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Abstract

A “hub” is an object closely surrounded by, or very simi-
lar to, many other objects in the dataset. Recent studies by
Radovanović et al. indicate that in high dimensional spaces,
hubs almost always emerge, and objects close to the data cen-
troid tend to become hubs. In this paper, we show that the
family of kernels based on the graph Laplacian makes all ob-
jects in the dataset equally similar to the centroid, and thus
they are expected to make less hubs when used as a similarity
measure. We investigate this hypothesis using both synthetic
and real-world data. It turns out that these kernels suppress
hubs in some cases but not always, and the results seem to be
affected by the size of the data. However, for the datasets in
which hubs are indeed reduced by the Laplacian-based ker-
nels, these kernels work well in ranking and classification
tasks. This result suggests that the amount of hubs, which
can be readily computed in an unsupervised fashion, can be
a yardstick of whether Laplacian-based kernels work effec-
tively for a given data.

Introduction
In recent studies, Radovanović et al. investigated hubs that
emerge in high dimensional space (Radovanović, Nanopou-
los, and Ivanović 2010a; 2010b). A hub is an object similar
(or close) to many other objects in a dataset. Radovanović
et al. observed that hub objects emerge as dimension in-
creases, for a number of common similarity or distance mea-
sures. They also made a notable finding that the objects
closer (more similar) to the data mean, or centroid, tend to
become hubs.

Hub objects emerge even in space of moderately high
dimension (e.g., 50-dimensions), whereas systems for real
data analysis, such as those for natural language processing,
often deal with more than one million features (dimensions).

As Radovanović et al. have pointed out, hubs impair the
accuracy of k-nearest neighbor (knn) classification. In knn
classification, the label of a test object is predicted by the
(weighted) majority voting of the knn objects whose labels
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are known. If test objects follow the same distribution as
that of the objects in the dataset, hubs in the dataset should
frequently appear in the knn list for test objects as well. As
a result, hub objects pose strong bias on the predicted la-
bels, causing the classification results to be inaccurate. As
we will discuss in a later section, hubs also impair informa-
tion retrieval, and the label propagation methods for semi-
supervised classification.

In this paper, we examine if Laplacian-based kernels, such
as the commute-time kernels (Saerens et al. 2004) and
the regularized Laplacian (Chebotarev and Shamis 1997;
Smola and Kondor 2003), are effective for reducing hubs.
We explore Laplacian-based kernels based on our observa-
tion that in the implicit feature space, the inner product with
the centroid is uniform for all objects in the dataset; thus, no
objects are closer to the centroid. According to Radovanović
et al., objects close to the centroid become hubs, and we
expect these kernels are more robust to the hubness phe-
nomenon. We empirically examine if Laplacian-based ker-
nels reduce hubs and consequently improve the performance
of information retrieval as well as multi-class and multi-
label k-nearest neighbor classification.

Laplacian-based Kernels for Graph Vertices
We first present a brief review of Laplacian-based kernels.

Let G be an undirected graph with n vertices, and let A
be its adjacency matrix. The edges of G may have positive
weights representing the degree of similarity between ver-
tices. In this case, A is an affinity matrix holding the edge
weights as its components. The (combinatorial) Laplacian
L of G is an n×n matrix defined as

L = D−A, (1)

where D is a diagonal matrix with diagonals [D]ii = ∑ j[A]i j.
L is positive semidefinite and has n orthogonal eigenvectors
ui and n corresponding eigenvalues λi. We assume that the
indices for eigenvalues/eigenvectors are arranged in ascend-
ing order of eigenvalues, λ1 ≤ λ2 ≤ ·· · ≤ λn. A well-known
property of L is that λ1 = 0 and u1 = 1 (a vector of all 1’s).
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Laplacian-based Kernels
In machine learning community, graph Laplacian has been
used as the building block of various kernels defining inner
products between vertices. Below are the most popular of
such Laplacian-based kernels.
Commute-time kernels (Saerens et al. 2004)

LCT = L+ (pseudo-inverse of L), (2)

Regularized Laplacian (Chebotarev and Shamis 1997;
Smola and Kondor 2003)

LRL = (I+βL)−1, (3)

Diffusion kernels (Kondor and Lafferty 2002)

LDF = exp(−βL), (4)

where β (≥ 0) is a parameter of the regularized Laplacian
and the diffusion kernels. Note that while we do not discuss
them in this paper, variations of these kernels exist which
use the normalized Laplacian L = D−1/2LD−1/2 (Chung
1997) in place of L in their definition.

The above kernels can be interpreted as transformations of
Laplacian L through eigenvalue regularization (Smola and
Kondor 2003). To be precise, all the Laplacian-based ker-
nels above (henceforth denoted by K) can be decomposed
as follows, using n pairs of eigenvalues and eigenvectors
{(λi,ui)} (i = 1, . . . ,n) of L.

K =
n

∑
i=1

r(λi)uiuT
i , (5)

where r : [0,∞)→ [0,∞) is a regularization operator, which
characterizes each Laplacian-based kernel. For the three
kernels above,

Commute-time kernels r(λ ) =
{

0, λ = 0;
1/λ λ 6= 0,

Regularized Laplacian r(λ ) = 1/(1+βλ ),

Diffusion kernels r(λ ) = exp(−βλ ).

As Eq. (5) shows, Laplacian-based kernels have the same
eigenvectors as Laplacian L. Their eigenvalues, on the other
hand, are transformed by function r(λ ). To suppress the
contribution of large λ ’s which represent high-frequency
components, r(λ ) is in general a non-increasing function for
λ > 0.

In the rest of the paper, we focus on the commute-time
kernels LCT and the regularized Laplacian LRL. Diffusion
kernels LDF show properties similar to LRL.

Hubs in High Dimensional Space
High dimensionality causes various problems that go under
the name of curse of dimensionality. The most well-known
“curse” includes overfitting (Hastie, Tibshirani, and Fried-
man 2001; Bishop 2006) and distance concentration (Beyer
et al. 1999; François, Wertz, and Verleysen 2007).

The “emergence of hubs” is a new type of the curse which
has been discovered only recently (Radovanović, Nanopou-
los, and Ivanović 2010a). This phenomenon particularly af-
fects methods based on nearest neighbor search, i.e., those

which list objects similar (or near) to a query object accord-
ing to a certain similarity (or distance) measure. Because
hub objects are similar to many other objects in the dataset,
they appear in the nearest neighbor lists of those many ob-
jects, Thus, search results become less meaningful, as the
same objects (hubs) are included in the search results irre-
spective of the query. And Radovanović et al. found that
hubs nearly always appear in high dimensional data.

Applications affected by hubs include information re-
trieval and k-nearest neighbor classification. Graph-based
semi-supervised classification methods, such as label prop-
agation (Zhu, Ghahramani, and Lafferty 2003; Zhou et al.
2004), may also be affected, as these methods are typically
run on k-nearest neighbor graphs.

Whether or not hubs exist in a dataset can be checked by
counting the number of times that each object x appears in
the k-nearest neighbor list of other objects. Let this number
be Nk(x). If hubs exist in the dataset, the distribution of Nk
should skew to the right (provided that k� n, where n is the
number of the objects).

In a manner similar to (Radovanović, Nanopoulos, and
Ivanović 2010a), we illustrate the emergence of hubs using
synthetic data consisting of 500 objects, each of which is a
d-dimensional binary vector. To generate this data set, we
first sample, for each dimension i = 1, . . . ,d, a real number
from the log-normal distribution with mean 5 and variance
1, and compute its rounded integer ni. We then choose ni
objects (vectors) out of 500 uniformly at random, and assign
1 to their ith component. After 500 d-dimensional binary
vectors are generated in this way, we measure their pairwise
similarity by the cosine of the angle between them.

The histograms of N10 frequency for two datasets with
different dimensions d (d = 10,50) are shown in the top pan-
els of Figure 1. We can see objects with extremely large N10
values (e.g., the point at N10 = 60) in the top right panel
(50-dimensional data), while no such points can be seen for
10-dimensional data.

Another important finding by Radovanović et al. is that
in high dimensional spaces, objects similar (or close) to the
data mean (centroid) tend to become hubs. We can ver-
ify this with the dataset of 50-dimensional vectors above.
The bottom panels of Figure 1 are the scatter plots of N10
values of the data objects against their cosine similarity to
the centroid. For d = 50 (high-dimensional data; bottom-
right), N10 values show a strong correlation with the simi-
larity to the centroid, whereas for d = 10 (low-dimensional
data; bottom-left), the correlation is much weaker.

Hubness Phenomenon and Laplacian-based
Kernels

If objects close to the data centroid tend to become hubs,
a possible direction to their reduction should be to seek
a similarity (or distance) measure which evaluates all ob-
jects equally similar to (or distant from) the centroid. We
show that the Laplacian-based kernels indeed give measures
which meet this requirement.
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Figure 1: Top panels: Histograms of N10 frequency for two
synthetic datasets in low (d = 10) and high (d = 50) dimen-
sional feature spaces. Bottom panels: Scatter plots of the
N10 value of an object against its similarity to the centroid.
Each dot corresponds to a data object.

Centroid in the kernel-induced feature space
Suppose we have n data objects, X = {xi} (i = 1, . . . ,n) in
a vector space D. We are also given a kernel K : D×D 7→
R, which, for now, is not necessarily the Laplacian-based
kernels introduced above.

Let F be the implicit feature space induced by kernel K,
and φ(·) be its associated feature mapping; i.e., a mapping of
an object in D to its image in F. Let K be the n×n Gram ma-
trix of K computed for the dataset. Thus, component [K]i j
of matrix K is the inner product of φ(xi) and φ(x j) in F, or,

[K]i j = K(xi,x j) = 〈φ(xi),φ(x j)〉.

And the data centroid in the feature space F, which we de-
note by φ , is given by

φ =
1
n

n

∑
i=1

φ(xi).

Note that φ differs from the data centroid in the original vec-
tor space D, and, in general, from its image in F, because
φ(·) can be non-linear.

Now the inner product between φ(xi) and the data cen-
troid φ in F is

〈φ(xi),φ〉= 〈φ(xi),
1
n

n

∑
j=1

φ(x j)〉=
1
n

n

∑
j=1
〈φ(xi),φ(x j)〉

=
1
n

n

∑
j=1

[K]i j =
1
n
[K1]i. (6)

Thus, it is the mean of the inner products between the ith ob-
ject and all objects in the dataset, taken in the feature space
induced by K. The last two equalities show that this quantity
can be calculated simply by taking the mean of the ith row
of the Gram matrix K.

Laplacian-based kernels and similarity to the
centroid
We now restrict K to Laplacian-based kernels, i.e., those
which can be expressed as in Eq. (5). We show that these
kernels define similarity measures which make the data cen-
troid equally similar to all objects in the dataset.

Because Laplacian-based kernels assume that the data is
represented as a graph, we treat the vector dataset X as a
fully-connected graph. In this graph, data objects xi corre-
sponds to vertices, and edge weights are given by the pair-
wise similarity of objects measured in the original vector
space D.1 In other words, the weighted adjacency matrix A
of this fully-connected graph is given by the all-pairs simi-
larity matrix for the dataset computed in D. There may be
many ways to measure similarity, but we only require that
the similarity score given by A be non-negative and sym-
metric; hence [A]i j = [A] ji ≥ 0 for all i, j. Given such an A,
we compute the graph Laplacian and then a Laplacian-based
kernel matrix K, e.g., using one of Eqs. (2)–(4).

Now, recall that the Laplacian-based kernels share the
same eigenvectors as the Laplacian L from which they are
computed, but the eigenvalues are transformed by r(·); see
Eq. (5). In particular, for the smallest eigenvalue λ1 of L
and its corresponding eigenvector u1, it holds that Ku1 =
r(λ1)u1. And since u1 = 1 and λ1 = 0, we have

K1 = r(0)1. (7)

By Eq. (6), the left-hand side of this equation becomes

K1 = n

〈φ(x1),φ〉
...

〈φ(xn),φ〉

 . (8)

On the other hand, the right-hand side of Eq. (7) is a con-
stant vector whose components are all equal. It follows that
all the components in Eq. (8) are equal. In other words,

〈φ(x1),φ〉= 〈φ(x2),φ〉= · · ·= 〈φ(xn),φ〉.
Thus, in the feature space induced by K, the inner products
between the centroid and all object in the dataset are equal.

Remark The above property holds only if the components
(inner products in the feature space) of Laplacian-based ker-
nels K are used as they are as similarity scores. The simi-
larity to the centroid may not be uniform if the closeness of
objects is measured by distance in F, i.e., via

dF(xi,x j) = ([K]ii +[K] j j−2[K]i j)
1/2. (9)

We will show in later experiments that using distance in the
feature space of Laplacian-based kernels in fact promotes
hubs, and is always a bad idea.

According to Radovanović et al., objects close (or similar)
to the centroid become hubs. As shown above, Laplacian-
based kernels provide a similarity measure which makes
data objects equally similar to the centroid. For this reason,
we can expect them to suppress emergence of hubs.

1If a distance measure is given instead of similarity, we assume
it is converted to a similarity in a standard way, e.g., by taking its
reciprocal, or by using a Gaussian kernel.
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(a) Commute-time kernel (LCT) (b) Cosine similarity (Cos)

Figure 2: Histograms of N10 frequency for the synthetic 50-
dimensional dataset of Figure 1: (a) commute-time kernel
and (b) cosine similarity.

Experiments
We apply Laplacian-based kernels to real and synthetic
datasets to see whether hubs are reduced by these kernels.

Synthetic data
First, as an illustration, we apply the commute-time kernels
on the same 50-dimensional dataset we used previously to
plot Figure 1. Figure 2(a) shows the histograms of N10 fre-
quency for the commute-time kernel. For ease of compar-
ison, (b) duplicates the top-right panel of Figure 1, which
plots the histogram for cosine similarity. We see that with
the commute-time kernel, no objects exhibit extremely large
N10 values. Hence, the kernel has worked as expected for
this dataset, and mitigated the hubness phenomenon.

Real data
For real data, we examine not only whether hubs are reduced
by Laplacian-based kernels, but also whether they contribute
to improved accuracy in tasks that use these datasets. We
consider three tasks: (1) ranking (information retrieval), (2)
multi-class classification, and (3) multi-label classification.
These tasks are chosen because they require fine-grained
similarity measures to distinguish individual data objects,
which are not necessary for tasks such as binary classifica-
tion.

Ranking task We rank biomedical terms in the MeSH the-
saurus tree2, to simulate mapping a new term onto the the-
saurus.

To be precise, suppose we found a term in a text corpus,
which is not present in an existing thesaurus. We want to
register this new term into the thesaurus, but we first have to
identify position in the thesaurus tree at which this “query”
term must be inserted. To this end, we compare the similar-
ity of the sentential context in which the query term appear,
with the contexts in which existing terms in the thesaurus
appear in a corpus. The intuition here is that the term must
be placed near its synonyms, and synonyms often appear in
similar contexts. Thus, we place the new (query) term near
the existing terms in the thesaurus whose contextual similar-
ity with the term is the largest.

2http://www.nlm.nih.gov/mesh/2009/introduction/
introduction.html

To simulate this scenario, we treat each term in MeSH one
by one as a query term, and see if its location in the MeSH
thesaurus tree can be recovered with the above method; i.e.,
if the terms nearest to the query term in the thesaurus can be
ranked higher than those located farther (in the MeSH tree).

Hence, for each term in MeSH, we rank other terms by
the similarity of sentential contexts in which they appear,
collected from abstracts in MEDLINE 20093. The baseline
measure evaluates the context similarity of terms by the co-
sine between “bag-of-words” feature vectors, which consist
of the frequency of words occurring in the neighborhood of
the terms in the corpus. We then compare this cosine simi-
larity with the regularized Laplacian and commute-time ker-
nels computed from the cosine similarity matrix.

In this task, a similarity measure is deemed better if it
ranks terms located near the query term in the MeSH tree
higher in the ranking for the query term. Because different
query terms have different nearby terms in the MeSH tree,
the similarity measure is required to return distinct rankings
for each query term. If hub objects (terms) exist that tend
to take higher positions in many rankings, they are likely to
render the rankings more similar, and thus are harmful.

In this experiment, we make four datasets. These datasets
consist of the set of terms under the top MeSH categories A,
B, C, and D, respectively.

Multi-class classification For multi-class classification,
we use two document classification datasets: Reuters-524,
and TDT2-305. A document in these datasets is classified
into one of 52 and 30 categories, respectively. For Reuters-
52, we used the default training-test data split accompany-
ing the dataset. For TDT2-30, we randomly split the data
into halves. For these tasks, we classify test documents by
k-nearest neighbor (knn) classification. The similarity mea-
sures used with knn are the cosine between bag-of-words
feature vectors of documents, and the regularized Laplacian
and commute-time kernels computed from the cosine simi-
larity. Parameter k is chosen by cross validation using train-
ing data.

We also employ Naive-Bayes classifier (NB) for multi-
class classification, as another baseline.

It is worth noting the large number of categories in the
datasets (52 and 30). This makes it difficult to apply support
vector machines and other high-performance classifiers for
binary classification.

Multi-label classification In multi-label classification
tasks, a document may be associated with one or more cat-
egories. For these tasks, we use the Enron and the Bibtex
datasets6. The classification procedure follows that of multi-
class classification, with one exception that we use the ML-
knn algorithm (Zhang and Zhou 2007) in place of knn clas-
sification.

3We limited the abstracts to those published in year 2000 or
later.

4http://csmining.org/index.php/r52-and-r8-of-reuters-21578.
html

5http://www.zjucadcg.cn/dengcai/Data/TextData.html
6http://mulan.sourceforge.net/index.html
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Table 1: Experimental Results. The rows marked MeSH A–D show the results (average highest ranking of family terms; see
text for definition) of ranking tasks, Reuters-52 and TDT2-30 show the average error rates in multi-class classification tasks
and Enron and Bibtex correspond to the average label disagreement in multi-label classification tasks. In all tasks, smaller the
values, the better. Cos, LRL, LCT, and NB respectively stand for cosine, regularized Laplacian, the commute-time kernels, and
Naive Bayes classifiers. LCT dist is the commute-time distance obtained with the application of Eq. (9) to LCT. The figures in
parenthesis under LRL show the value of βλn, where λn is the spectral radius of Laplacian L.

Dataset Cos LRL LCT LCT dist NB # objects
(βλn= 0.01) (0.1) (0.5) (1) (10) (100) (1000) (# features)

MeSH A Skewness 6.6203 6.5802 6.1549 4.4874 3.3225 1.1931 0.9554 0.9294 0.9188 8.9454 - 833
Rank 14.7 14.7 14.5 14.2 13.9 13.4 13.6 13.7 13.7 172.9 - (274064)

MeSH B Skewness 9.9111 9.8021 8.6242 5.7524 3.835 2.1594 1.7736 1.7664 1.7457 14.37 - 2098
Rank 42.6 42.6 42.4 42.0 41.6 39.4 38.6 38.5 38.5 382.1 - (228522)

MeSH C Skewness 7.3111 7.2594 6.5986 4.6353 3.3799 0.9770 1.0942 1.2097 1.2154 11.466 - 1347
Rank 42.0 42.0 41.8 41.2 40.6 38.7 37.7 37.4 37.4 284.2 - (200339)

MeSH D Skewness 9.0052 8.9104 8.3939 6.3507 4.8183 1.4867 1.5200 1.5781 1.5753 13.886 - 1961
Rank 119.0 118.9 118.7 117.5 116.4 110.4 106.6 105.9 105.7 438.1 - (212614)

Reuters-52 Skewness 14.815 14.721 14.318 12.722 11.044 6.1597 6.7267 6.9076 6.9341 30.1115 - 9100
Error rate 0.153 0.153 0.148 0.131 0.128 0.107 0.102 0.107 0.100 0.578 0.135 (19241)

TDT2-30 Skewness 3.6291 3.6145 3.4309 2.8966 2.5600 3.3985 4.1023 4.2001 4.2027 30.5958 - 9394
Error rate 0.036 0.036 0.036 0.037 0.036 0.039 0.042 0.042 0.037 0.531 0.039 (36771)

Enron Skewness 6.4651 6.3987 5.7334 3.6943 2.7401 2.5742 2.9286 3.0307 3.0375 12.8882 - 1694
Disagreement 2.80 2.79 2.70 2.65 2.69 2.61 2.68 2.64 2.67 3.30 - (1001)

Bibtex Skewness 2.4726 2.4620 2.4306 2.6106 2.9568 4.7303 5.6225 5.7226 5.7345 27.1330 - 7395
Disagreement 1.93 1.93 1.93 1.94 1.95 1.95 1.97 1.97 1.97 2.37 - (1836)

The number of unique assignment of category combina-
tion to an object is 753 in Enron, and 2856 in Bibtex, which
are again extremely large.

Evaluation metrics For all tasks, we compare cosine
similarity (Cos) with the regularized Laplacian (LRL) and
commute-time kernels (LCT), in terms of the degree of hub
emergence and the task performance.

Following Radovanović et al. (Radovanović, Nanopoulos,
and Ivanović 2010a), we evaluate the degree of hubness by
the skewness of the N10 distribution, which is defined as

SN10 =
E[N10−µN10 ]

3

σ3
N10

,

where E[ · ] is the expectation operator, and µN10 and σ2
N10

are the mean and the variance of the N10 distribution, re-
spectively. Larger skewness indicates a stronger emergence
of hubs in the data.

In the ranking tasks with MeSH thesaurus, for each term
treated as a query, we rank all other terms in the thesaurus,
sorting them by their similarity to the query. Then we eval-
uate the performance of the similarity measure, by the high-
est rank of terms that are the “family members” of the query
term. Here, a term is a family member of a query term if it is
the parent, a child or a sibling of the query term in the MeSH
tree. Because these are the terms that can be regarded as se-
mantically closest to the query, a sensible similarity measure
should rank them higher than other terms in the ranking list
for the query term; in an ideal case, the term ranked no. 1
should be a family member. Hence, in this task, smaller this
performance metric (i.e., the highest rank of a family mem-
ber term), the better. The results are averaged over all terms
(queries) in the MeSH tree.

In multi-class classification, we calculate the error rate of
predicting the correct category of test documents (smaller
the better). In multi-label classification, we count the num-
ber of disagreement between the correct categories and the
predicted ones for each test document (smaller the better).
The results are then micro-averaged over all test documents.

Results Experimental results are shown in Table 1. Al-
though we omit the proof due to space restriction, it can be
shown that the off-diagonal elements of the regularized La-
placian (LRL) matrix become proportional to those of cosine
similarity (Cos) matrix as β approaches to 0, and to those of
the commute-time kernels (LCT) as β tends to infinity. For
this reason, we place the results for LRL between those of
Cos and LCT in Table 1.

For all MeSH categories A–D in the ranking task, LRL
and LCT show lower skewness compared to Cos, and simul-
taneously improve the performance (the ‘Rank’ rows show-
ing the averaged highest rank of family terms). Note that a
smaller rank shows a better performance.

In multi-class classification tasks, and in particular on
Reuters-52 dataset, cosine similarity (Cos) shows high
skewness. With LRL, skewness in Reuters-52 first decreases
as the parameter β is increased, but skewness then starts to
increase modestly at some point. Performance (error rate) is
also improved with the increase of β , and even after skew-
ness turns to increase, error rate continues to improve. For
this dataset, LCT achieves the least error rate. It also outper-
forms the naive Bayes (NB) classifier. On TDT2-30 dataset,
skewness again drops but then goes up as parameter β is
increased, this time to a value higher than that of cosine
similarity. The error rate remains nearly constant, which
tells us that Laplacian-based kernels are not effective for this
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Figure 3: Contour plots of the skewness of the N10 distributions, computed for synthetic datasets generated with varying number
of objects and feature dimensions (+ mark corresponds to a dataset). Panels (a) and (b) show skewness of cosine similarity and
the commute-time kernels, respectively, and panel (c) shows the difference of skewness between them.

dataset.
In multi-label classification tasks with the Enron dataset,

the regularized Laplacian LRL and the commute-time ker-
nels LCT show skewness lower than cosine similarity. As
skewness decreases, the performance (disagreement) also
improves. For the Bibtex dataset, however, skewness of the
Laplacian-based kernels is mostly higher than that of cosine
similarity. The performance (disagreement) remains more
or less identical to that of Cos, only slightly worse.

In Table 1, we also show the results of using commute-
time distance in column ‘LCT dist’, which is the distance in
the feature space of the commute-time kernels LCT, com-
puted by Eq. (9). For all datasets, the extremely high
skewness and poor performance of ‘LCT dist’ suggest that
commute-time distance in fact promotes hubs, and its use
with knn classification is not a good idea.

Discussion
Skewness for parameter tuning
The experimental results in the previous section shows that,
contrary to our expectation, Laplacian-based kernels do not
always reduce hubs. Skewness, which is an indicator of
hubness, decreased in the MeSH datasets in ranking tasks,
Reuters-52 dataset in multi-class classification and Enron
dataset in multi-label classification. It did not decrease in
Bibtex and TDT2-30 datasets.

However, in the tasks in which Laplacian-based kernels
indeed decreased skewness, improved task performance was
obtained. Moreover, the kernel giving the smallest skew-
ness value attains the best task performance, or is very close
to the best, among the tested kernels and parameters. This
result suggests a way to choose suitable kernels, and to au-
tomatically tune parameters of the regularized Laplacian, by
using skewness as an indicator of kernel performance.

Hubness phenomenon and dataset size
Let us now discuss hubness from the viewpoint of dataset
size (the number of objects), in a simulation with synthetic
datasets.

We create synthetic datasets of sparse vectors in the same
way as we generated Figures 1 and 2. In these figures, the

number of objects n was 500, and the dimension d was 10
or 50. Here, we vary n between 100 through 8000, and d be-
tween 100 to 10000. The n×n of cosine similarity matrix is
then calculated with the n objects of d dimensional vectors.
Finally, we compute (as the representative of the Laplacian-
based kernels) the commute-time kernels matrix, just as we
did previously.

Using cosine similarity and the commute-time kernels as
similarity measures, we obtain skewness of N10 distribution.
We use averaged skewness over 10 times repetition of each
combination of n and d.

Figure 3 shows contour plots of skewness: (a) cosine sim-
ilarity (Cos), (b) commute-time kernels (LCT) and (c) differ-
ence in skewness between cosine similarity and commute-
time kernels. (Cos−LCT). The vertical axis shows the num-
ber of objects n and the horizontal axis shows the number of
features (dimension) d.

From the figure, we observe the following. First, for co-
sine similarity shown in panel (a), emergence of hubs de-
pends not only on feature dimension (as Radovanović et al.
reported) but also on the number of objects. And compar-
ing panel (a) and (b), we see that the commute-time ker-
nels (panel (b)) shows smaller value of skewness in a larger
area (for various number of object and feature dimensions)
than that of cosine similarity (panel (a)). Second, panel (c)
shows that by converting cosine similarity matrix into the
commute-time kernels, skewness is reduced for various di-
mensions of objects and features. However, when datasets
consist of large number of objects and small number of fea-
tures, such as n > 5000,d < 1000, skewness increases and
hubs emerge more than cosine similarity. We presume that
this may be related to the increase of skewness with Bibtex
dataset, in which the number of objects is 7395 and features
is 1836.

Commute-time distance
Laplacian-based kernels are sometimes used to compute dis-
tance, through the translation of Eq. (9). In particular, the
distance computed from the commute-time kernels (known
as commute-time distance or resistance distance) has a nice
interpretation that it is proportional to the expected number
of steps a random walk has to take to go from one vertex to
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another vertex for the first time and then coming back. How-
ever, Brand (Brand 2005) and Fouss et al. (Fouss et al. 2006)
independently reported that the commute-time distance was
less effective than the inner products given by the commute-
time kernels on collaborative filtering tasks.

Our experimental results agree with their reports; using
commute-time distance deteriorated the performance in all
the experiments we conducted.

Regarding commute-time distance, von Luxburg et al.
(von Luxburg, Radl, and Hein 2010) show that as the num-
ber of objects in the database increases, k-nearest neighbor
lists become nearly identical for all objects. Thus, regard-
less of the query, the same objects appear in the k-nearest
neighbor lists. This phenomenon is observed throughout all
datasets used in our experiment, and resulted in a strong cor-
relation between the number of objects in the dataset and the
skewness (see Table 1).

Conclusion
In this paper, we have pointed out that Laplacian-based
kernels make all objects in the dataset equally similar to
the centroid. With this observation, we have investigated
whether Laplacian-based kernels, in particular commute-
time kernels and regularized Laplacian, reduce hubs in high-
dimensional data. They worked quite well in ranking tasks,
but in classification tasks (multi-class and multi-label classi-
fication), the results were mixed; in some tasks and datasets,
they slightly reduced skewness but did not lead to perfor-
mance improvement.

However, whenever these kernels indeed reduced skew-
ness, the kernel that achieves the smallest skewness per-
formed best or close to the best among all the tested kernels.
This result suggests that skewness could be used as a yard-
stick of kernel performance. Note that because skewness
can be computed without any label information, its evalua-
tion can be done in an unsupervised manner.

We also found that when we use Laplacian-based kernels,
it is almost always better to use the Gram matrix as it is as a
similarity matrix, than to translate them into distance in the
feature space, both in terms of skewness of N10 distribution
and performance.

Besides using Laplacian-based kernels, we can also make
the objects equally similar to the centroid by centering the
original similarity matrix. Hence we expect centering to also
reduce hubs, and plan to investigate this subsequently.
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