
Kernel-Based Reinforcement Learning on Representative States

Branislav Kveton
Technicolor Labs

Palo Alto, CA
branislav.kveton@technicolor.com

Georgios Theocharous
Yahoo Labs

Santa Clara, CA
theochar@yahoo-inc.com

Abstract

Markov decision processes (MDPs) are an established frame-
work for solving sequential decision-making problems under
uncertainty. In this work, we propose a new method for batch-
mode reinforcement learning (RL) with continuous state vari-
ables. The method is an approximation to kernel-based RL on
a set of k representative states. Similarly to kernel-based RL,
our solution is a fixed point of a kernelized Bellman operator
and can approximate the optimal solution to an arbitrary level
of granularity. Unlike kernel-based RL, our method is fast. In
particular, our policies can be computed in O(n) time, where
n is the number of training examples. The time complexity of
kernel-based RL is Ω(n2). We introduce our method, analyze
its convergence, and compare it to existing work. The method
is evaluated on two existing control problems with 2 to 4 con-
tinuous variables and a new problem with 64 variables. In all
cases, we outperform state-of-the-art results and offer simpler
solutions.

Introduction
Markov decision processes (MDPs) (Puterman 1994) are an
established framework for sequential decision making under
uncertainty. If a decision problem is Markovian, has a small
number of states, and its model is known, it can be typically
easily solved as an MDP. However, in practice, a good model
is often unavailable and the state of the problem is described
by continuous variables. This class of problems is inherently
hard to solve and has been subject to active research over the
past 30 years (Sutton and Barto 1998).

In this paper, we propose a novel approach to batch-mode
reinforcement learning (RL) with continuous state variables.
The approach does not need the model of the MDP or a para-
metric approximation of its value function to solve the prob-
lem. Our solution consists of two main steps. First, we cover
the state space of the problem using cover trees and discover
k representative states. Second, we summarize the dynamics
of the problem in these states and solve it by policy iteration.
Our solution is intuitive, easily implementable, and has only
one tunable parameter, the number of representative states k.
In the experimental section, we show that our method learns
better policies than state-of-the-art algorithms and is capable
of solving high-dimensional MDPs.

Our work addresses a major challenge in RL, learning of a
good representation of a problem. We represent the problem
as statistics in representative states and extrapolate to unseen

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data using kernels (Ormoneit and Sen 2002). In comparison
to kernel-based RL, our method is computationally efficient.
In particular, our solutions are computed in only O(n) time,
where n denotes the number of training examples. The time
complexity of kernel-based RL is Ω(n2). Since our method
is a kernel-based approximation, it has many favorable prop-
erties. For instance, our solution is a fixed point of a kernel-
ized Bellman operator. Moreover, it converges to the optimal
value function as the complexity of the approximation k and
the sample size n increase.

We make the following three assumptions. First, all prob-
lems can be simulated. The simulator of the problem outputs
a sequence of 4-tuples {(xt, at, rt,x′t)}

n
t=1, where xt, at, rt,

and x′t refer to the state, action, reward, and next state in the
sample t, respectively. Second, the state space is metric and
d(·, ·) is the corresponding distance function. For simplicity,
we assume that the function is given by d(x,x′)=‖x− x′‖2
but note that our results generalize to any metric. Finally, the
state space is normalized such that d(x,x′) ≤ 1 for all x and
x′.

Markov decision processes
A Markov decision process (MDP) (Bellman 1957) is given
by a 4-tupleM=(S,A, P,R), where S is a set of states, A
is a set of actions, P (s′ | s, a) is a transition function, which
describes the dynamics of the MDP, and R(s, a) is a reward
model, which assigns rewards to state-action configurations.
The quality of MDP policies π is typically measured by their
infinite horizon discounted reward E[

∑∞
t=0 γ

trt], where γ is
a discount factor and rt is the immediate reward at time t. In
this setting, the optimal policy is stationary and deterministic
(Puterman 1994), and can be defined greedily with respect to
the optimal value function V ∗, which is the fixed point of the
Bellman equation (Bellman 1957):

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′ | s, a)V ∗(s′)

]
. (1)

The optimal value function can be found by policy iteration,
value iteration, or linear programming (Puterman 1994).

This paper focuses on continuous-state MDPs. Formally,
a continuous-state MDP is a tupleM=(X,A, P,R), where
X = X1×· · ·×Xm is a state space, which is factored intom
continuous variables, A is a set of actions, P (x′ | x, a) is a
transition model, andR(x, a) is a reward function. Similarly
to the discrete-state model, the optimal value function V ∗ is

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

977

the fixed point of the Bellman equation:

V ∗(x) = max
a

[
R(x, a) + γEP (x′|x,a)[V

∗(x′)]
]
. (2)

In general, the computation of the exact solution V ∗ is hard
because it may not have a finite support.

Related work
State space discretization and value function approximations
are two main approaches to solving continuous-state MDPs.
Both techniques have been studied and analyzed extensively.
For example, Chow and Tsitsiklis (1991) analyze discretiza-
tion of the state space on a uniform grid, Bertsekas and Tsit-
siklis (1996) propose several methods for fitting linear value
function approximations, Munos and Moore (1999) use KD-
trees to discretize the state space at multiple levels of granu-
larity, and Kveton et al. (2006) show how to learn the linear
value function using linear programming. All of these meth-
ods rely on the model of the MDP and cannot be used when
the model is unknown.

When the model is unavailable, the optimal value function
can be still approximated using reinforcement learning (RL).
Sutton and Barto (1998) provide a comprehensive overview
of existing RL algorithms. The most relevant to this work is
kernel-based RL (Ormoneit and Sen 2002). In kernel-based
RL, the Bellman operator is approximated by an operator on
the sample {(xt, at, rt,x′t)}

n
t=1:

TλV (x) = max
a

∑
t∈τa

λaxtx [rt + γV (x′t)] , (3)

where τa is a subset of indices t where at = a, and λaxtx is a
normalized kernel such that

∑
t∈τa λ

a
xtx = 1 for every state

x and action a. Because of the normalization, it is helpful to
look at the kernel as a function of xt, which is parameterized
by x and a. Moreover, the backup operator Tλ can be viewed
as being defined by a convex combination of transitions and
rewards from the underlying model.

Kernel-based reinforcement learning has many nice prop-
erties (Ormoneit and Sen 2002). First, the operator Tλ has a
unique fixed point. Second, the fixed point converges to the
optimal value function for the Gaussian kernel:

λaxtx ∝ exp

[
−d

2(xt,x)

2σ2

]
(4)

when n→∞ and σ → 0. Finally, note that the operator Tλ
(Equation 3) depends on the value function V in n states x′t.
Therefore, the backup of V by Tλ can be computed in θ(n2)
time because V needs to be updated in only n states and the
cost of each update is θ(n).

The time complexity of kernel-based RL is Ω(n2). There-
fore, the method is impractical when the sample size is large.
To make it practical, Jong and Stone (2006) proposed several
speedups, such as sampling of states through exploration and
prioritized sweeping. Fitted Q iteration (FQI) (Ernst, Geurts,
and Wehenkel 2005) is the first practical and general method
for RL with kernels. The method is a variation of Q iteration,
where the exact Q function is replaced by its approximation.
The approximation is fit by a non-parametric regressor, such

as a classification and regression tree (CART). Naturally, the
quality of FQI policies and their computation time depend a
lot on the regressor. In the experimental section, we compare
our policies to fitted Q iteration with CART. This is the best
performing regressor that can be learned in time comparable
to our method (Ernst, Geurts, and Wehenkel 2005).

Barreto et al. (2011) recently proposed factorization of the
kernel matrix in RL. The resulting algorithm is similar to our
approach because the factorization is done on representative
states. Note that Barreto et al. (2011) derive an upper bound
on the error of their solutions but do not show how to choose
representative states to minimize it. The upper bound in our
paper can be directly minimized using cover trees.

Kernel-based RL on representative states
In this work, we approximate the kernelized backup operator
Tλ (Equation 3) on k representative states Z={z1, . . . , zk},
which summarize the sample. In particular, we define a new
operator:

T̃λV (x) = max
a

∑
t∈τa

λ̃aξ(xt)x [rt + γV (ξ(x′t))] , (5)

where ξ : x→ z is a function that maps states to the closest
representative state. Similarly to kernel-based RL, the kernel
λ̃aξ(xt)x is normalized such that

∑
t∈τa λ̃

a
ξ(xt)x

= 1 for every
state x and action a.

The operator T̃λ can be restated in terms of the representa-
tive states. Before we show how, we introduce new notation.
The set of indices t where at = a, ξ(xt)= z, and ξ(x′t)= z′

is denoted by τazz′ . Moreover, we introduce two supersets of
τazz′ , τ

a
z =

⋃
z′ τ

a
zz′ and τa =

⋃
z τ

a
z . The cardinality of the

sets τazz′ , τ
a
z , and τa is nazz′ , n

a
z , and na, respectively. Based

on Equation 5 and the new notation, it follows that:

T̃λV (x)

= max
a

∑
t∈τa

λ̃aξ(xt)x [rt + γV (ξ(x′t))]

= max
a

∑
z

∑
t∈τaz

λ̃azx [rt + γV (ξ(x′t))]

= max
a

∑
z

λ̃azxn
a
z

∑
t∈τaz

rt
naz

+ γ
∑
z′

∑
t∈τa

zz′

V (ξ(x′t))

naz


= max

a

∑
z

λ̃azxn
a
z

∑
t∈τaz

rt
naz

+ γ
∑
z′

nazz′

naz
V (z′)

 . (6)

The terms:

λ̂azx = λ̃azxn
a
z , r̂az =

∑
t∈τaz

rt
naz
, p̂azz′ =

nazz′

naz
(7)

can be viewed as a model in the space of representative states
and the final form of the operator T̃λ is given by:

T̃λV (x) = max
a

∑
z

λ̂azx

[
r̂az + γ

∑
z′

p̂azz′V (z′)

]
. (8)

978

Figure 1: Covering the state space of the mountain car prob-
lem by representative states (yellow dots) induced by a cover
tree. The representative states correspond to the nodes at the
4th and 5th levels of the tree. The value functions are learned
by kernel-based RL on representative states.

Note that the operator T̃λ depends on the value function V in
k states. Therefore, the backup of V by T̃λ can be computed
in θ(k3) time because V needs to be updated in only k states
and the cost of each update is θ(k2). In comparison, a single
backup in kernel-based RL takes θ(n2) time.

Algorithm
Kernel-based RL on representative states involves four steps.
First, we sample the problem using its simulator. Second, we
map every sampled state xt and x′t to its representative state.
Third, we build a model in the space of representative states
(Equation 7). Finally, we use policy iteration to find the fixed
point of Equation 8

The time complexity of sampling and mapping to the clos-
est representative state isO(n) andO(kn), respectively. The
model can be built inO(n+k2) time and each step of policy
iteration step consumes O(k3) time. Hence, the overall time
complexity of our approach is O(kn+k3). If the number of
representative states k is treated as a constant with respect to
n, the time complexity of our approach is O(n).

Figure 1 shows examples of value functions computed by
policy iteration. Note that the value functions improve as the
number of representative states k increases. In the rest of the
section, we analyze our solutions and discuss how to choose
the representative states.

Theoretical analysis
First, we show that the operator T̃λ is a contraction mapping.
Therefore, it has a unique fixed point.

Proposition 1. The operator T̃λ is a contraction mapping.

Proof: Let V and U be value functions on the state space X.

Then:∥∥∥T̃λV − T̃λU∥∥∥
∞
≤ γmax

x,a

∑
z,z′

λ̂azxp̂
a
zz′ |V (z′)− U(z′)|

≤ γ ‖V − U‖∞ .

The first step of the proof follows from Equation 8, the upper
bound |maxa f(a)−maxa g(a)|≤maxa |f(a)− g(a)| that
holds for any two functions f and g, and the observation that
λ̂azx and p̂azz′ (Equation 7) are non-negative. The second step
is based on the fact that

∑
z,z′ λ̂

a
zxp̂

a
zz′ = 1 for every state x

and action a. Thus, all terms
∑
z,z′ λ̂

a
zxp̂

a
zz′ |V (z′)− U(z′)|

can be bounded by ‖V − U‖∞. This concludes our proof.

Second, we show that the fixed point of T̃λ approximates the
fixed point of Tλ. Since the fixed point of Tλ approaches V ∗
as n→∞ and σ→0 (Ormoneit and Sen 2002), we conclude
that our solution can approximate the optimal value function
V ∗ to an arbitrary level of granularity.

We make the following assumptions. First, all value func-
tions V are Lipschitz continuous with the Lipschitz factor of
LV . Second, λaxtx (Equation 3) and λ̃aξ(xt)x (Equation 5) are
normalized Gaussian kernels (Equation 4). Note that for any
given x and a, the difference in the values of the kernels can
be bounded as |λaxtx− λ̃

a
ξ(xt)x

| ≤ Lσ
∆|τa|d(xt, ξ(xt)), where

Lσ is the Lipschitz constant of a Gaussian kernel, which has
the radius of σ, and ∆ |τa| is the minimum normalizing con-
stant, where ∆= exp[−1/(2σ2)]. The normalizing constant
can be bounded from below because the distance of any two
states x and x′ is bounded as d(x,x′) ≤ 1.
Proposition 2. The max-norm error between the fixed points
of the operators Tλ and T̃λ is bounded by:

dmax

1− γ

[
Lσ
∆
rmax + γ

(
LV +

Lσ
∆
Vmax

)]
,

where dmax is the maximum distance between a state and its
representative state, rmax is the maximum reward, and Vmax

is the maximum of the value function.
Proof: First, note that the max-norm error between the fixed
points of two contraction mappings Tλ and T̃λ is bounded as:∥∥∥T̃ (n)

λ V − T (n)
λ V

∥∥∥
∞
≤
∥∥∥T̃λT̃ (n−1)

λ V − T̃λT (n−1)
λ V

∥∥∥
∞

+∥∥∥T̃λT (n−1)
λ V − TλT (n−1)

λ V
∥∥∥
∞

≤ γ
∥∥∥T̃ (n−1)

λ V − T (n−1)
λ V

∥∥∥
∞

+ ε

≤ ε

1− γ
,

where ε =
∥∥∥T̃λV − TλV ∥∥∥

∞
is the max-norm error between

one Tλ and T̃λ backup for any value function V . Second, the
error ε can be rewritten based on Equations 3 and 5 as:

ε ≤ max
x,a

∣∣∣∣∣∑
t∈τa

(λ̃aξ(xt)xrt − λ
a
xtxrt)

∣∣∣∣∣+
γmax

x,a

∣∣∣∣∣∑
t∈τa

(λ̃aξ(xt)xV (ξ(x′t))− λaxtxV (x′t))

∣∣∣∣∣ .

979

The two terms in the right-hand side of the inequality can be
written in the form |〈p, f〉 − 〈q, g〉|, where p, f , q, and g are
vectors such that ‖p‖1 = 1 and ‖q‖1 = 1, and bounded as:

|〈p, f〉 − 〈q, g〉| = |〈p, f〉 − 〈p, g〉+ 〈p, g〉 − 〈q, g〉|
≤ |〈p, f − g〉|+ |〈p− q, g〉|
≤ ‖p‖1 ‖f − g‖∞ + ‖p− q‖1 ‖g‖∞ ,

where the last step is due to the Hölder’s inequality. Finally,
we bound the resulting L1 and L∞ norms as:∑

t∈τa |λ̃aξ(xt)x| = 1∑
t∈τa |λ̃aξ(xt)x − λ

a
xtx| ≤

Lσ
∆
dmax

maxt∈τa |rt − rt| = 0

maxt∈τa |rt| ≤ rmax

maxt∈τa |V (ξ(x′t))− V (x′t)| ≤ LV dmax

maxt∈τa |V (x′t)| ≤ Vmax

and get an upper bound:

ε ≤ Lσ
∆
dmaxrmax + γ

(
LV dmax +

Lσ
∆
dmaxVmax

)
.

The claim of the proposition follows directly from substitut-
ing the upper bound into the first inequality.

Cover tree quantization
Proposition 2 suggests that the max-norm error between the
fixed points of the operators Tλ and T̃λ is bounded when the
cover error is bounded:

dmax = max
t

min
z∈Z

d(xt, z). (9)

Unfortunately, finding the set that minimizes the error of the
cover is NP hard. Suboptimal solutions can be computed by
data quantization (Gray and Neuhoff 1998) techniques. Two
most popular approaches are k-means clustering and random
sampling. In this work, we utilize cover trees (Beygelzimer,
Kakade, and Langford 2006) because they allow us to find a
set that approximately minimizes the cover error.

A cover tree (Beygelzimer, Kakade, and Langford 2006)
is a tree-like data structure that covers data in a metric space
at multiple levels of granularity. At depth j, the tree induces
a set of representative points that are at least 1/2j apart from
each other and no data point is farther than 1/2j−1 from the
closest representative point. Therefore, the error of the cover
at depth j is 1/2j−1. Figure 1 shows examples of two cover
tree covers.

Cover trees have a lot of nice properties. First, the deepest
level of the tree with no more than k nodes covers data points
within a multiplicative factor of 8 of the error of the optimal
cover with k points. This is guaranteed for all k ≤ n. Hence,
the granularity of discretization does not have to be specified
in advance. Second, cover trees can be easily updated online
inO(log n) time per data point. Finally, the time complexity
of building a cover tree on n data points isO(n log n). Thus,
when k > log n, the cover tree can be built faster than doing
k-means clustering.

Practical issues
Our last discussion suggests that for a given k, the represen-
tative states z should be the nodes at the deepest level of the
cover tree with no more than k nodes. Note that the number
of the nodes cj at the deepest level j is typically smaller than
k, sometimes even by an order of magnitude, which impacts
the quality of the approximation for a given k. To get a better
cover, we choose the remaining k − cj nodes from the next
level of the tree. The nodes are chosen in the order in which
we inserted them into the tree.

The heat parameter σ in the Gaussian kernel (Equation 4)
can be chosen using the cover tree. In particular, note that at
depth j, no representative points are closer than 1/2j and all
data points are covered within 1/2j−1. Therefore, if the heat
parameter is set as σ = 1/(κ2j), no representative points are
closer than κσ and each data point is covered within 2κσ. In
our experiments, κ is set to 3. Since the representative states
are chosen from two consecutive levels of the cover tree, the
parameter σ is interpolated linearly as:

σ =
1

κ

1

cj+1 − cj

(
k − cj
2j+1

+
cj+1 − k

2j

)
, (10)

where j is the deepest level of the tree such that cj ≤ k, and
cj and cj+1 is the number of the nodes at levels j and j + 1,
respectively.

Finally, note that our model (Equation 7) becomes impre-
cise and unstable as k approaches the sample size n, because
each sample xt is mapped to only one representative state z.
To make the model more stable, we suggest substituting the
counts in Equation 7 for a smoothing kernel ψaxtz:

λ̂azx = λ̃azx
∑
t∈τa ψ

a
xtz

r̂az = [
∑
t∈τa ψ

a
xtzrt][

∑
t∈τa ψ

a
xtz]
−1 (11)

p̂azz′ = [
∑
t∈τa ψ

a
xtzψ

a
x′
tz

′][
∑
t∈τa ψ

a
xtz]
−1,

which is normalized such that
∑
z ψ

a
xtz = 1 for all states xt

and actions a. The kernel is defined as:

ψaxtz ∝

{
exp

[
−d

2(xt,z)
2σ2

]
d(xt, z) ≤ dmax

0 otherwise.
(12)

Since the kernel is truncated at dmax and normalized, we can
bound the error of the corresponding Bellman operator as in
Proposition 2. The model in our experiments is smoothed as
described in Equations 11 and 12.

Experiments
We perform three experiments. First, we study how our poli-
cies improve with the number of representative states k. We
also show that kernel-based RL with cover-tree quantization
produces better policies than k-means and random quantiza-
tion. Second, we compare our policies to three state-of-the-
art baselines. Finally, we solve a high-dimensional problem
with no apparent structure.

Our solution is evaluated on two benchmark control prob-
lems with 2 to 4 continuous state variables (Sutton and Barto
1998) and one new problem with 64 variables. All problems
are solved as discounted MDPs and our results are averaged

980

Training
Problem Number of Episode Discount

episodes length factor γ
Mountain car 50 to 500 300 0.99
Acrobot 10 to 100 5,000 1.00
Favorite images 100 100 0.99

Evaluation
Problem Number of Episode

episodes length
Mountain car 100 500
Acrobot 100 1,000
Favorite images 100 300

Figure 2: Training and testing parameters in our problems.

over 50 randomly initialized runs. The setting of our param-
eters is shown in Figure 2. The exploration policy is random.
How to combine our approach with more intelligent policies
is discussed in the conclusions.

Benchmark control problems
Mountain car (Sutton and Barto 1998) is a problem in which
an agent drives an underpowered car up to a steep hill. Since
the car is underpowered, it cannot be driven directly up to the
hill and must oscillate at its bottom to build enough momen-
tum. The state of the problem is described by two variables,
the position and velocity of the car, and the agent can choose
from three actions: accelerate forward, accelerate backward,
or no acceleration. The objective is to drive the car to the top
of the hill in the minimum amount of time.

Acrobot (Sutton and Barto 1998) is a problem in which an
agent operates a two-link underactuated robot that resembles
a gymnast swinging on a high bar. The state of the problem
is defined by four variables, the position and velocity of two
acrobot’s joints, and the agent can choose from three actions:
a positive torque of a fixed magnitude at the second acrobot’s
joint, a negative torque of the same magnitude, or no torque.
The goal is to swing the tip of the acrobot to a given height in
the minimum amount of time.

Favorite images problem
In this paper, we introduce a new synthetic problem in which
an agent browses a collection of images (Figure 3). The state
of the problem is given by image features, which summarize
the currently shown image. The agent can take two actions,
ask for more or less similar images. The objective is to learn
a policy that browses images that the agent likes.

The states in our problem are the first 10 thousand images
in the CIFAR-10 dataset (Krizhevsky 2009). We extract 512
GIST descriptors from each image and project them on their
64 principal components. The projections represent our fea-
tures. The transition model is defined as follows. If the agent
asks for more similar images, the next image is selected from
10 most similar images to the current image. Otherwise, the
next image is chosen at random. The reward of 1 is assigned
to all images that the agent likes. For simplicity, we assume
that the agent likes images of airplanes, which is about 10%
of our dataset. For this reward model, we expect the optimal
policy to seek airplane images and then browse among them.

Figure 3: Examples of images from the CIFAR-10 dataset.
The images are divided into 10 categories.

In our experiments, we show how to learn a better, and much
less intuitive, policy.

The favorite images problem is motivated by real systems.
In summary, we study media browsing, where the user seeks
an object of interest. The preferences of the user are encoded
in the reward function, and we want to compute a policy that
guides the user to interesting images through similar content.

Another reason for introducing a new benchmark problem
is that all popular RL problems are too small to demonstrate
the benefits of our approach. Large-scale network problems,
such as those studied by Kveton et al. (2006), have apparent
structure that can be used to solve these problems efficiently.
Our method is more suitable for high-dimensional problems
where structure may exist but it is not obvious. The proposed
problem has these characteristics.

Number of representative states k
In the first experiment, we study how the quality of our poli-
cies improves with the number of representative states k. We
also show that kernel-based RL with cover-tree quantization
produces better policies than k-means and random quantiza-
tion. This experiment is performed on two control problems,
mountain car and acrobot, which are simulated for the maxi-
mum number of training episodes (Figure 2). Our results are
shown in Figure 4. We observe three major trends.

First, our policies improve as the number of representative
states k increases. In the acrobot problem, the terminal state
is initially reached in more than 800 steps. When the number
of representative states increases to 1024, the state is reached
in only 117 steps on average.

Second, cover-tree quantization usually yields better poli-
cies than k-means and random quantization, especially when
the number of representative states k is small. These policies
are learned in the same way as the other two policies, except
for the representative states. Thus, the increase in the quality
of the policies can be only explained by better representative
states. Cover trees minimize the maximum distance between
states and their representative states (Equation 9), uniformly
across the state space. In comparison, k-means and random

981

Figure 4: Kernel-based RL on k representative states, which are chosen using cover-tree quantization (red lines with diamonds),
k-means quantization (blue lines with circles), and random quantization (gray lines with triangles). For each solution, we report
the number of steps to reach a terminal state, the error of the state space cover (Equation 9), and quantization time.

quantization focus mostly on densely sampled regions of the
space. Figure 4 compares errors of the state space covers for
all three quantization methods. Cover trees usually yield the
smallest error.

Third, the number of representative states k that produces
good solutions may vary from problem to problem. One way
of learning a good value of k is by searching through models
of increasing complexity, for instance by doubling k. Cover
trees are especially suitable for this search because only one
cover tree is constructed for all k, and the computational cost
of quantization for each additional k is close to 0 (Figure 4).
In comparison, the cumulative cost of k-means quantization
increases with each new k because the clustering of the state
space needs to be recomputed.

Finally, note that our policies are computed fast. In partic-
ular, both the mountain car and acrobot problems are solved
for 1024 states in less than 3 minutes. On average, the size of
the sample n in the problems is 130k and 190k, respectively.

State-of-the-art solutions
In the second experiment, we compare our solutions to state-
of-the-art results on the mountain car (Jong and Stone 2006)
and acrobot problems (Sutton and Barto 1998). The number
of training episodes varies according to the schedule given in
Figure 2. Our policies are learned using 1024 representative
states. This setting corresponds to our best results in the first
experiment. In addition, we implemented in MATLAB fitted
Q iteration with CART (Ernst, Geurts, and Wehenkel 2005).
The CART is parameterized such that FQI policies are stable
and improve as the sample size increases. More specifically,
the tree is not pruned and the minimum number of examples
in its leaf nodes is set to 20. Note that FQI with CART rarely
converges to a fixed point. As a result, it is unclear when the
algorithm should be terminated. In our experiments, we stop
FQI when it consumes 3 times as much time as our approach
at a given number of training episodes. At this point in time,

FQI always oscillates around some solution. Our results are
reported in Figure 5. We observe three major trends.

In the mountain car domain, we outperform the method of
Jong and Stone (2006) for larger sample sizes and can reach
the goal in only 69 steps. The main difference between Jong
and Stone (2006) and our method is that we solve exactly an
approximation to the original problem while Jong and Stone
(2006) solve this problem approximately by heuristics. Note
that the kernel width in our solutions is chosen automatically
while Jong and Stone (2006) fine-tuned their kernel.

In the acrobot domain, we outperform the policy of Sutton
and Barto (1998), which is learned from 25k basis functions.
In comparison, our policies are induced by only 1024 states.

Finally, in both domains, we outperform fitted Q iteration
with CART. It is possible that FQI with more complex aver-
agers, such as ensembles of trees, can learn as good policies
as our approach. However, it is unlikely that this can be done
in comparable time because updating of the ensembles tends
to be an order of magnitude slower than learning with CART
(Ernst, Geurts, and Wehenkel 2005).

Large state spaces
In the third experiment, we apply our method to the favorite
images problem and compare our policies to three baselines.
The first baseline takes actions at random. The second base-
line asks for more similar images if the immediate reward is
positive. Otherwise, it chooses a random action. This policy
acts greedily and henceforth we refer to it as a greedy policy.
The third baseline is FQI with CART. The policy is parame-
terized as in the second experiment. The quality of solutions
is measured by their discounted reward E

[∑300
t=0 γ

trt

]
in the

first 300 steps.
Our results are shown in Figure 5. The reward of the ran-

dom policy is 8.6. This reward is pretty low, even lower than
the reward of the policy that constantly asks for different im-

982

Figure 5: Comparison of kernel-based RL on k representative states (red lines with diamonds) to state-of-the-art solutions on the
mountain car and acrobot problems, and heuristic baselines on the favorite images problem.

ages. The reward of the greedy baseline is 18.8. This reward
can be derived analytically as follows. On average, 4.5 in 10
most similar images to an airplane are airplanes. As a result,
a policy that asks for a similar image after seeing an airplane
should earn about

∑∞
t=0 0.45t ≈ 2 times higher reward than

the random policy, which is in line with our observations.
The reward of our policies increases as the number of rep-

resentative states increases, and reaches as high as 46.4. This
is 150% higher than the reward of the greedy policy and 12%
higher than the reward of FQI. Our policies are significantly
better than the greedy baseline because they redirect random
walks on images to the parts of the space that mostly contain
airplanes, and then keep asking for similar images.

Conclusions

In this paper, we propose a new approach to batch-mode RL
with continuous state variables. The method discovers k rep-
resentative states of a problem and then learns a kernel-based
approximation on these states. Our solution is intuitive, easy
to implement, and has only one tunable parameter, the num-
ber of representative states k. We outperform state-of-the-art
solutions on two benchmark problems and also show how to
solve a high-dimensional problem with 64 state variables.

The proposed approach is offline but we believe that it can
be easily adapted to the online setting. In particular, note that
cover-tree quantization is an online method and that the time
complexity of T̃λ backups is independent of the sample size
n. Thus, the main challenge in making our method online is
to update the model (Equation 7) efficiently. We believe that
this can be done inO(k2) time per example, by updating the
statistics in Equation 7 when the example is inserted into the
cover tree. We also believe that our model can be built more
intelligently, for instance by applying R-MAX (Brafman and
Tennenholtz 2003) exploration from the top of the tree to the
bottom. Jong and Stone (2009) recently studied another way
of combining kernel-based RL and R-MAX.

Although this paper is focused on continuous-state MDPs,
note that our ideas also apply to solving partially-observable
MDPs (POMDPs). For instance, a POMDP can be treated as
a belief-state MDP and solved by our method. Alternatively,
cover trees can help in downsampling points for point-based
value iteration (Pineau, Gordon, and Thrun 2003).

References
Barreto, A.; Precup, D.; and Pineau, J. 2011. Reinforcement learning
using kernel-based stochastic factorization. In Advances in Neural
Information Processing Systems 24, 720–728.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton
University Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific.
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover trees for
nearest neighbor. In Proceedings of the 23rd International Conference
on Machine Learning, 97–104.
Brafman, R., and Tennenholtz, M. 2003. R-MAX – a general polyno-
mial time algorithm for near-optimal reinforcement learning. Journal
of Machine Learning Research 3:213–231.
Chow, C.-S., and Tsitsiklis, J. 1991. An optimal one-way multigrid
algorithm for discrete-time stochastic control. IEEE Transactions on
Automatic Control 36(8):898–914.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based batch
mode reinforcement learning. Journal of Machine Learning Research
6:503–556.
Gray, R., and Neuhoff, D. 1998. Quantization. IEEE Transactions on
Information Theory 44(6):2325–2383.
Jong, N., and Stone, P. 2006. Kernel-based models for reinforcement
learning. In ICML 2006 Workshop on Kernel Methods and Reinforce-
ment Learning.
Jong, N., and Stone, P. 2009. Compositional models for reinforce-
ment learning. In Proceeding of European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in
Databases.
Krizhevsky, A. 2009. Learning multiple layers of features from tiny
images. Technical report, University of Toronto.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solving factored
MDPs with hybrid state and action variables. Journal of Artificial
Intelligence Research 27:153–201.
Munos, R., and Moore, A. 1999. Variable resolution discretization for
high-accuracy solutions of optimal control problems. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence,
1348–1355.
Ormoneit, D., and Sen, S. 2002. Kernel-based reinforcement learning.
Machine Learning 49:161–178.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value itera-
tion: An anytime algorithm for POMDPs. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, 1025–1032.
Puterman, M. 1994. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY: John Wiley & Sons.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press.

983

