance of a point to
center of the surrounding hypersphere in the SVDD model
is inversely proportional to the likelihood of a data point
in the weighted Gaussian model. We use this fact to show
that SVDD is itself a special case of the weighted Gaus-
sian model. Then we improve upon SVDD equivalent case
of weighted Gaussian by utilizing unlabeled data and defin-
ing more precise prior knowledge.

To achieve this goal, first we have to estimate parameters
of the weighted Gaussian model using a statistical parameter
estimation approach. Various parameter estimation methods
have been proposed in the literature so far. Two of the most
common ones are maximum likelihood ones and Bayesian
approach.

Maximum likelihood estimation is a simple optimization-
based approach which maximizes the likelihood of train-
ing data with regard to the unknown parameters. However,
this method is not flexible and can not utilize domain in-
formation to improve the estimation. We seek to arbitrarily
constrain the estimation procedure toward finding solution
with specific properties (e.g. sparseness) and moreover uti-
lize various forms of domain information in this procedure.
Therefore, we use the Bayesian estimation.

In Bayesian parameter estimation, a prior distribution
p(α) is defined over parameter vector α and the posterior
probability p(α|D) is derived by applying the Bayes rule:

p(α|D) =
p(D|α)p(α)

p(D)
(8)

In which p(D|α) is the likelihood of training data given a
specific value of α and p(D) is a normalizing constant.

We assume that the parameter vector α follows a Gaussian
distribution with mean m and covariance matrix C i.e.:

α ∼ N (m,C) (9)
Applying the Bayes rule, we have:

p(α|D) ∝ p(D|α)p(α) (10)
We have omitted p(D) in (10) because it is independent

of α.
Maximizing the a posteriori probability of α (MAP esti-

mation) we will have:

α̂ = arg min
α

αt(nK + C−1)α− 2αt(D1 + C−1m)

(11)

Matrix D is the diagonal matrix of weighted degree of
samples, i.e. Di,i = ΣjKi,j .

Equation (11) is the key to our approach since it allows
purposeful modification of the behavior of the final solu-
tion by setting different values for covariance matrix C and
mean m of the parameter vector. For example, the objective
function of SVDD can be derived from (11) by choosing
the appropriate C and m (We can check this by substituting
C = I and m = diag(K)−D1 and assuming an isotropic
Kernel ). Moreover, wee see that the optimization only de-
pends on dot products of points in the embedded (kernel)
space. Therefore, the Bayesian estimation to the weighted
Gaussian model is itself a kernel method. That is why we
constrained the mean of the model to be a weighted average
of training points.

The most trivial choice for the parameters could be setting
C to the identity matrix and eachmi equally to 1

n . However,
this kind of prior knowledge is non-informative and there-
fore yields the same non-sparse trivial solution as the maxi-
mum likelihood approach.

As a better and more informative prior knowledge, we
could modify the mean vector m such that the data points
which lie in a dense area of the embedded space receive
smaller prior weight. The main motivation behind this
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Require: Set of Target Training Samples T
Require: Set of Target Test Samples S
1: Compute Kernel matrix K from training data
2: Compute diagonal matrixD such thatDii = ΣjKi,j

3: n← number of training samples
4: ntest ← number of test samples
5: C ← In×n
6: ∀i : 1 ≤ i ≤ n→ mi = −(ΣjKi,j)

ν

7: α = arg minα αt(nK + C−1)α− 2αt(D1 + C−1m)

8: for i = 1→ ntest do
9: scorei = ΣjΣkαjαkK(xj , xk) + K(xi, xi)− 2ΣjK(xi, xj)

10: end for
11: Sort test samples in ascending order by the score values
12: return Desired number of samples from top of the list

Figure 1: Bayesian data description (BDD) algorithm

choice is the fact that target points located in dense areas
of feature space are less likely to be close to boundary of
the target class and therefore their corresponding weight
should have more prior probability of being close to zero.
In contrast, target points located in less-dense areas of fea-
ture space are more likely to be on or close to the boundary
and therefore their corresponding weight should be a priori
larger than other points.

With these facts in mind, we suggest that the mean of prior
probability of parameter vector be proportional to D1, in
which D is the same diagonal matrix as in (11). This is rea-
sonable because the weighted degree of a point is a good
approximation of local density of the area near that point.
Therefore we set:

mi ∝ −Σj∈LKi,j (12)

for each element of mean vector m. Using such prior
knowledge, we expect that samples crucial in determining
center of the Gaussian become much more likely to receive
larger values. This causes the solution to become sparse and
more accurately capture the underlying distribution and its
support (boundary).

The pseudo code for the Bayesian data description algo-
rithm is depicted in figure 1. In this algorithm, parameter
0 < ν < 1 controls sparsity of the solution. Larger values
for ν cause the solution to become as sparse as possible. ν
can also be used to reduce the effect of outlier data on the
final solution.

Also figure 2 depicts performance of our weighted Gaus-
sian model (with maximum likelihood and Bayesian estima-
tion) in capturing a typical S-shaped distribution and com-
pares it with that of SVDD. We see that weighted Gaussian
with maximum likelihood estimation has captured a mostly
spherical distribution shape which shows that this method
lacks sparsity and flexibility and its solution is close to the
simple mean of points which is the trivial solution. Both
BDD and SVDD has been more successful in capturing the
real shape of the distribution and avoid over-fitting.

Utilizing Unlabelled Data
Methods which utilize unlabeled data to improve learn-
ing accuracy have received much attention in recent years.
These methods use unlabeled data to infer information about

geometry of data and the corresponding manifold. Such in-
formation can be used to improve the accuracy of supervised
classifiers.

In the Bayesian data description approach, information
about the geometry of data can be utilized to determine the
prior probability distribution of the parameter vector . Since
we use local density of area around points in determining
the prior probability distribution of the model parameters.
The information we gather from unlabeled samples can be
useful in determining the local density around a point, more
accurately. Having unlabeled data available, we can now set:

mi = −Σj∈L∪UKi,j (13)

In which L and U are the set of labeled and unlabeled data,
respectively.

Another parameter which can be modified by using un-
labeled data is the covariance matrix C. Information about
geometry of data can be used in constructing this matrix by
using any type of data dependent kernel.

An example of using unlabeled data for adjusting the co-
variance is by computing the Laplacian operator of training
samples (Zhu, Lafferty, and Rosenfeld 2005).

Suppose we define a k-nn graph over all data samples.
A k-nn graph is a graph in which nodes are data samples
and each sample is connected to its k nearest neighbors.
Weight Wi,j of each edge is proportional to the similarity
between data samples xi and xj . Gaussian function is a pop-
ular choice for W .

Having the weight matrix, the Laplacian L of the graph
is defined as L = D −W in which D is a diagonal matrix
in which Di,i = ΣjWi,j . Utilizing the Laplacian, we adjust
matrix C as:

C−1 = (L−1)1...n,1...n (14)

Utilizing unlabeled data in this way, manifold of all data
(target and non-target) is modeled in the C matrix, whereas
manifold of target data can be modeled in the kernel matrix
K of the weighted Gaussian itself. Therefore, we use both
manifolds to better model distribution of the data.

Time Complexity of the Bayesian Data Description
Constructing the prior vector m can be done at the time of
constructing the kernel matrix and requiresO(n2), the same
as minimum complexity of kernel construction (in the gen-
eral sense). The objective function of the BDD is a con-
vex quadratic programming problem which can be solved
in O(n3) time. SVDD also reduces to a quadratic program-
ming problem. Therefore the time complexity of BDD is not
higher than SVDD.

In the semi-supervised settings (SSDD), we require to
compute inverse of the covariance matrix which is of com-
plexity O((n + m)3) (m is the number of unlabeled sam-
ples). The prior weight vector can still be formed at the time
of kernel construction with the same complexity as kernel
construction (O((n+m)2)). Finally, the resulting quadratic
requires O(n3) time to be solved which is independent of
the number of unlabeled data.
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(a)
SVDD

(b) ML (c)
Bayesian

Figure 2: Performance of density estimation for SVDD against the proposed weighted Gaussian

Table 1: Datasets Used in Experiments

Dataset No. of features No. of Samples No. of Classes
Iris 256 150 3

USPS 256 9998 10

Pendigits 16 10992 10

ISOLET 617 7797 10

MNIST 784 60000 10

COIL20 1024 1440 20

Caltech-101 144 9144 101

Letter 16 1259 26

Glass 9 214 6

Corel 144 1000 20

Experimental Results
Experiment Setup
Various datasets from the UCI repository (Asuncion and
Newman 2007), as well as Corel (Wang, Li, and Wiederhold
2001) and Caltech-101 (Fei-Fei, Fergus, and Perona 2007)
image databases were used for experiments. Their proper-
ties are depicted in table 1.

In each experiment, one of the classes was selected as
target, and all other samples were treated as outlier. One-
half of the target samples were selected for training. The
rest of training samples, as well as outlier data were se-
lected as test samples. For the Caltech-101 and Corel im-
age datasets, feature extraction was performed by the CEDD
(Chatzichristofis and Boutalis 2008) feature extraction algo-
rithm.

SVDD method and one-class Gaussian process were im-
plemented and compared with the proposed BDD method.
The Gaussian function was used as the kernel. The parame-
ters of the classifiers and the kernel were adjusted by 10-fold
cross validation. All sample selections were done by random
sampling.

For measuring efficiency of one-class learning, we com-
puted precision in the top k returned results as accuracy mea-
sure and set k to the (estimated) number of target samples in
the test set. This measure has the advantage that unlike pre-
cision or recall, we don’t need to compute more than one
quantity in order to achieve meaningful results. Moreover,
the value chosen for k eliminates the need for explicitly ad-
justing an acceptance threshold for one-class learning algo-
rithms which could be a tedious task and have significant
effect on functionality of algorithms.

Experiments
In table 2 we compare the performance of BDD with that
of SVDD and one-class Gaussian process. The BDD and

SVDD show similar performance with slight improvements
in BDD because of utilizing the density-based prior knowl-
edge. One-class Gaussian process also has a reasonable per-
formance but this algorithm is not sparse and therefore lacks
benefits of the other models and is more hardly generaliz-
able. Running times (in seconds) of algorithms are depicted
in parentheses in each cell.

Figure 3 shows interesting results about performance of
the Bayesian data description on different classes of the
USPS digit recognition dataset. Here, we visualize different
data samples in order to understand the operation of BDD.
Each column depicts performance on one class of the USPS
dataset.

The firs row shows the most likely samples of each class
returned by the BDD algorithm. As can be seen, all samples
in this row have been classified correctly and are appropriate
representatives for their respective class.

The second row shows the least likely sample detected
as target by the BDD for each class. We can see that these
samples are misclassified data and count as error rate of the
classifier. It is reasonable to have error here since we rank
data samples by likelihood to the target class and samples
with lower ranks are more likely to be misclassified (unless
the precision is perfect 1).

The third and fourth row deal with the prior estimation of
the local density around each sample which is done by com-
puting its weighted degree. The third row shows the data
sample with least weighted degree. We see that these sam-
ples usually can not be considered typical representatives
of their underlying target class and should be far from the
center of mass of the target class. These data samples lie
in the boundary of target class and therefore have the most
important role in defining the center of the weighted Gaus-
sian model. Because of this property of weighted degree of
data samples, we set the prior probability of the parameter
corresponding to each sample proportional to the weighted
degree of that sample.

The fourth row shows the sample with largest weighted
degree. We can see that the data samples are typical repre-
sentatives of their underlying class. This is because samples
with large weighted degree usually lie within the target hy-
persphere and are far from the boundary of the target class.

An important point to note about one-class learning al-
gorithms is their sensitivity to the proportion of target and
outlier data samples in the test set. The accuracy of the re-
sulting model can be affected significantly by varying this
ratio. We test this by gradually increasing the proportion of
outlier samples in the test set and computing precision in
each case. Figure 4 depicts results of studying this property
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Figure 3: Performance of BDD on different classes of the USPS dataset

Table 2: Experimental results with supervised Bayesian data
description and other one-class learning algorithms

Dataset OCGP SVDD BDD
Iris 97.85± 0.13(0.82) 98.08± 0.08(0.54) 98.11±0.03(0.35)

USPS 89.22± 0.04(2.10) 89.14± 0.03(1.29) 89.23±0.03(1.43)
Pendigits 95.75± 0.22(1.92) 94.65± 0.10(1.61) 95.91±0.12(1.54)
ISOLET 91.28± 0.87(2.31) 92.37± 0.51(1.21) 94.52±0.54(1.24)
MNIST 87.46± 0.92(3.86) 85.01± 0.30(3.82) 88.51±0.34(3.95)
COIL20 51.33± 3.04(2.32) 58.54±1.87 (1.74) 57.01± 2.38(1.79)

Caltech-101 79.83± 1.02(2.14) 80.07± 0.91(2.18) 82.21±0.60(2.01)
Letter 83.10±1.19 (1.14) 80.23± 0.81(0.93) 82.41± 0.94(0.91)

Glass 77.91± 1.81(0.14) 77.12± 1.70(0.09) 79.34±1.72(0.09)
Corel 92.21± 1.51(1.58) 90.16± 1.17(1.41) 93.19±1.19(1.41)

for SVDD and BDD model.
As can be seen in figure 4a, in large datasets the preci-

sion of classification is not affected largely by increasing
the proportion of outlier samples. This is mostly because the
training set is big enough to capture the distribution of target
class. Presence of sufficient target samples prevents proba-
bly noisy data to affect misclassification rate.

However, figure 4b depicts that this is not the case for
smaller datasets like Corel and Caltech-101. Here, due to
insufficiency of target training samples, noisy data can sig-
nificantly influence the boundary of target class and hence
misclassification rate increases by increasing the proportion
of outlier samples.

We can see in both figures that BDD is less sensitive
to variations in the proportion of outlier samples, which is
mostly because of its use of prior knowledge over model pa-
rameters. By using weighted degree as a prior, we prevent
noisy data to become significant in constructing the model
and compensate for the model uncertainty.

Experiments with unlabeled data For semi-supervised
learning, we divided the training set into a labeled and an
unlabeled set. We set the size of unlabeled set twice the size
of labeled training set and for better runtime, used the un-
labeled data only to improve the prior mean of Bayesian
model. In addition to SVDD, the mapping-convergence al-
gorithm (Yu 2005) was also implemented and used in com-
parisons. Results of semi-supervised learning are depicted
in figure 3.

We see in table 3 that semi-supervised Bayesian data de-
scription algorithm (SSDD) outperforms other approaches.
Since SVDD can not use unlabeled data, it is expectable that
we don’t see any performance improvement by adding un-
labeled data. Mapping-convergence also does not achieve
good performance, because this algorithm uses unlabeled
data only to select some confident negative samples and then
performs a traditional binary classification algorithm. There-

Table 3: Experimental results with semi-supervised
Bayesian data description learning algorithms.

Dataset SVDD MC SSDD
Iris 98.06± 0.09(0.52) 98.17± 0.04(1.54) 99.89±0.01(0.75)

USPS 89.19± 0.04(1.30) 88.23± 0.02(2.57) 94.76±0.05(2.16)
Pendigits 94.75± 0.12(1.72) 96.01± 0.07(2.70) 98.89±0.10(1.98)
ISOLET 92.28± 0.57(1.22) 94.87± 0.23(2.60) 98.23±0.38(2.02)
MNIST 85.06± 0.32(3.81) 90.01± 0.18(9.82) 94.48±0.31(5.07)
COIL20 54.63± 2.00(1.74) 59.25± 1.06(4.46) 66.53±2.51(2.75)

Caltech-101 80.01± 0.86(2.14) 83.07± 0.31(4.78) 89.90±0.58(3.21)
Letter 80.20± 0.91(1.00) 88.34± 0.30(2.06) 95.10±0.79(1.61)
Glass 77.20± 1.71(0.10) 79.12± 1.01(1.00) 86.02±1.61(0.86)
Corel 90.21± 1.21(1.48) 93.69± 0.89(3.41) 97.26±1.24(2.52)

fore, the problems that arise for binary classification on one-
class problems also arises for this algorithm and degrades its
performance. Moreover, we can see that smaller and more
difficult datasets are improved more significantly by utiliz-
ing unlabeled data. This is because of the fact that the train-
ing data are insufficient for these problems and therefore
they benefit more from using the unlabeled data.

Also running time (in seconds) of each algorithm is de-
picted in parentheses in table 3. We can see that SSDD per-
forms quite faster than mapping-convergence and also it’s
speed is very close to that of SVDD that does not use un-
labeled data at all. The mapping-convergence algorithm is
slower than SSDD because it runs both one-class learning
(to detect negative points) and a traditional binary classifica-
tion, whereas SSDD only runs data description.

Conclusions
In this paper, we proposed a novel Bayesian approach for the
data description problem which has various applications in
machine learning. Our approach is a bridge between proba-
bilistic and kernel based data description and hence can use
benefits of both types of approaches such as sparseness of
the support vector approaches and utilizing prior knowledge
in the probabilistic approaches. Moreover, our approach can
utilize unlabeled data in order to improve accuracy of the
data description.

The prior knowledge utilized in our model can have var-
ious applications. For example, the information in the data
samples prior, can be used to estimate most probable sup-
port vectors and reduce the size of data set, hereby reducing
time complexity of the training. Moreover, robustness of the
algorithm to noise could be further improved.
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