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Abstract

Recently, training support vector machines with indef-
inite kernels has attracted great attention in the ma-
chine learning community. In this paper, we tackle
this problem by formulating a joint optimization model
over SVM classifications and kernel principal compo-
nent analysis. We first reformulate the kernel principal
component analysis as a general kernel transformation
framework, and then incorporate it into the SVM clas-
sification to formulate a joint optimization model. The
proposed model has the advantage of making consistent
kernel transformations over training and test samples.
It can be used for both binary classification and multi-
class classification problems. Our experimental results
on both synthetic data sets and real world data sets show
the proposed model can significantly outperform related
approaches.

Introduction
Support vector machines (SVMs) with kernels have attracted
a lot attention due to their good generalization performance.
The kernel function in a standard SVM produces a simi-
larity kernel matrix over samples, which is required to be
positive semi-definite. This positive semi-definite property
of the kernel matrix ensures the SVMs can be efficiently
solved using convex quadratic programming. However, in
many applications the underlying similarity functions do not
produce positive semi-definite kernels (Chen et al. 2009).
For example, the sigmoid kernels with various values of the
hyper-parameters (Lin and Lin 2003), the hyperbolic tan-
gent kernels (Smola, Ovari, and Williamson 2000), and the
kernels produced by protein sequence similarity measures
derived from Smith- Waterman and BLAST scores (Saigo
et al. 2004) are all indefinite kernels. Training SVMs with
indefinite kernels poses a challenging optimization problem
since convex solutions for standard SVMs are not valid in
this learning scenario.

Learning with indefinite kernels has been addressed by
many researchers in various ways in the literature. One
most simple and popular way to address the problem is
to identify a corresponding positive semi-definite kernel

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

matrix by modifying the spectrum of the indefinite ker-
nel matrix (Wu, Chang, and Zhang 2005). Several sim-
ple representative spectrum modification methods have been
proposed in the literature, including “clip” (or “denoise”)
which neglects the negative eigenvalues (Graepel et al. 1999;
Pekalska, Paclik, and Duin 2001), “flip” which flips the
sign of the negative eigenvalues (Graepel et al. 1999), and
“shift” which shifts all the eigenvalues by a positive constant
(Roth et al. 2003). More sophisticated approaches simulta-
neously derive a positive semi-definite kernel matrix from
the given indefinite kernel matrix and train a SVM classifier
within unified optimization frameworks (Chen and Ye 2008;
Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007).
A few other works use indefinite similarity matrices as ker-
nels directly by formulating variant optimization problems
from standard SVMs. In (Lin and Lin 2003), a SMO-type
method is proposed to find stationary points for the non-
convex dual formulation of SVMs with nonpositive semi-
definite sigmoid kernels. This method, however, is based
on the assumption that there is a corresponding reproduc-
ing kernel Hilbert space to ensure valid SVM formulations.
The work in (Ong et al. 2004) interprets learning with an
indefinite kernel as minimizing the distance between two
convex hulls in a pseudo-Euclidean space. In (Pekalska and
Haasdonk 2008), the authors extended the kernel linear and
quadratic discriminants to indefinite kernels. The approach
in (Guo and Schuurmans 2009) minimizes the sensitivity of
the classifier to perturbations of the training labels, which
yields an upper bound of classical SVMs.

In this paper, we propose a novel joint optimization model
over SVM classifications and kernel principal component
analysis to address the problem of learning with indefi-
nite kernels. We first reformulate the kernel principal com-
ponent analysis (KPCA) into a general kernel transforma-
tion framework which can incorporate the spectrum modi-
fication methods. Next we incorporate this framework into
the SVM classification to formulate a joint max-min opti-
mization model. Training SVMs with indefinite kernels can
then be conducted by solving the joint optimization prob-
lem using an efficient iterative algorithm. Different from
many related approaches, our proposed model has the ad-
vantage of making consistent transformations over training
and test samples. The experimental results on both synthetic
data sets and real world data sets demonstrated the proposed
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model can significantly outperform the spectrum modifica-
tion methods, the robust SVMs and the kernel Fisher’s dis-
criminant on indefinite kernels (IKFD).

Related Work
The dual formulation of standard SVMs is a linear con-
strained quadratic programming, which provides a natural
form to address nonlinear classification using kernels

max
α

α>e− 1

2
α>Y K0Y α (1)

s.t. α>diag(Y ) = 0, 0 ≤ α ≤ C

where Y is a diagonal matrix of the labels, and K0 is a ker-
nel matrix. The positive semi-definite property of K0 en-
sures the problem (1) to be a convex optimization problem
and thus a global optimal solution can be solved efficiently.
However, when K0 is indefinite, one loses the underlying
theoretical support for the kernel methods and the optimiza-
tion problem (1) is no longer convex. For the nonconvex op-
timization problem (1) with indefinite kernels, with a simple
modification, a sequential minimal optimization (SMO) al-
gorithm can still converge to a stationary point, but not nec-
essarily a global maximum (Lin and Lin 2003).

Instead of solving the quadratic optimization problem (1)
with indefinite kernels directly, many approaches are fo-
cused on deriving a surrogate positive semi-definite kernel
matrix K from the indefinite kernel K0. A simple and popu-
lar way to obtain such a surrogate kernel matrix is to modify
the spectrum of K0 using methods such as clip, flip, and
shift (Wu, Chang, and Zhang 2005). Let K0 = UΛU>,
where Λ = diag(λ1, . . . , λN ) is the diagonal matrix of the
eigenvalues, and U is the orthogonal matrix of correspond-
ing eigenvectors. The clip method produces an approximate
positive semi-definite kernel Kclip by clipping all negative
eigenvalues to zero,

Kclip = Udiag(max(λ1, 0), · · · ,max(λN , 0))U>. (2)

The flip method flips the sign of negative eigenvalues of K0

to form a positive semi-definite kernel matrix Kflip, such
that

Kflip = Udiag(|λ1|, · · · , |λN |)U>. (3)

The shift method obtains the positive semi-definite kernel
matrix Kshift by shifting the whole spectrum of K0 with
the minimum required amount η, such that

Kshift = Udiag(λ1 + η, . . . , λN + η)U>. (4)

These spectrum modification methods are straightforward
and simple to use. However, some information valuable for
the classification model might be lost by simply modify-
ing the spectrum of input kernels. Therefore, approaches
that simultaneously train the classification model and learn
the approximated positive semi-definite kernel matrix have
been developed (Chen and Ye 2008; Chen, Gupta, and
Recht 2009; Luss and d’Aspremont 2007). In (Luss and
d’Aspremont 2007) a robust SVM with indefinite kernels
was proposed, which treats the indefinite kernel as a noisy

observation of the true positive semi-definite kernel and
solves the following convex optimization problem

max
α

min
K

α>e− 1

2
α>Y KY α+ ρ‖K −K0‖2F (5)

s.t. α>diag(Y ) = 0; 0 ≤ α ≤ C; K � 0

where a positive semi-definite kernel K is introduced to ap-
proximate the original K0, and ρ controls the magnitude of
the penalty on the distance between K and K0. An analy-
sis about the indefinite SVM of (5) was conducted in (Ying,
Campbelly, and Girolami 2009), which shows the objective
function is smoothed by the penalty term. In (Chen and Ye
2008), Chen and Ye reformulated (5) into a semi-infinite
quadratically constrained linear program formulation, which
can be solved iteratively to find a global optimal solution.
They further employed an additional pruning strategy to im-
prove the efficiency of the algorithm.

Many approaches mentioned above treat training and test
samples in an inconsistent way. That is, the training is con-
ducted on the proxy positive semi-definite kernel matrix K,
but the predictions on test samples are still conducted us-
ing the original unmodified similarities. This is an obvi-
ous drawback that could degrade the performance of the
produced classification model. Wu et al. (Wu, Chang, and
Zhang 2005) addressed this problem for the case of spectrum
modifications by recomputing the spectrum modification on
the matrix that augments K0 with similarities on test sam-
ples. Chen et al. (Chen, Gupta, and Recht 2009) addressed
the problem of learning SVMs with indefinite kernels us-
ing the primal form of Eq.(5) while further restricting K to
be a spectrum modification of K0. They then obtained the
consistent treatment of training and test samples by solving
a positive semi-definite minimization problem over the dis-
tance between augmented K0 and K matrices. The model
we propose in this paper however can address this incon-
sistency problem in a more principled way without solving
additional optimization problems.

Kernel Principal Component Analysis
In this section, we present the kernel principal component
analysis (KPCA) as a kernel transformation method and then
demonstrate its connection to spectrum modification meth-
ods. Let X = {xi}Ni=1 denote the training samples, where
xi ∈ Rn. To employ kernel techniques, a mapping function,
φ : Rn → Rf , can be deployed to map the data to a typically
high dimensional space. The training samples in this mapped
space can be represented as Φ = [φ(x1), . . . , φ(xN )] and
the standard kernel matrix can be viewed as the inner prod-
uct of the sample matrix in the high dimensional space,
K0 = Φ>Φ.

KPCA
The kernel principal component analysis (Schölkopf, Smola,
and Muller 1999) can be solved by minimizing the distance
between the high dimensional data matrix and the recon-
structed data matrix

min
W

∥∥Φ−WW>Φ
∥∥2
F
, s.t. W>W = Id (6)
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where W , a f × d matrix, can be viewed as a transforma-
tion matrix that transforms the data samples to a lower d-
dimensional subspace Z = W>Φ; ‖·‖F denotes the Frobe-
nius norm; and Id denotes a d×d identity matrix. This min-
imization problem is equivalent to

max
W

tr(W>ΦΦ>W ), s.t. W>W = Id (7)

which has a closed form solution W = Ud, where Ud
is the top d eigenvectors of ΦΦ>. Moreover we have
ΦΦ>WΛ−1d = W , where Λd is a d × d diagonal matrix
with its diagonal values as the top d eigenvalues of ΦΦ>.
Here we assumed the top d eigenvalues are not zeros. Let
V = Φ>WΛ−1d , then we have W = ΦV and (7) can be
reformulated into

max
V

tr(V >K0K0V ), s.t. V >K0V = Id. (8)

After solving the optimization problem above for the V ma-
trix, the transformation matrix, W , and the low dimensional
map of the training samples, Z, can be obtained conse-
quently. Then the transformed kernel matrix for the training
samples in the low dimensional space can be produced

Kv = Z>Z = Φ>WW>Φ = K0V V
TK0. (9)

Although the standard kernel principal component analysis
assumes the kernel matrix K0 to be positive semi-definite,
the optimization problem (8) we derived above can be gen-
eralized to the case of indefinite kernels if V is guaranteed to
be a real valued matrix by selecting a proper d value. Even
when K0 is an indefinite kernel matrix, Kv is still guaran-
teed to be positive semi-definite for real valued V . Thus the
equation (9) provides a principle strategy to transform an in-
definite kernel matrix K0 to a positive semi-definite matrix
Kv with a proper selected V . Moreover, given a new sam-
ple x, it can be transformed by W>φ(x) = V >Φ>φ(x) =
V >k0, where k0 denotes the original similarity vector be-
tween the new sample x and training samples. The trans-
formed similarity vector between the new sample x and the
training samples is kv = K0V V

T k0. By using this trans-
formation strategy, we can easily transform the test samples
and the training samples in a consistent way.

Connections to Spectrum Modifications
The kernel transformation strategy we developed above is a
general framework. By selecting different V matrix, various
kernel transformations can be produced. We now show that
the spectrum modification methods reviewed in the previous
section can be equivalently reexpressed as kernel transfor-
mations in the form of Eq.(9) with proper V matrices.

Assume K0 = UΛU>, where U is an orthogonal matrix
and Λ is a diagonal matrix of real eigenvalues, that is, Λ =
diag(λ1, . . . , λN ). The clip spectrum modification method
can be reexpressed as

Kclip = K0VclipV
>
clipK0 (10)

for a constructed Vclip matrix

Vclip = U |Λ|− 1
2 diag

(
I{λ1>0}, . . . , I{λN>0}

)
(11)

where |Λ| = diag(|λ1|, . . . , |λN |), and I{·} is an indicator
function. The flip method can be reexpressed as

Kflip = K0VflipV
>
flipK0 (12)

for Vflip = U |Λ|− 1
2 . (13)

Similarly, the shift method is reexpressed as

Kshift = K0VshiftV
>
shiftK0 (14)

for Vshift = U |Λ|−1(Λ + ηI)
1
2 . (15)

Training SVMs with Indefinite Kernels
In this section, we address the problem of training SVMs
with indefinite kernels by developing a joint optimization
model over SVM classifications and KPCA. Our model si-
multaneously trains a SVM classifier and identifies a proper
transformation V matrix. We present this model for binary
classifications first and then extend it to address multi-class
classification problems. An iterative optimization algorithm
is developed to solve the joint optimizations.

Binary classifications
We first extend the standard two-class SVMs to formulate a
joint optimization problem of SVMs and the kernel principal
component analysis

min
W,w,b,ξ

1

2
w>w + C

∑
i

ξi + ρ
∥∥Φ−WW>Φ

∥∥2
F

(16)

s.t. yi(w>W>Φ(:, i) + b) ≥ 1− ξi, ξi ≥ 0, ∀i;
W>W = Id;

where yi ∈ {+1,−1} is the label of the ith training sam-
ple, Φ(:, i) is the ith column of the general feature ma-
trix representation Φ, C is the standard tradeoff parame-
ter in SVMs, and ρ is a parameter to control the trade-
off between the SVM objective and the reconstruction er-
ror of KPCA. Previous approaches in (Chen and Ye 2008;
Chen, Gupta, and Recht 2009; Luss and d’Aspremont 2007)
use the distance between the proxy kernelK and the original
K0 as a regularizer for SVMs. The joint optimization model
proposed here can be similarly interpreted as employing the
distance between the proxy and original feature vectors as a
regularizer. However, for the problem of learning with indef-
inite kernels, the feature vectors are not real valued vectors
and they are actually only available implicitly through kernel
matrices. Therefore, we need to reformulate the optimization
problem in terms of kernels.

By exploiting the derivation results in the previous sec-
tion, we propose to replace the distance regularizer in (16)
with a kernel transformation regularizer (8) to obtain an al-
ternative joint optimization in terms of the input kernel

min
w,b,ξ,V

1

2
w>w + C

∑
i

ξi − ρ tr(V >K0K0V ) (17)

s.t. yi(w>V >K0(:, i) + b) ≥ 1− ξi, ξi ≥ 0, ∀i;
V >K0V = Id; K0V V

>K0 � 0.
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When V is constrained to be a real valued matrix, the con-
straint K0V V

TK0 � 0 can be dropped. We will assume V
has real values from now on. More conveniently, following
the dual formulation of standard SVMs, we consider the reg-
ularized dual SVM formulation and focus on the following
optimization problem

max
α

min
V

α>e− 1

2
α>Y K0V V

TK0Y α (18)

−ρ tr(V >K0K0V )

s.t. α>diag(Y ) = 0; 0 ≤ α ≤ C;

V >K0V = Id;

where Y = diag(y1, . . . , yN ) is a diagonal matrix.

Multi-class Classifications

Multi-class classification problems can be solved by train-
ing multiple binary SVMs (Hsu and Lin 2002). In this pa-
per, we deploy the 1-vs-1 strategy for multi-class classifica-
tion. A simple deployment of this strategy requires training
k(k − 1)/2 binary classifiers, each for a pair of classes, for
a k-class problem. This means that an optimization problem
(18) has to be solved for each pair of classes and a different
proxy kernels Kab will be learned for each pair of classes
{a, b}, by learning a different Vab. However, with different
proxy kernels Kab for each pair of classes, the consistent
transformation of samples for the overall multi-class classi-
fication cannot be maintained. To ensure a data sample has
a consistent representation in all binary classification prob-
lems, we construct a framework to use a single target (proxy)
kernel matrix Kv for all binary classifications by introduc-
ing a set of sub-kernel transformation matrix {Dab}1≤a<b≤k
and address all the k(k − 1)/2 binary classifications in one
joint optimization.

Assume the training set has N samples and each class a
has Na samples. We first consider a given pair of classes a
and b. LetNab = Na+Nb be the sample size of the class set
{a, b}, Lab = [`ab1 , . . . , `

ab
Nab

] denote a 1×Nab vector whose
jth entry is the index value for the jth sample of the class set
{a, b} in the original training set, and Kab denote the proxy
kernel matrix of the samples in these two classes. Thus the
proxy kernel Kv of all training samples is a N ×N matrix,
and the Kab, a Nab ×Nab matrix, is its sub-matrix. We now
construct an indicator matrix Dab ∈ {0, 1}N×Nab as below
to build a connection between these two kernel matrices

Dab(i, j) =

{
1, if `abj = i
0, otherwise. .

Given Dab, the kernel matrix Kab of class a and b can be
computed as

Kab = Kv(L
ab, Lab) = D>abKvDab. (19)

Thus Dab can be viewed as a sub-kernel transformation ma-
trix. Note thatKv = K0V V

>K0. Then we can combine the

k(k − 1)/2 classifications in a joint optimization problem

max
α

min
V

−ρ tr(V >K0K0V ) +
∑

1≤a<b≤k

(
α>abe−

1

2
α>abYabD

T
abK0V V

TK0DabYabαab

)
(20)

s.t. α>abdiag(Yab) = 0, ∀1 ≤ a < b ≤ k;

0 ≤ αab ≤ C, ∀1 ≤ a < b ≤ k;

V >K0V = Id

where α denotes a collection of {αab}1≤a<b≤k, and Yab is
a diagonal matrix whose diagonal entries are the binary la-
bels for the binary classification problem over classes {a, b}.
When k = 2, the binary classification problem in (18) can
be recovered from (20).

An Iterative Algorithm
The objective of the outer maximization problem in (20) is a
pointwise minimum of a family of concave quadratic func-
tions of α, and hence is a concave function of α. Thus (20)
is a concave maximization problem over α subject to linear
constraints (Boyd and Vandenberghe 2004). In this section,
we develop an iterative algorithm to solve the optimization
problem (20). In each iteration of the algorithm, V and α
are alternatively optimized. When V is fixed, we can di-
vide the maximization problem into k(k − 1)/2 standard
binary SVMs and optimize each αab independently. When
{αab}1≤a<b≤k are fixed, V can be computed by solving the
following optimization problem

max
V

tr(V >K0MK0V ) s.t. V >K0V = Id (21)

where

M =
1

2

∑
1≤a<b≤k

(DabYabαabα
>
abYabD

>
ab) + ρIN . (22)

The above problem can be solved via the following gen-
eral eigenvalue problem,

K0MK0v = λK0v. (23)

Note that for positive ρ values, M is guaranteed to be pos-
itive definite. Thus we will solve the following eigenvalue
problem instead

MK0MK0v = λMK0v, (24)
MK0u = λu, (25)

for u = MK0v. Moreover, we assume K0 is invertible 1.
Let U = [u1, . . . , ud] be the top d largest eigenvectors of
MK0, then V = K−10 M−1U . Finally the optimal solution
of (21) can be recovered by setting V ∗ = [v∗1, . . . , v

∗
d], where

v∗i = vi/
√

v>i K0vi. Here the renormalization is necessary
to ensure the orthogonal constraints in (21) for indefiniteK0.

Determining feasible d values. To ensure each vi be real
values, we should select d to guarantee that each ui satisfies
u>i K0ui > 0. To determine d, we have the following lemma

1It is easy to remove the zero eigenvalues of K0 by simply
adding a tiny positive/negative diagonal matrix εIN without chang-
ing the distribution of K0’s eigenvalues.
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Lemma 1 For each eigenpair, (λi,ui), of MK0, if λi > 0,
then we have u>i K0ui > 0.

Proof: Since MK0ui = λiui, we have

u>i K0MK0ui = λiu>i K0ui.

Then u>i K0ui = (u>i K0MK0ui)/λi.

Since both K0MK0 and K0 are symmetric matrices, ui has
real values. Moreover K0MK0 is positive semi-definite ac-
cording to (22). Therefore u>i K0MK0ui

λi
> 0 �.

According to Lemma 1, the top d eigenvectors {v∗i }1≤i≤d
have real values, if d ≤ d0, where d0 is the number of pos-
itive eigenvalues of MK0. As we discussed before, M is
guaranteed to be positive definite for positive ρ values, and
we assume K0 is invertible. It is easy to show MK0 and
M

1
2K0M

1
2 have the same eigenvalues by using a similar

transformation from (23) to (24). According to the Sylvester
law of inertia (Golub and Loan 1996), M

1
2K0M

1
2 and K0

have the same inertia, and thus have the same number of pos-
itive eigenvalues. Therefore the value d0 can be determined
directly from K0.

Experiments
We conducted experiments on both synthetic data sets and
real world data sets to compare the proposed method,
denoted as SVM-CA, with a few spectrum modification
methods (clip, flip, and shift), the robust SVM (Luss and
d’Aspremont 2007), and the kernel Fisher’s discriminant on
indefinite kernels (IKFD) (Pekalska and Haasdonk 2008).
We used the robust SVM code found on the authors’ web-
site2. In the experiments below, the regularization param-
eter ρ for SVM-CA, robust SVM and IFKD, the parame-
ter C in SVMs, the reduced dimensionality d in SVM-CA
were all selected by 10-fold cross-validations from the fol-
lowing candidate sets, ρ, C ∈ {0.01, 0.1, 1, 10, 100}, and
d ∈ {2, 3, 5, 8, 13, 21, 34, 55}.

Experiments on Synthetic Data Sets
We constructed four 3-class 2-dimensional data sets, each
with 300 samples. For each data set, the three classes, each
with 100 samples, are generated using three Gaussian dis-
tributions with the covariance matrix Λ = diag(σ2, σ2) and
mean vectors µ1 = (−3, 3), µ2 = (3,−3) and (3

√
3, 3
√

3),
respectively. We generate the similarity kernel matrix by
adding additive white Gaussian noise to the linear kernel ma-
trix, K0(i, j) = xTi xj + zij , where zij ∼ N(0, η). With the
Gaussian noise, the kernel K0 is not positive semi-definite.

By considering different σ2 and η values, synthetic data
sets with different properties can be generated. We consid-
ered two values for σ2, σ2 = 2 and σ2 = 4, and two differ-
ent η values, η = 20 and η = 100. With larger σ2 value, the
generated data is harder to be separable. With larger η, the
kernel matrixK0 can be more indefinite. With different pairs
of (σ2, η), we obtained four synthetic data sets. The charac-
teristics of the data sets are given in Table 1, where λmin and

2http://www.tau.ac.il/∼rluss/

λmax are the smallest and largest eigenvalues of each syn-
thetic indefinite kernel matrix K0, respectively,

∑
λ+i and∑

λ−j are the sums of the positive and negative eigenvalues
of K0, respectively.

We run experiments on the four synthetic data sets com-
paring the SVM-CA to the other five approaches. Our ex-
perimental results in terms of classification error rates are
reported in Table 1. These results are averaged over 50 runs
using 80% of the data as training set and the remainder as
test set. It is apparent that the values of σ2 and η determine
the hardness of the classification problems, and thus affect
the performance of these approaches. When either σ2 or η
gets larger, the error rate for each approach increases. When
η is small, the spectrum modification methods, especially
the spectrum clip, yield good performance. When η is large,
which means the kernel K0 is far away from being positive
semi-definite, the spectrum modifications are inefficient to
capture the information provided by the indefinite kernels
and thus produce inferior results. Among the three spectrum
modification approaches, the clip method obtains the lowest
error rates on all the four data sets. The robust SVM is highly
related to the spectrum clip, and it yields similar results as
the clip method. Both IKFD and SVM-CA approaches ob-
tain much better results than the other four approaches. They
produced good results even on the data sets with large η and
large σ2. Overall, the proposed SVM-CA produced the best
results comparing to all the other approaches.

Experiments on Real World Data Sets
We then conducted experiments on several real world data
sets used for learning with indefinite kernels, including a few
data sets used in (Chen et al. 2009), i.e., yeast, amazon, au-
ral sonar, voting, patrol and protein, and a data set collected
in (Pekalska and Haasdonk 2008), i.e., catcortex. These data
sets are represented by similarity (or dissimilarity) matrices
produced using different similarity measures. For example,
a sequence-alignment similarity measure is used for the pro-
tein data set, the Smith-Waterman E-value is used to mea-
sure the similarity between two protein sequences for the
yeast data set, etc. We also used the glass data set obtained
from the UCI machine learning repository (Newman et al.
1998), for which we used a sigmoid kernel to compute an
indefinite kernel matrix K0. These data sets together repre-
sent a diverse set of indefinite similarities. We assumed sym-
metric similarity kernel matrix K0 in our proposed model.
When the original matrix K0 given in the data is not sym-
metric, we reset it as K0 = (K>0 + K0). When the original
matrix K0 in the data represents dissimilarity, we just re-
set it as K0 = m −K0, where m is the largest entry of the
original matrixK0. There are six binary (two-class) and four
multi-class data sets in total. We computed the eigenvalue in-
formation of the kernel matrix K0 for each data set as well.
The indefiniteness measure |

∑
λ−i∑
λ+
j

| obtained for each data

set is given as follows: (Yeast5v7: 0.56), (Yeast5v12: 0.56),
(Yeast7v12: 0.57), (Amazon: 0.01), (Aural Sonar: 0.26),
(Voting: 0.00), (Protein: 0.25), (Glass: 0.00), (Patrol: 0.36)
and (Catcortex: 0.10). Here the value 0.00 denotes a positive
value smaller than 0.005.
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Table 1: Characteristics of the four synthetic data sets and the average classification errors (%) of the six comparison methods.

Data σ2 η λmin
∣∣ λmin

λmax

∣∣ ∣∣∑λ−i∑
λ+
j

∣∣ Clip Flip Shift Robust SVM IKFD SVM-CA

Synth 1 2 20 -143 .02 .47 1.50 2.00 15.83 1.53 1.20 0.72
Synth 2 2 100 -693 .11 .82 9.67 11.00 22.33 9.05 2.43 1.83
Synth 3 4 20 -140 .02 .44 4.00 4.83 21.50 4.11 1.69 1.17
Synth 4 4 100 -702 .11 .80 16.17 16.67 38.17 15.24 4.70 3.50

Table 2: Comparison results in terms of classification error rates (%) on binary classification data sets. The means and standard
deviations of the error rates over 50 random repeats are reported.

Dataset Yeast5v7 Yeast5v12 Yeast7v12 Amazon Aural Sonar Voting

Clip+SVM 40.0±1.1 20.0±1.3 25.5±1.2 10.3±0.9 11.2±0.8 3.0±0.3
Flip+SVM 46.0±0.6 17.8±1.2 22.0±1.0 11.0±0.9 16.8±0.9 3.2±0.3
Shift+SVM 35.0±0.5 42.8±1.5 46.7±1.9 16.0±0.8 17.3±0.9 5.8±0.5

IKFD 34.2±1.0 17.5±1.0 14.0±1.0 15.6±0.9 8.4±0.6 5.7±0.3
Robust SVM 29.0±1.0 18.0±1.0 15.0±0.9 8.8±0.8 11.0±0.9 3.3±0.3

SVM-CA 25.0±0.9 10.7±0.8 10.5±0.8 9.5±0.9 8.6±0.6 2.7±0.3

We compared our proposed SVM-CA to the other five
approaches on both the six binary data sets and the four
multi-class data sets. The experimental results are reported
in Table 2 and Table 3 respectively. These results are pro-
duced over 50 runs using randomly selected 90% of the data
samples as training set and the remainder as test set. Both
the average classification error rates and their standard de-
viations are reported. Among the three spectrum modifica-
tion algorithms, the spectrum clip obtained the lowest error
rates on five of the ten data sets, while spectrum flip and
shift obtained the lowest error rates on four and one data
sets, respectively. The robust SVM slightly outperformed the
spectrum modifications on eight data sets. The IKFD out-
performed the spectrum modifications on five data sets. Our
proposed SVM-CA clearly outperformed all the other ap-
proaches and achieved the lowest classification error rates
on four of the total six binary data sets and all the four
multi-class data sets. On data sets such as Protein, Patrol and
Catcortex, where the |

∑
λ−i∑
λ+
j

| values are large, the improve-

ments achieved by the proposed approach over the other
SVM training methods are largely significant. These results
on both synthetic and real world data sets demonstrated the
effectiveness of the proposed joint optimization model.

Convergence Experiments. We also conducted exper-
iments to study the convergence property of the proposed
iterative algorithm in Section 4.3. The experiments are con-
ducted on two data sets protein and catcortex. In each ex-
periment, we plot the objective values of the SVM-CA for-
mulation in (20) after each update of V and α. The plots
are shown in Figure 1. We can see that the objective values
of the maximization and minimization sub-problems gradu-
ally converges within 10 iterations on the two data sets. This
suggests the iterative algorithm we proposed can effectively
solve the target convex optimization.

Table 3: Comparison results in terms of classification error
rates (%) on multi-class classification data sets. The means
and standard deviations of the error rates over 50 random
repeats are reported.

Dataset Protein Glass Patrol Catcortex

Clip+SVM 6.3±0.7 41.1±1.2 48.6±1.5 10.5±2.0
Flip+SVM 4.0±0.7 39.4±1.1 44.8±1.4 13.5±2.3
Shift+SVM 5.5±0.7 38.3±0.9 51.4±1.5 49.0±4.0

IKFD 8.2±0.9 43.3±1.1 25.7±1.8 12.5±1.9
Robust SVM 16.4±1.1 39.1±1.0 31.3±1.4 9.4±1.7

SVM-CA 2.5±0.5 37.3±0.8 12.4±0.8 4.5±1.4

Conclusion
In this paper, we investigated the problem of training SVMs
with indefinite kernels. We first reformulated the kernel prin-
cipal component analysis (KPCA) to a kernel transforma-
tion model and demonstrated its connections to spectrum
modification methods with indefinite kernels. We then pre-
sented a novel joint optimization model over SVM classifi-
cations and principal component analysis to conduct SVM
training with indefinite kernels assisted by kernel compo-
nent analysis. The proposed model can be used for both bi-
nary classifications and multi-class classifications. An ef-
ficient iterative algorithm was proposed to solve the pro-
posed joint optimization problem. Moreover, the proposed
approach can make consistent transformations over training
and test samples. Our experimental results on both synthetic
data sets and real world data sets demonstrated the proposed
approach can significantly outperform the spectrum modi-
fication methods, the robust SVMs and the kernel Fisher’s
discriminant on indefinite kernels (IKFD).
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(a) Protein

(b) Catcortex

Figure 1: Convergence of SVM-CA on the Protein and Cat-
cortex data sets. The Obj(α) and Obj(V ) denote the objec-
tive values after updating V and α, respectively, at each iter-
ation.
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