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Abstract

In this paper, we propose a semi-supervised kernel
matching method to address domain adaptation prob-
lems where the source distribution substantially differs
from the target distribution. Specifically, we learn a pre-
diction function on the labeled source data while map-
ping the target data points to similar source data points
by matching the target kernel matrix to a submatrix of
the source kernel matrix based on a Hilbert Schmidt
Independence Criterion. We formulate this simultane-
ous learning and mapping process as a non-convex in-
teger optimization problem and present a local mini-
mization procedure for its relaxed continuous form. Our
empirical results show the proposed kernel matching
method significantly outperforms alternative methods
on the task of across domain sentiment classification.

Introduction
Domain adaptation addresses the problem of exploiting in-
formation in a source domain where we have plenty la-
beled data to help learn a prediction model in a target do-
main where we have little labeled data (Daumé III 2007;
Ben-David et al. 2006; Duan et al. 2009; Mansour, Mohri,
and Rostamizadeh 2009). The need for domain adaptation is
prevailing in various applied machine learning areas, such as
natural language processing (Blitzer, McDonald, and Pereira
2006; Daumé III 2007; Chen, Weinberger, and Blitzer 2011),
computer vision (Saenko et al. 2010) and WiFi localization
(Pan et al. 2007; Zheng et al. 2008).

In many practical domain adaptation problems, the data
distribution in the source domain is substantially different
from the data distribution in the target domain. A key chal-
lenge raised in such problems is the feature divergence is-
sue. That is, one cannot find support in the source domain
for some critical discriminative features of the target do-
main while the discriminative features of the source do-
main are not informative or do not appear in the target do-
main. This is very common in natural language process-
ing, where different genres often use very different vocabu-
lary to describe similar concepts. For example, in sentiment
classification data of product reviews, terms like “harmo-
nious” or “melodic” are positive indicators in Music domain,
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but not in Books domain; similarly, terms like “noise” or
“yelling” are negative indicators in Music domain, but not
in Books domain. In this situation, most domain adaptation
algorithms seek to bridge the gap between the two domains
by re-weighting source instances (Sugiyama et al. 2008;
Shimodaira 2000), self-labeling target instances (Tur 2009;
Chen, Weinberger, and Blitzer 2011), inducing a new feature
representation (Blitzer, Dredze, and Pereira 2007; Daumé
III, Kumar, and Saha 2010; Blitzer, Foster, and Kakade
2011) and many other ways.

In this paper, we address the problem of feature repre-
sentation divergence between the two domains from a novel
perspective. We assume we have a source domain that con-
tains a much larger number of labeled instances and unla-
beled instances comparing to the target domain. Instead of
focusing on bridging the cross domain feature divergence,
we employ kernelized representations for instances in each
domain to eliminate the feature representation divergence is-
sue. Specifically, we first produce two kernel matrices with
a given kernel function, one over the instances in the source
domain and one over the instances in the target domain.
Then we learn a prediction function from the labeled source
instances while mapping each target instance to a source in-
stance by matching the target kernel matrix to a submatrix
of the source kernel matrix based on a Hilbert Schmidt In-
dependence Criterion (HSIC). The labeled instances in the
target domain perform as pivot points for class separation.
Each labeled instance in the target domain is guaranteed to
be mapped into a source instance with the same class la-
bel. Through the kernel affinity measure, we expect unla-
beled target instances to be most likely mapped into corre-
sponding source instances with same labels as well. More-
over, we perform semi-supervised learning by minimizing
the training loss on labeled instances in both domains while
using graph Laplacian regularization terms to incorporate
geometric information from unlabeled instances. Each graph
Laplacian regularizer reflects the intrinsic structure of the
instance distribution in each domain. We formulate this si-
multaneous semi-supervised learning and mapping process
as a non-convex integer optimization problem and present
a local minimization procedure for its relaxed continuous
form. We empirically evaluate two versions of the proposed
method on across domain sentiment classification data of
Amazon product reviews, where one tries to extract opinion-
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oriented or sentiment polarity information from a given re-
view text. Our experimental results suggest the proposed ap-
proach significantly outperforms the feature representation
based across domain sentiment classification approaches.

Related Work
Domain adaptation has recently been popularly studied in
machine learning and related fields. Many domain adapta-
tion approaches have been developed in the literature to cope
with the feature distribution divergence between the source
domain and the target domain. Covariate shift methods at-
tempt to bridge the gap between domains by putting more
weights on source instances that are in the dense region of
the target domain (Shimodaira 2000; Sugiyama et al. 2008).
These methods however perform poorly for highly divergent
domains characterized by missing features under source dis-
tribution for target instances.

Self-labeling adaptation methods, on the other hand, fo-
cus on target instances. They train an initial model on la-
beled source instances and then use it to label target in-
stances. The newly labeled target instances will be used
to update the initial model through self-training (Jiang and
Zhai 2007) or co-training (Tur 2009; Chen, Weinberger, and
Blitzer 2011). Their performances greatly depend on the ini-
tial model trained from source labeled data and they are not
best suitable for highly divergent domains either.

A number of domain adaptation algorithms address the
domain divergence issue directly from feature representation
learning perspective, including structural correspondence
learning methods (Blitzer, McDonald, and Pereira 2006;
Blitzer, Dredze, and Pereira 2007; Tan 2009), coupled sub-
space methods (Blitzer, Foster, and Kakade 2011) and oth-
ers. They seek to learn a shared representation and dis-
tinguish domain-specific features by exploiting the large
amount of unlabeled data from both the source and target do-
mains. The efficacy of these methods nevertheless depends
on the existence of a certain amount of pivot features that are
used to induce shared feature representations. In addition to
these, the transfer learning work in (Wang and Yang 2011)
exploits the Hilbert Schmidt Independence Criterion to learn
the mapping of selected features from two domains.

The approach we develop in this work is related to the
feature representation learning methods. But instead of ex-
ploring cross domain feature similarities, we focus on cross
domain instance similarities according to kernel representa-
tions. Our approach does not need pivot features or feature
correspondence information, but needs only a very small set
of labeled pivot instances from the target domain. Our em-
pirical study shows the proposed approach is more effective
than the feature learning based domain adaptation methods
on across domain sentiment classification.

Notation and Setting
In this paper, we consider cross domain prediction model
learning in two domains, a source domain DS and a tar-
get domain DT . In the source domain, we have ls la-
beled instances {(Xs

i ,y
s
i )}

ls
i=1 and us unlabeled instances

{(Xs
i )}ns

i=ls+1, where ns = ls+us. In the target domain, we

have lt labeled instances {(Xt
i ,y

t
i)}

lt
i=1 and ut unlabeled in-

stances {(Xt
i )}

nt

i=lt+1, where nt = lt + ut. Here we assume
that Xs is a ns × ds instance matrix whose ith row Xs

i is
the ith instance, ys is a ls × 1 label vector and ys

i denotes
its ith entry. Similarly, Xt is a nt × dt instance matrix and
yt is a lt × 1 label vector. Moreover, we assume the source
domain has plenty labeled and unlabeled instances such that
ls is much larger than lt and ns is much larger than nt.

Semi-Supervised Kernel Matching for
Domain Adaptation

In this section, we present a semi-supervised kernel match-
ing approach to address domain adaptation in a transduc-
tive manner by exploiting a large amount of data from a
source domain. Our primary idea is to extend kernelized ob-
ject matching into cross domain learning. Similar to many
semi-supervised methods developed in the literature (Belkin
and Niyogi 2002; Belkin, Niyogi, and Sindhwani 2005), we
have one basic manifold assumption in both domains: if
two points x1, x2 are close in the intrinsic geometry of the
marginal distribution PX , then the conditional distributions
P(Y |x1) and P(Y |x2) are similar. We utilize properties of
Reproducing Kernel Hilbert Spaces (RKHS) to construct our
semi-supervised learning objective which has three types of
components: a kernel matching criterion, prediction losses,
and graph Laplacian regularizers.

Kernel Matching Criterion
The kernel matching criterion is developed to map each in-
stance in the target domain into one instance in the source
domain, according to their geometric similarities expressed
in kernel matrices. In particular, we conduct instance map-
ping by maximizing a Hilbert Schmidt Independence Crite-
rion (HSIC) over the kernel matrix of the target instances
and the kernel matrix of the mapped source instances. HSIC
(Gretton et al. 2005) originally measures the independence
between given random variables based on the eigenspec-
trum of covariance operators in Reproducing Kernel Hilbert
Spaces. (Quadrianto et al. 2008) proposed an unsuper-
vised kernel sorting method to match object pairs from two
sources of observations by maximizing their dependence
based on the HSIC. In this work we exploit this criterion
in a semi-supervised manner to map pairs of instances to
each other without exact correspondence requirement (since
we do not have two sets of parallel objects in two domains)
but ensuring class separation. We require each labeled in-
stance in the target domain is guaranteed to be mapped into
a source instance with the same class label. The labeled in-
stances in the target domain thus perform as pivot points
for class separation. Through the kernel affinity measures
between instances, we expect unlabeled target instances to
be most likely mapped into corresponding source instances
with same labels as well, following the similar pivot points.

Specifically, we construct two kernel matrices in the two
domains Ks = Φ(Xs)Φ(Xs)> and Kt = Φ(Xt)Φ(Xt)>,
where Φ is a feature map function that maps feature vectors
into a Reproducing Kernel Hilbert Space. Then the kernel
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matching can be conducted by

max
M

(nt − 1)−2tr(MKsM>HKtH) (1)

s.t. M ∈ {0, 1}nt,ns ; M1 = 1; M(1 : lt, 1 : ls)y
s = yt

where H = I − 1
nt
11>, I denotes a nt × nt identity ma-

trix, and 1 denotes column vectors with all 1 entries. The
objective function here is a biased estimate of HSIC. It is
known to be sensitive to diagonal dominance. To address
this problem, we can modify the biased HSIC objective in
(1) to reduce bias by removing the main diagonal terms of
the kernel matrices, as suggested in (Quadrianto et al. 2008),
which leads to the following problem

max
M

(nt − 1)−2tr(MK̂sM>HK̂tH) (2)

s.t. M ∈ {0, 1}nt,ns ; M1 = 1; M(1 : lt, 1 : ls)y
s = yt

where K̂s
ij = Ks

ij(1− δij) and K̂s
ij = Ks

ij(1− δij) are the
kernel matrices with main diagonal terms removed.

Prediction Losses
Supervised learning is conducted on the labeled instances.
We propose to learn a prediction function f : x −→ y on the
labeled instances in the source domain, while minimizing
the training losses not only on the labeled source instances,
but also on the labeled target instances that have mapped
prediction values. That is, giving the mapping matrixM , we
conduct supervised training as below

min
f∈H

ls∑
i=1

`(f(Xs
i ),ys

i ) + η

lt∑
i=1

`(M(i, :)f(Xs),yt
i)

+β‖f‖2H (3)
where `(·, ·) is a loss function, H is the Reproducing Ker-
nel Hilbert Space (RKHS) associated with the kernel func-
tion that produces the kernel matrix Ks; the RKHS norm
‖f‖2H measures the complexity of f function. Penalizing
the RKHS norm imposes smoothness conditions on possi-
ble solutions. By the Representer Theorem, the solution to
this minimization problem can be written in terms of kernel
matrix

f(Xs
i ) =

ns∑
j=1

αjK
s(j, i), f = Ksα (4)

where α is a ns × 1 coefficient parameter vector. Here we
used a more general form of representation to take the unla-
beled instances into account as well. The RKHS norm of f
can then be re-expressed as

‖f‖2H = α>Ksα (5)
Then using a square loss function, the minimization problem
(3) can be rewritten as

min
α

‖ys − JsKsα‖2 + βα>Ksα (6)

+η‖yt − J tMKsα‖2

where Js is an ls × ns matrix whose first ls columns form
an identity matrix and all other entries are 0s; J t is an lt×nt
matrix whose first lt columns form an identity matrix and all
other entries are 0s.

Graph Laplacian Regularization
In addition to the kernel matching criterion and super-
vised prediction losses presented above, we consider to
incorporate information about the geometric structures of
the marginal distributions, Ps

X and Pt
X , in each domain,

based on the manifold assumption (Belkin and Niyogi 2002;
Belkin, Niyogi, and Sindhwani 2005). Specifically, we will
incorporate the following graph Laplacian terms which ap-
proximate manifold regularization

γs‖f‖2Gs
+ γt‖Mf‖2Gt

(7)

The graphsGs andGt denote the affinity graphs constructed
on the source domain and target domain respectively. These
Laplacian terms work as a smoothness functional to ensure
the f function changes smoothly not only on the graph that
approximates the manifold in the source distribution, but
also on the graph that approximates the manifold in the tar-
get distribution.

Let G =< V,E > be a weighted adjacency graph on
n vertices. The graph Laplacian L of G is defined as L =
D−W , whereW is the edge weight matrix andD is a diag-
onal matrix such that Dii =

∑
j Wji. It is easy to see that L

is a symmetric and positive semidefinite matrix. Following
this procedure, the graph Laplacian matrices Ls and Lt as-
sociated with Gs and Gt can be generated correspondingly.
The graph Laplacian regularization terms in (7) can then be
rewritten as

γs‖f‖2Gs
+ γt‖Mf‖2Gt

= γsf
>Lsf + γtf

>M>LtMf

= γsα
>KsLsKsα + γtα

>KsM>LtMKsα (8)

Finally, combing the three components (2), (6) and (8)
together, we obtain the following joint optimization problem
for semi-supervised kernel matching

min
M,α

‖ys − JsKsα‖2 + η‖yt − J tMKsα‖2 (9)

+ βα>Ksα− µtr(MK̂sM>HK̂tH)

+ γsα
>KsLsKsα + γtα

>KsM>LtMKsα

s.t. M ∈ {0, 1}nt,ns ; M1 = 1; J tMJs>ys = yt.

The goal of this optimization problem is to learn a kernel
mapping matrix M as well as a kernelized prediction model
parameterized by α to minimize the regularized training
losses in both domains in a semi-supervised manner.

Optimization Algorithm
The optimization problem (9) we formulated above is an in-
teger optimization problem. Moreover, the objective func-
tion is not jointly convex in M and α. Let h(M,α) denote
the objective function of (9). We first relax the integer con-
straints to obtain a continuous relaxation

min
M,α

h(M,α) (10)

s.t. 0 ≤M ≤ 1; M1 = 1; J tMJs>ys = yt.

Then we propose a first order local minimization algorithm
to solve the relaxed non-convex optimization problem (10).
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First we treat (10) as a non-smooth minimization problem
over M , and re-express the optimization problem as

min
M

g(M) (11)

s.t. 0 ≤M ≤ 1; M1 = 1; J tMJs>ys = yt.

for
g(M) = min

α
h(M,α) (12)

Note α can be viewed as a function of M , i.e., α(M). For
a given M, a closed-form solution of α(M) can be obtained
by setting the partial derivative of h(M,α) with respect to
α to 0,

α∗(M) = Q−1(KsJs>ys + ηKsM>J t>yt) (13)

where

Q =KsJs>JsKs + ηKsM>J t>J tMKs + βKs (14)

+ γsK
sLsKs + γtK

sM>LtMKs

We then solve the minimization problem (11) using a first
order local minimization algorithm with backtracking line
search. The algorithm is an iterative procedure, starting from
a feasible initial point M (0). At the (k + 1)th iteration, we
approximate the objective function g(M) in the close neigh-
borhood of point M (k) using the first order Taylor series ex-
pansion

g(M) ≈g(M (k)) + tr(G(M (k))>(M −M (k))) (15)

whereG(M (k)) denotes the gradient of g(M) at pointM (k)

(i.e. the gradient of h(M,α∗(M (k)))

G(M (k)) =2ηJ t>J tM (k)Ksαα>Ks − 2ηJ t>ytα>Ks

− 2µHK̂tHM (k)K̂s + 2γtL
tM (k)Ksαα>Ks

(16)

Given the gradient at point M (k), we minimize the local lin-
earization (15) to seek a feasible descending direction of M
regarding the constraints,

M̂ = arg min
M

tr(G(M (k))>M) (17)

s.t. 0 ≤M ≤ 1; M1 = 1; J tMJs>ys = yt.

The optimization problem above is a standard convex linear
programming and can be solved using a standard optimiza-
tion toolbox. The update direction for the (k+ 1)th iteration
can be determined as

D = M̂ −M (k) (18)

We then employ a standard backtracking line search (No-
cedal and Wright 2006) to seek an optimal step size ρ∗ to
obtain M (k+1) along the direction D in the close neighbor-
hood of M (k): M (k+1) = M (k) + ρ∗D. The line search
procedure will guarantee the M (k+1) leads to an objective
value no worse than before in terms of the original objective
function g(M) = h(M,α∗(M)). The overall algorithm for
minimizing (11) is given in Algorithm 1.

Algorithm 1: Local Optimization Procedure

Input: ys,yt,Ks,Kt;M (0), ε;µ, β, γs, γt; MaxIters
Output: M∗
Initialize k = 0, NoChange = 0 ;
Repeat

1. Compute gradient G(M (k)) according to Eq. (16).
2. Solve the linear optimization (17) to get M̂ .
3. Compute descend direction D using Eq. (18).
4. Conduct backtracking line search to obtain M (k+1).
5. if ‖M (k+1) −M (k)‖2 < ε then NoChange = 1.
6. k = k + 1.

Until NoChange = 1 or k > MaxIters
M∗ = M (k).

Algorithm 2: Heuristic Greedy Rounding Procedure
Input: M ∈ Rnt×ns ,ys,yt.
Output: M∗ ∈ (0, 1)nt×ns .
Initialize: Set M∗ as a nt × ns matrix with all 0s.
for k = 1 to lt do

Find indices d, s.t. ys(d) = yt(k).
Compute v = arg maxv∈d(M(k, v)).
Set M∗(k, v) = 1, M(k, :) = − inf .

end for
for k = lt to nt do

Identify the largest value v = max(M(:)).
Identify the indices (d, r) of v in M .
Set M∗(d, r) = 1,M(d, :) = − inf .

end for

After obtaining the local optimal solution M∗, we need
to round it back to an integer solution satisfying the linear
constraints in (9). We use a simple heuristic greedy proce-
dure to conduct the rounding. The procedure is described in
Algorithm 2. The quality of the local solution we obtained
depends greatly on the initial M (0). In our experiments, we
used 100 random initializations to pick the best feasible ini-
tial M (0) that minimizes the training objective.

Experiments
In this section, we present our experimental results on across
domain sentiment classifications. We first describe our ex-
perimental setting and then present results and discussions.

Experimental Setting
Dataset We used the across domain sentiment classifica-
tion dataset from (Prettenhofer and Stein 2010) in our exper-
iments. The dataset contains reviews in 3 domains (Books,
DVD and Music), and have 4 different language versions
(English, German, French and Japanese). Each domain con-
tains 2000 positive views and 2000 negative reviews, each
of which is represented as a term-frequency (TF) vector. We
used the English version and constructed 6 source-target or-
dered domain pairs based on the original 3 domains: B2D
(Books to DVD), D2B (DVD to Books), B2M (Books to
Music), M2B (Music to Books), D2M (DVD to Music), and
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Table 1: Test accuracies for 6 domain adaptation tasks.

Tasks TargetOnly SourceOnly SourceTarget EA++ Coupled Subspace SSKMDA1 SSKMDA2
B2D 52.40± 0.96 71.77± 0.43 72.85± 0.65 73.63± 0.61 74.36± 0.47 79.27± 0.32 79.34± 0.36
D2B 51.23± 0.52 72.27± 0.50 72.15± 0.46 72.85± 0.52 76.03± 0.55 80.04± 0.26 79.93± 0.23
B2M 52.43± 0.75 71.16± 0.57 71.30± 0.57 71.44± 0.54 76.75± 0.54 78.14± 0.46 77.97± 0.50
M2B 51.23± 0.52 68.25± 1.30 68.90± 0.39 69.38± 0.65 75.70± 0.52 77.47± 0.28 77.34± 0.28
D2M 52.43± 0.75 71.86± 0.39 72.44± 0.46 72.49± 0.37 77.80± 0.45 79.70± 0.34 79.63± 0.29
M2D 52.40± 0.96 72.12± 0.45 72.89± 0.50 73.44± 0.49 74.59± 0.42 78.54± 0.32 77.85± 0.37

M2D (Music to DVD). For each pair of domains, we built
an unigram vocabulary from combined reviews in both do-
mains. We further preprocessed the data by removing fea-
tures that appear less than twice in either domain, replacing
TF features with TF-IDF features, and normalizing each at-
tribute into [0, 1].

The divergence of each pair of domains can be measured
with A−distance (Ben-David et al. 2006). We adopted the
same method in (Rai et al. 2010) to computed approximate
A−distance values. We first trained a linear separator to sep-
arate source and target domains with all instances from both.
The average per-instance hinge-loss for this separator sub-
tracted from 1 was used as an estimate of proxyA−distance.
It is a number in the interval of [0, 1] with larger values indi-
cating larger domain divergence. Table 2 presents the vocab-
ulary size and proxy A−distance for each pair of domains
we used in the experiments. We can see that all three pairs
of domains present substantial divergences.

Table 2: Statistics for different domain pairs.

Domains Vocabulary Size A-distance
Books vs. DVD 10370 0.7221
Books vs. Music 8006 0.8562
DVD vs. Music 8825 0.7831

Approaches In our experiments, we compared the perfor-
mance of the following approaches.
• TargetOnly: trained on labeled data in target domain.
• SourceOnly: trained on labeled data in source domain.
• SourceTarget: trained on labeled data in both domains.
• EA++: the domain adaptation method proposed

in (Daumé III, Kumar, and Saha 2010).
• Coupled Subspace: the domain adaptation method pro-

posed in (Blitzer, Foster, and Kakade 2011).
• SSKMDA1: the proposed semi-supervised kernel match-

ing for domain adaptation.
• SSKMDA2: in addition to SSKMDA1, we also tested an-

other version of semi-supervised kernel matching method
for domain adaptation by replacing the unbiased HSIC
component in Eq.(2) with the unbiased HSIC used in
(Song et al. 2007).

We used Matlab SVM toolbox for the first three baselines
with default hyper-parameters. For Coupled Subspace, we
used the software package provided by (Blitzer, Foster, and
Kakade 2011)1. There are 2 parameters to set in this pack-
age, the top k representative features, and the size of source
and target projectors. We used the same values that are used
in (Blitzer, Foster, and Kakade 2011): 1000 for the top rep-
resentative features and 100 for the dimension of projectors.

For our proposed approach, we used Gaussian kernels to
construct the kernel matrices, K(x1, x2) = exp(−|x1 −
x2|2/(2σ2)), where the parameter σ was set to 0.05. We
used K-nearest-neighbors (KNN) with binary weights to
construct Laplacian graphsGs andGt for the source and tar-
get domains respectively. We used 20 as the number of near-
est neighbors in our experiments. For the tradeoff parame-
ters in our formulated optimization (9), we used β = 0.045,
γs = 0.05, γt = 0.05, η = 1, and µ = 5.

Across Domain Classification Results
As we introduced before, our semi-supervised learning is ac-
tually a transductive learning. We conducted training with ls
labeled source instances and us unlabeled source instances
as well as lt labeled target instances and ut unlabeled tar-
get instances. The performance of the trained classifier was
evaluated on the ut unlabeled target instances.

In the experiments, we used ls = 1390, us = 10, ns =
ls+us = 1400, lt = 10, ut = 990, nt = lt+ut = 1000. We
randomly chose ns instances from the source domain, with
the first ls instances labeled and the rest unlabeled. Similarly,
we randomly chose nt instances from the target domain,
with the first lt instances labeled and the rest unlabeled. All
approaches were tested using the same data. Each experi-
ment was repeated 10 times. The average test accuracies and
standard deviations for all 6 experiments are reported in Ta-
ble 1. We can see that neither a few labeled target instances
nor a large amount of labeled source instances alone are
enough to train a good sentiment classifier for the target do-
main. By simply training over both labeled source instances
and target instances can have very limited improvement. The
EA++ approach demonstrates improvements over the three
baselines, but the improvement is not significant. The Cou-
pled Subspace domain adaptation method however presents
significant improvement over the first three baselines. Nev-
ertheless, it is not as good as our proposed approach (two

1http://john.blitzer.com/software.html
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Figure 1: Test accuracies with varying number of labeled instances in the target domain for 6 domain adaptation tasks.

versions). Both versions of our proposed domain adaptation
method perform consistently and significantly better than all
other approaches over all 6 tasks. For the task B2D, our
approach increases the accuracy by more than 5% compar-
ing to Coupled Subspace. For tasks D2B and M2D, our ap-
proach increases the accuracy by about 4%; and about 2%
for tasks B2M, M2D and D2M. The two versions of the
proposed approach achieved very similar results, although
SSKMDA1 is slightly better than SSKMDA2.

Classification Results vs Label Complexity
As we introduced before, the labeled target instances per-
form as pivot points for kernel matching in our proposed
approach. Then we may ask: is the proposed approach sen-
sitive to the number of pivot points? To answer this ques-
tion and study the target domain label complexity of the pro-
posed approach, we conducted another sets of experiments
with varying number of labeled target instances. In the ex-
periments above, we used lt = 10 which is a reasonably
small number. We thus conducted tests with a set of val-
ues lt = {10, 50, 100, 200, 500} here. We still used 1390 la-
beled instances and 10 unlabeled instances from the source
domain, and used 990 unlabeled instances from the target
domain. The classification results are reported on the unla-
beled 990 instances from the target domain as well.

We reported the average results over 10 times’ repeats in
Figure 1 for the versions of the proposed approach and four
others: TargetOnly, SourceTarget, EA++ and Coupled Sub-
space. We can see that both versions of the proposed ap-

proach consistently outperform all the other methods over
all 6 domain adaptation tasks and across a set of different
lt values. Moreover, increasing the number of labeled tar-
get instances leads to significant performance improvement
for the TargetOnly method. The performances of SourceTar-
get, EA++ and Couple Subspace vary in a small degree due
to the fact there are a lot more labeled source instances,
and these labeled source instances and the labeled target
instances have to work out a compatible solution between
them. The performances of the proposed SSKMDA1 and
SSKMDA2 are quite stable across different lt values. This
suggests the proposed method only requires a very few pivot
points to produce a good prediction model for the target in-
stances. The empirical label complexity of the proposed ap-
proach is very small from this perspective.

All these results suggest our proposed method is more ef-
fective to handle domain divergence than the feature repre-
sentation based methods and require much less labeled data
from the target domain.

Conclusion
In this paper, we addressed a key challenge in domain adap-
tation, the problem of feature representation divergence be-
tween two domains, from a novel perspective. We devel-
oped a semi-supervised kernel matching method for domain
adaptation based on a Hilbert Schmidt Independence Cri-
terion (HSIC). By mapping the target domain points into
corresponding source domain points in a transductive (semi-
supervised) way, the classifier trained in the source domain
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can reasonably classify the instances in the target domain
as well. The two versions of the proposed method both
achieved superior results on across domain sentiment clas-
sification tasks comparing to other domain adaptation meth-
ods. The empirical results also suggest the proposed method
has a low label complexity in the target domain, and can
greatly reduce human annotation effort.
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