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Abstract
In this paper, a new unsupervised learning algorithm,
namely Nonnegative Discriminative Feature Selection
(NDFS), is proposed. To exploit the discriminative in-
formation in unsupervised scenarios, we perform spec-
tral clustering to learn the cluster labels of the in-
put samples, during which the feature selection is per-
formed simultaneously. The joint learning of the cluster
labels and feature selection matrix enables NDFS to se-
lect the most discriminative features. To learn more ac-
curate cluster labels, a nonnegative constraint is explic-
itly imposed to the class indicators. To reduce the re-
dundant or even noisy features, `2,1-norm minimization
constraint is added into the objective function, which
guarantees the feature selection matrix sparse in rows.
Our algorithm exploits the discriminative information
and feature correlation simultaneously to select a bet-
ter feature subset. A simple yet efficient iterative algo-
rithm is designed to optimize the proposed objective
function. Experimental results on different real world
datasets demonstrate the encouraging performance of
our algorithm over the state-of-the-arts.

Introduction
The dimension of data is often very high in many do-
mains (Jain and Zongker 1997; Guyon and Elisseeff 2003),
such as image and video understanding (Wang et al. 2009a;
2009b), and bio-informatics. In practice, not all the features
are important and discriminative, since most of them are of-
ten correlated or redundant to each other, and sometimes
noisy (Duda, Hart, and Stork 2001; Liu, Wu, and Zhang
2011). These features may result in adverse effects in some
learning tasks, such as over-fitting, low efficiency and poor
performance (Liu, Wu, and Zhang 2011). Consequently, it is
necessary to reduce dimensionality, which can be achieved
by feature selection or transformation to a low dimensional
space. In this paper, we focus on feature selection, which
is to choose discriminative features by eliminating the ones
with little or no predictive information based on certain cri-
teria.

Many feature selection algorithms have been proposed,
which can be classified into three main families: filter, wrap-
per, and embedded methods. The filter methods (Duda, Hart,
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and Stork 2001; He, Cai, and Niyogi 2005; Zhao and Liu
2007; Masaeli, Fung, and Dy 2010; Liu, Wu, and Zhang
2011; Yang et al. 2011a) use statistical properties of the fea-
tures to filter out poorly informative ones. They are usually
performed before applying classification algorithms. They
select a subset of features only based on the intrinsic prop-
erties of the data. In the wrapper approaches (Guyon and
Elisseeff 2003; Rakotomamonjy 2003), feature selection is
“wrapped” in a learning algorithm and the classification per-
formance of features is taken as the evaluation criterion. Em-
bedded methods (Vapnik 1998; Zhu et al. 2003) perform
feature selection in the process of model construction. In
contrast with filter methods, wrapper and embedded meth-
ods are tightly coupled with in-built classifiers, which causes
that they are less generality and computationally expensive.
In this paper, we focus on the filter feature selection algo-
rithm.

Because of the importance of discriminative information
in data analysis, it is beneficial to exploit discriminative in-
formation for feature selection, which is usually encoded in
labels. However, how to select discriminative features in un-
supervised scenarios is a significant but hard task due to
the lack of labels. In light of this, we propose a novel un-
supervised feature selection algorithm, namely Nonnegative
Discriminative Feature Selection (NDFS), in this paper. We
perform spectral clustering and feature selection simultane-
ously to select the discriminative features for unsupervised
learning. The cluster label indicators are obtained by spectral
clustering to guide the feature selection procedure. Different
from most of the previous spectral clustering algorithms (Shi
and Malik 2000; Yu and Shi 2003), we explicitly impose a
nonnegative constraint into the objective function, which is
natural and reasonable as discussed later in this paper. With
nonnegative and orthogonality constraints, the learned clus-
ter indicators are much closer to the ideal results and can be
readily utilized to obtain cluster labels. Our method exploits
the discriminative information and feature correlation in a
joint framework. For the sake of feature selection, the feature
selection matrix is constrained to be sparse in rows, which
is formulated as `2,1-norm minimization term. To solve the
proposed problem, a simple yet effective iterative algorithm
is proposed. Extensive experiments are conducted on differ-
ent datasets, which show that the proposed approach outper-
forms the state-of-the-arts in different applications.
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Nonnegative Discriminative Feature Selection
Preliminaries
We first summarize some notations. Throughout this paper,
we use bold uppercase characters to denote matrices, bold
lowercase characters to denote vectors. For an arbitrary ma-
trix A, ai means the i-th row vector of A, Aij denotes the
(i, j)-th entry of A, ‖A‖F is Frobenius norm of A and
Tr[A] is the trace of A if A is square. For any A ∈ Rr×t,
its `2,1-norm is defined as

‖A‖2,1 =
r∑
i=1

√√√√ t∑
j=1

A2
ij . (1)

Assume that we have n samples X = {xi}ni=1. Let
X = [x1, · · · ,xn] denote the data matrix, in which xi ∈
Rd is the feature descriptor of the i-th sample. Suppose
these n samples are sampled from c classes. Denote Y =
[y1, · · · ,yn]T ∈ {0, 1}n×c, where yi ∈ {0, 1}c×1 is the
cluster indicator vector for xi. The same as (Yang et al.
2011b), the scaled cluster indicator matrix F is defined as

F = [f1, f2, · · · , fn]T = Y(YTY)−
1
2 , (2)

where fi is the scaled cluster indicator of xi. It turns out that

FTF = (YTY)−
1
2YTY(YTY)−

1
2 = Ic, (3)

where Ic ∈ Rc×c is an identity matrix.

The Objective Function
In this work, we propose a general approach for spectral
analysis-based feature selection. To select the discrimina-
tive features for unsupervised learning, we propose to uti-
lize the cluster labels (which can be regarded as pseudo
class labels) based on the data structure. Spectral cluster-
ing techniques have been demonstrated effective methods to
detect the cluster structure of data and have received sig-
nificant research attention recently (Shi and Malik 2000;
Ng, Jordan, and Weiss 2001). Therefore, we make use of
spectral clustering to learn the pseudo class labels, which
are leveraged to guide the process of inferring the feature
selection matrix. In our framework, the features which are
most related to the pseudo class labels are selected. To this
end, we assume that there is a linear transformation between
features and pseudo labels. We propose to learn the scaled
cluster indicator matrix F ∈ Rn×c and the feature selection
matrix W ∈ Rd×c simultaneously.

Given a spectral clustering method with criterion J (F),
we propose to optimize the following objective function for
feature selection:

min
F,W
J (F) + α(‖XTW − F‖2F + β‖W‖2,1)

s.t. F = Y(YTY)−
1
2 , (4)

where α and β are parameters. In (4), the `2,1-norm reg-
ularization term is imposed to ensure W sparse in rows.
In that way, the proposed method is able to handle cor-
related and noisy features (Kong, Ding, and Huang 2011;
Nie et al. 2010). Let wj denote the j-th row of W. The joint

minimization of the regression model and `2,1-norm regular-
ization term enables W to evaluate the correlation between
pseudo labels and features, making it particularly suitable
for feature selection. More specifically, wj shrinks to zero
if the j-th feature is less correlated to the pseudo labels F.
Therefore, the features corresponding to zero rows of W
will be discarded when performing feature selection.

Clearly, an effective cluster indicator matrix is more capa-
ble to reflect the discriminative information of the input data.
The local geometric structure of data plays an important role
in data clustering, which has been exploited by many spec-
tral clustering algorithms (Shi and Malik 2000; Yu and Shi
2003). Note that there are many different algorithms to un-
cover local data structure. In this work, we use the strategy
proposed in (Shi and Malik 2000; Belkin and Niyogi 2001;
Yu and Shi 2003) to be the criterion for its simplicity. The
local geometric structure can be effectively modeled by a
nearest neighbor graph on a scatter of data points. To con-
struct the affinity graph S, we define

Sij =

{
exp(−‖xi−xj‖2

σ2 ) xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise,

where Nk(x) is the set of k-nearest neighbors of x. The lo-
cal geometrical structure can be utilized by minimizing the
following (Shi and Malik 2000; Yu and Shi 2003):

min
F

1

2

n∑
i,j=1

Sij‖
fi√
Aii
− fj√

Ajj
‖22 = Tr[FTLF], (5)

where A is a diagonal matrix withAii =
∑n
j=1 Sij and L =

A−1/2(A − S)A−1/2 is the normalized graph Laplacian
matrix. Therefore J (F) is defined as

J (F) = Tr[FTLF]. (6)

Combining (4) and (6), we have

min
F,W

Tr[FTLF] + α(‖XTW − F‖2F + β‖W‖2,1)

s.t. F = Y(YTY)−
1
2 . (7)

According to the definition of F, its elements are con-
strained to be discrete values, making the optimization of (7)
an NP-hard problem (Shi and Malik 2000). A well-known
solution is to relax it from discrete values to continuous ones
(Shi and Malik 2000; Yu and Shi 2003), i.e., the objective
function (7) is relaxed to

min
F,W

Tr[FTLF] + α(‖XTW − F‖2F + β‖W‖2,1)

s.t. FTF = Ic, (8)

where the orthogonal constraint shown in (3) is kept. In (8),
the first term learns the pseudo class labels using spectral
analysis while the second term and the third term try to learn
the feature selection matrix by a regression model with `2,1-
norm regularization.

Note that all the elements of F are nonnegative by defini-
tion. However, the optimal F of (8) has mixed signs, which
violates its definition. In addition, since we have no discrete
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Figure 1: The visualization of the learned F and W. (a) and
(b): Each row is a sample and each column is a cluster indi-
cator vector. (c): Each row is the `2-norm value of each row
of W. The results are normalized for a clearer illustration.
The data used are from the JAFFE dataset.

process, the mixed signs make F severely deviate from the
ideal cluster indicators. As a result, we cannot directly as-
sign labels to data using the cluster indicator matrix F. To
address this problem, it is natural and reasonable to impose
a nonnegative constraint into the objective function. When
both nonnegative and orthogonal constraints are satisfied,
there is only one element in each row of F is greater than
zero and all of the others are zeros. In that way, the learned
F is more accurate, and more capable to provide discrimina-
tive information. Therefore, we rewrite (8) and the objective
function of NDFS is given by

min
F,W

Tr[FTLF] + α(‖XTW − F‖2F + β‖W‖2,1)

s.t. FTF = Ic, F ≥ 0. (9)

It is worth noting that we adopt L defined in (5) for simplic-
ity while other sophisticated Laplacian matrices e.g., the one
proposed in (Yang et al. 2011a), can be used here as well.

Next, we take the JAFFE dataset (Lyons, Budynek, and
Akamatsu 1999) as an example to illustrate the effectiveness
of the nonnegative constraint and `2,1-norm regularization
term in the objective function (9). In Fig. 1 (a) and Fig. 1
(b), we plot the normalized absolute values of the optimal F
corresponding to (8) and (9), respectively. From Fig. 1 (a),
we can see that it is unclear how to directly assign cluster
labels according to F without nonnegative constraint. It can
be observed from Fig. 1 (b) that in each row of F, only one
element is positive and all of the others are 0, when nonneg-
ative and orthogonal constraints are satisfied. Thus, cluster
labels of the input data can be readily obtained according to
F. With the accurate cluster labels, NDFS is able to exploit
the discriminative information. The `2,1-norm minimization
enforces W sparse in rows, as shown in Fig. 1 (c).

Optimization Algorithm
An Efficient Iterative Algorithm
In this subsection, we present an iterative algorithm to solve
the optimization problem of NDFS. The `2,1-norm regular-
ization term is non-smooth and the objective function is not
convex in W and F simultaneously. To optimize the ob-
jective function, we propose an iterative optimization algo-
rithm. First, we rewrite the objective function of NDFS as

follows

min
F,W

Tr[FTLF] + α(‖XTW − F‖2F + β‖W‖2,1)

+
γ

2
‖FTF− Ic‖2F s.t. F ≥ 0. (10)

where γ > 0 is a parameter to control the orthogonality
condition. In practice, γ should be large enough to insure the
orthogonality satisfied. For the ease of representation, let us
define

L (F,W) = Tr[FTLF] + α(‖XTW − F‖2F + β‖W‖2,1)

+
γ

2
‖FTF− Ic‖2F . (11)

Setting ∂L (F,W)
∂W = 0, we have

∂L (F,W)

∂W
= 2α(X(XTW − F) + βDW) = 0

⇒W = (XXT + βD)−1XF. (12)

Here D is a diagonal matrix with Dii = 1
2‖wi‖2 . 1 Substitut-

ing W by (12), the problem (10) is rewritten as

min
F,W

Tr[FTMF] +
γ

2
‖FTF− Ic‖2F s.t. F ≥ 0, (13)

where M = L + α(In −XT (XXT + βD)−1X) and In ∈
Rn×n is an identity matrix. Following (Lee and Seung 1999;
2001; Liu, Jin, and Yang 2006), we introduce multiplicative
updating rules. Letting φij be the Lagrange multiplier for
constraint Fij ≥ 0 and Φ = [φij ], the Lagrange function is

Tr[FTMF] +
γ

2
‖FTF− Ic‖2F + Tr(ΦFT ). (14)

Setting its derivative with respect to Fij to 0 and using the
Karush-Kuhn-Tuckre (KKT) condition (Kuhn and Tucker
1951) φijFij = 0, we obtain the updating rules:

Fij ← Fij
(γF)ij

(MF + γFFTF)ij
. (15)

Then, we normalize F such that (FTF)ii = 1, i = 1, · · · , n.
Based on the above analysis, we summarize the detailed op-
timization algorithm in Algorithm 1.

Convergence Analysis
In this subsection, we prove the convergence of the pro-

posed iterative procedure in Algorithm 1.
Theorem 1 The alternate updating rules in Algorithm 1
monotonically decrease the objective function value of (10)
in each iteration.
Proof: In the iterative procedure, for F and W we update
one while keeping the other one fixed. For convenience, let
us denote

h(F) = Tr[FTMF] +
γ

2
‖FTF− Ic‖2F . (16)

1In practice, ‖wi‖2 could be close to zero but not zero. Theo-
retically, it could be zeros. For this case, we can regularize Dii =

1

2
√

(wT
i wi+ε)

, where ε is very small constant.
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Algorithm 1 Nonnegative Discriminative Feature Selection
Input:

Data matrix X ∈ Rd×n; Parameters α, β, γ, k, c and p
1: Construct the k-nearest neighbor graph and calculate L;
2: The iteration step t = 1; Initialize Ft ∈ Rn×c and set

Dt ∈ Rd×d as an identity matrix;
3: repeat
4: Mt = L + α(In −XT (XXT + βDt)−1X);
5: F t+1

ij = F tij
(γFt)ij

(MtFt+γFt(Ft)TFt)ij
;

6: Wt+1 = (XXT + βDt)−1XFt+1;
7: Update the diagonal matrix D as

Dt+1 =

 1
2‖wt

1‖2
· · ·

1
2‖wt

d‖2

;

8: t=t+1;
9: until Convergence criterion satisfied

Output:
Sort all d features according to ‖wt

i‖2 (i = 1, · · · , d) in
descending order and select the top p ranked features.

With Wt fixed, we have L (Ft,Wt) = h(Ft). By intro-
ducing an auxiliary function of h as in (Lee and Seung 1999;
2001), it is easy to prove h(Ft+1) ≤ h(Ft). Thus, we have

L (Ft+1,Wt) ≤ L (Ft,Wt). (17)

It can easily verified that Eq. (12) is the solution to the fol-
lowing problem.

min
W
‖XTW− F‖2F + βTr[WTDW] (18)

Accordingly, in the t-th iteration, with Ft fixed we have

Wt+1 = min
W
‖XTW− Ft‖2F + βTr[WTDtW]

⇒ ‖XTWt+1 − Ft‖2F + βTr[(Wt+1)TDtWt+1]

≤ ‖XTWt − Ft‖2F + βTr[(Wt)TDtWt]. (19)

That is to say,

‖XTWt+1 − Ft‖2F + β
∑
i

‖wt+1
i ‖22

2‖wt
i‖2

≤ ‖XTWt − Ft‖2F + β
∑
i

‖wt
i‖22

2‖wt
i‖2

⇒ ‖XTWt+1 − Ft‖2F + β‖Wt+1‖2,1

−β(‖Wt+1‖2,1 −
∑
i

‖wt+1
i ‖22

2‖wt
i‖2

)

≤ ‖XTWt − Ft‖2F + β‖Wt‖2,1

−β(‖Wt‖2,1 −
∑
i

‖wt
i‖22

2‖wt
i‖2

). (20)

According to the Lemmas in (Nie et al. 2010),
√
a− a

2
√
b
≤

√
b − b

2
√
b

and ‖Wt+1‖2,1 −
∑
i
‖wt+1

i ‖22
2‖wt

i‖2
≤ ‖Wt‖2,1 −

∑
i
‖wt

i‖
2
2

2‖wt
i‖2

. Thus, we obtain

‖XTWt+1 − Ft‖2F + β‖Wt+1‖2,1
≤ ‖XTWt − Ft‖2F + β‖Wt‖2,1. (21)

Therefore, according to Eq. (11), we arrive at

L (Ft,Wt+1) ≤ L (Ft,Wt). (22)

Based on Eq. (17) and Eq. (22), we obtain

L (Ft+1,Wt+1) ≤ L (Ft+1,Wt) ≤ L (Ft,Wt). (23)

Thus, L (F,W) monotonically decreases using the updat-
ing rules in Algorithm 1 and Theorem 1 is proved.

According to Theorem 1, we can see that the iterative ap-
proach in Algorithm 1 converges to local optimal F and W.
The proposed optimization algorithm is efficient. In the ex-
periment, we observe that our algorithm usually converges
around only 30 iterations.

Discussions
To exploit the discriminative information in unsupervised
scenarios, clustering-based feature selection is also studied
in Multi-Cluster Feature Selection (MCFS) (Cai, Zhang, and
He 2010). MCFS uses a two-step strategy to select features
according to spectral clustering. The first step is to learn F
using spectral clustering and then W is learned by a regres-
sion model with `1-norm regularization in the second step.
However, it ignores the nonnegative constraint, increasing
difficulty in getting the cluster labels. The mixed signs from
eigenvalue decomposition make F deviate from the ideal
solution as shown in Fig. 1 (a). Our NDFS algorithm dif-
fers MCFS from the following aspects. First, the proposed
NDFS is a one-step algorithm and learns F and W simul-
taneously. When α → 0, our method leads to a two-step
algorithm for feature selection. The first step is spectral clus-
tering and the second step is a regression model with `2,1-
norm regularization. Thus, NDFS is more general. Second,
F is constrained to be nonnegative. When both nonnegative
and orthogonal constraints are satisfied, only one element
in each row of F is positive and all the others are 0, which
is much closer to the ideal clustering result, and the solu-
tion can be directly obtained without discretization. Finally,
in our framework, we perform clustering and feature selec-
tion simultaneously, which explicitly enforces that F can be
linearly approximated by the selected features, making the
results more accurate. The experimental results in Section 5
demonstrate that our NDFS is better that MCFS in a variety
of applications.

In the optimization problem (10), if we do not constraint
F to be nonnegative, when α → +∞ and αβ 9 +∞, we
have F = XTW and the following objective function.

min
WTXXTW=Ic

Tr[WTXLXTW] + αβ‖W‖2,1 (24)

If we remove the nonnegative constraint, our objective func-
tion and that of Unsupervised Discriminative Feature Se-
lection (UDFS) (Yang et al. 2011a) have similar fashions.
In this extreme case, F is enforced to be linear, i.e., F =
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Table 1: Dataset Description.
Dataset # of Samples # of Features # of Classes
UMIST 575 644 20
AT&T 400 644 40
JAFFE 213 676 10

Poingting4 2790 1120 15
MNIST 5000 784 10

BA 1404 320 36
WebKB 814 4029 7

Lung 203 12600 5

XTW. However, as indicated in (Shi and Malik 2000), it
is likely that F is nonlinear in many applications. Hence,
NDFS is superior to UDFS due to its flexibility of linear-
ity. Additionally, F is constrained to be nonnegative, mak-
ing it more accurate than the one with mixed signs. There-
fore, compared with UDFS, NDFS is more capable to select
discriminative feature subset, which is also verified by our
experiments.

Experimental Analysis
In this section, we conduct extensive experiments to evalu-
ate the performance of the proposed NDFS, which can be
applied to many applications, such as clustering and classi-
fication. Following previous unsupervised feature selection
work (Cai, Zhang, and He 2010; Yang et al. 2011a), we only
evaluate the performance of NDFS for feature selection in
terms of clustering due to space limit.

Datasets
The experiments are conducted on 8 publicly available
datasets, including four face image datasets, i.e., UMIST2,
AT&T (Samaria and Harter 1994), JAFFE (Lyons, Budynek,
and Akamatsu 1999) and Pointing4 (Gourier, Hall, and
Crowley 2004), two handwritten digit datasets, i.e., a subset
of MNIST3 and Binary Alphabet (BA)4, one text database
WebKB collected by the University of Texas (Craven et
al. 1998), and one cancer database Lung (Hong and Yang
1991). Datasets from different areas serve as a good test bed
for a comprehensive evaluation. Table 1 summarizes the de-
tails of the datsets used in the experiments.

Experimental Settings
To validate the effectiveness of NDFS for feature selection,
we compare it with the following unsupervised feature se-
lection methods.

1. Baseline: All original features are adopted;

2. MaxVar: Features corresponding to the maximum vari-
ance are selected to obtain the best expressive features;

3. LS: Features consistent with Gaussian Laplacian matrix
are selected to best preserve the local manifold structure
(He, Cai, and Niyogi 2005);

2http://www.sheffield.ac.uk/eee/research/iel/research/face
3http://yann.lecun.com/exdb/mnist/
4http://www.cs.nyu.edu/∼roweis/data.html

4. SPEC: Features are selected using spectral regression
(Zhao and Liu 2007);

5. MCFS: Features are selected based on spectral analysis
and sparse regression problem (Cai, Zhang, and He 2010);

6. UDFS: Features are selected by a joint framework of dis-
criminative analysis and `2,1-norm minimization (Yang et
al. 2011a).

With the selected features, we evaluate the performance in
terms of clustering by two widely used evaluation metrics,
i.e., Accuracy (ACC) and Normalized Mutual Information
(NMI) (Cai, Zhang, and He 2010; Yang et al. 2011a). The
larger ACC and NMI are, the better performance is.

There are some parameters to be set in advance. For
LS, MCFS, UDFS and NDFS, we set k = 5 for all the
datasets to specify the size of neighborhoods. For NDFS,
to guarantee the orthogonality satisfied, we fix γ = 108

in our experiments. To fairly compare different unsuper-
vised feature selection algorithms, we tune the param-
eters for all methods by a “grid-search” strategy from
{10−6, 10−4, · · · , 106}. The numbers of selected features
are set as {50, 100, 150, 200, 250, 300} for all the datasets.
For all the algorithms, we report the the best clustering
results from the optimal parameters. Different parameters
may be used for different databases. In our experiments, we
adopt Kmeans algorithm to cluster samples based on the se-
lected features. The performance of Kmeans clustering de-
pends on initialization. Following (Cai, Zhang, and He 2010;
Yang et al. 2011a), we repeat the clustering 20 times with
random initialization for each setup. The average results
with standard deviation (std) are reported.

Results and Analysis
We summarize the clustering results of different methods
on the 8 datasets in Table 2 and Table 3. From the two ta-
bles, we have the following observations. First, feature se-
lection is necessary and effective. It can not only signifi-
cantly reduce the feature number and make the algorithms
more efficient, but also improve the performance. Second,
the local structure of data distribution is crucial for feature
selection, which is consistent with the observations in (He,
Cai, and Niyogi 2005; Yang et al. 2011a). Except for Max-
Var, all the other approaches consider the local structure of
data distribution and yield better performance. Third, the
discriminative information is crucial for unsupervised learn-
ing. MCFS, UDFS and NDFS exploit discriminative infor-
mation, which results in more accurate clustering. Finally,
UDFS and NDFS achieve higher ACC and NMI by eval-
uating features jointly than others that select features one
after another or using two-step strategies. As shown in Ta-
ble 2 and Table 3, NDFS achieves best performance on all
datasets, which verifies that the proposed NDFS algorithm
is able to select more informative features. The is mainly
due to the following reasons. First, NDFS learns the pseudo
class label indicators and the feature selection matrix simul-
taneously. It enables NDFS to select discriminative features
in unsupervised learning. Second, the local structure of data
and the correlation among features are explored simultane-
ously. Third, the `2,1 regularization term is able to reduce the
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Table 2: Clustering results (ACC%±std) of different feature selection algorithms on different datasets. The best results are
highlighted in bold.

Dataset UMIST AT&T JAFFE Pointing4 MNIST BA WebKB Lung
Baseline 41.8± 2.7 59.2± 3.4 72.5± 9.2 35.9± 2.2 52.2± 5.0 40.3± 2.0 56.7± 2.7 56.8± 3.7
MaxVar 45.8± 2.8 58.6± 3.4 67.3± 5.8 44.0± 2.8 53.3± 2.7 40.7± 1.7 54.6± 2.8 57.2± 4.1
LS 45.9± 2.9 60.6± 2.9 74.0± 7.6 37.1± 1.6 54.3± 4.8 42.1± 1.7 56.8± 2.9 59.5± 7.7
SPEC 47.9± 3.0 62.1± 3.3 76.9± 7.2 38.6± 2.2 55.6± 5.2 42.2± 2.2 61.1± 2.8 59.5± 4.0
MCFS 46.3± 3.6 61.0± 4.8 78.8± 9.1 46.2± 2.9 56.5± 4.1 41.5± 1.8 61.3± 2.3 60.6± 4.5
UDFS 48.6± 3.7 62.4± 2.8 76.7± 7.1 45.1± 2.4 56.6± 4.2 42.7± 1.8 61.7± 3.2 61.3± 4.7
NDFS 51.3± 3.9 64.5± 3.4 81.2± 8.1 48.9± 3.2 58.2± 3.2 43.4± 2.0 62.4± 3.0 65.6± 5.1

Table 3: Clustering results (NMI%±std) of different feature selection algorithms on different datasets. The best results are
highlighted in bold.

Dataset UMIST AT&T JAFFE Pointing4 MNIST BA WebKB Lung
Baseline 62.3± 2.3 79.3± 1.7 80.0± 5.7 41.7± 1.4 47.8± 2.3 56.5± 1.3 11.4± 5.0 39.4± 5.5
MaxVar 63.5± 1.5 78.5± 1.5 70.3± 4.2 50.8± 1.8 48.6± 1.1 56.9± 1.3 17.1± 1.4 38.1± 5.0

LS 63.9± 1.8 80.0± 1.4 79.4± 7.0 42.7± 1.2 48.6± 2.0 57.3± 0.8 10.6± 4.0 41.4± 6.0
SPEC 65.2± 2.0 80.2± 1.8 82.8± 3.8 40.5± 1.0 49.7± 2.0 57.9± 1.1 17.2± 3.1 33.5± 1.5
MCFS 66.7± 1.9 80.3± 2.5 83.4± 5.0 53.1± 1.1 50.0± 1.8 57.5± 0.8 17.6± 0.8 40.1± 3.1
UDFS 67.3± 3.0 80.8± 1.2 82.3± 6.5 52.4± 1.7 50.8± 1.6 58.1± 1.0 18.1± 3.3 42.8± 3.9
NDFS 69.7± 2.3 82.2± 1.6 86.3± 7.1 56.4± 1.3 51.8± 1.3 58.8± 0.8 18.7± 1.6 45.3± 2.9

Figure 2: Clustering accuracy (ACC) of NDFS with different
α and feature numbers while keeping β = 100.

Figure 3: Clustering accuracy (ACC) of NDFS with different
β and feature numbers while keeping α = 1.

redundant and noisy features. While both NDFS and UDFS
utilize `2,1 regularization term for unsupervised feature se-
lection, we additionally impose the nonnegative constraint
into the objective function, making the cluster indicators
more accurate and the selected feature more informative.

Next, we study the sensitiveness of parameters and the
convergence of NDFS. Due to the space limit, we only report
the results in terms of ACC and objective values over AT&T,
JAFFE and BA datasets. The experimental results are shown
in Fig. 2 and Fig. 3. Fig. 4 shows convergence curves of
NDFS. From these figures, we can see that our method is not
sensitive to α and β with wide ranges, and that the proposed
optimization algorithm is effective and converges quickly.

Figure 4: Convergence curve of NDFS over AT&T, JAFFE
and BA datasets.

Conclusion
In this paper, we propose a novel unsupervised feature selec-
tion approach, which jointly exploits nonnegative spectral
analysis and feature selection. The cluster labels learned by
spectral clustering are used to guide feature selection. The
cluster indicator matrix and the feature selection matrix are
iteratively learned. To select discriminative features, we im-
pose the nonnegative constrain on the scaled cluster indica-
tor matrix and `2,1-norm minimization regularization on the
feature selection matrix. Our method is able to select the dis-
criminative features that yield better results. Extensive ex-
periments on different real world datasets have validated the
effectiveness of the proposed method.
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