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Abstract 

This study considers the problem of feature selection in in
complete data. The intuitive approach is to first impute the 
missing values, and then apply a standard feature selection 
method to select relevant features. In this study, we show 
how to perform feature selection directly, without imputing 
missing values. We define the objective function of the un
certainty margin based feature selection method to maxim
ize each instance’s uncertainty margin in its own relevant 
subspace. In optimization, we take into account the uncer
tainty of each instance due to the missing values. The exper
imental results on synthetic and 6 benchmark data sets with 
few missing values (less than 25%) provide evidence that 
our method can select the same accurate features as the al
ternative methods which apply an imputation method first. 
However, when there is a large fraction of missing values 
(more than 25%) in data, our feature selection method out
performs the alternatives, which impute missing values first. 

 Introduction   
Selecting appropriate features is an important step in the 
data mining process, whose objectives include providing a 
better understanding of data distribution as well as more 
accurate and efficient prediction (Guyon and Elisseeff, 
2000; Koller and Sahami, 1996). Existing feature selection 
methods assume that the data is complete or almost com-
plete. However, this is not the case in many real-life appli-
cations, such as bioinformatics (Liew, et al. 2000) and re-
mote sensing networks (Radosavljevic et al. 2010). Apply-
ing existing feature selection methods to applications with 
incomplete data would require an imputation method (Lou 
and Obradovic, 2011) to estimate the missing values first, 
and then apply the feature selection procedure. This study 
proposed a method to perform feature selection directly 
from the incomplete data, without pre-applying any impu-
tation method to estimate the missing values. To the best of 
our knowledge, this method is the first one to perform fea-
ture selection in incomplete data without pre-estimating the 
missing values. 
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 We focus on margin-based feature selection, which as-
signs a weight for each feature, and then selects a set of 
features including a maximum margin. A margin is a 
measure for evaluating the quality of a classifier with re-
spect to its decision (Schapire et al. 1998). In order to han-
dle the incomplete data, we define an uncertainty margin 
for each instance in the presence of missing values. Uncer-
tainty margins ensure that the distance between an instance 
and other instances is measured in a subspace where all 
features are observed instead of the whole feature space. 
Also, to measure the uncertainty margin, we used distance 
in weighted space rather than in original space. The 
weighted distance ensures that the feature weights are con-
sidered while computing the uncertainty margin. 
 We define the objective function of feature selection by 
embedding the uncertainty margin of the whole data set. 
The feature selection method is then converted to an opti-
mization problem that learns optimal weights for features 
that maximize the uncertainty margin for the entire data. 
The new optimization problem is no longer convex, unlike 
the traditional margin-based feature selection methods 
(Gilad-Bachrach et al. 2004), since the uncertainty margin 
is a function of feature weights. To solve the optimization 
problem including the uncertainty margin, an EM algo-
rithm is proposed to learn the feature weights and uncer-
tainty margin interactively. The experimental results show 
that our method outperforms the method requiring data im-
putation in advance.  

Related Work 
Feature selection methods can be broadly categorized into 
filtering models (Yu and Liu, 2003) and wrapper models 
(Kohave and John, 1997). Filtering methods separate the 
feature selection from the learning process, whereas wrap-
per methods combine them. The main drawback of wrap-
per methods is their computational inefficiency. 
    There are three kinds of popular filtering methods. In 
(Sun and Li, 2006) a margin-based method is proposed as a 
feature-weighting algorithm that is a new interpretation of 
a RELIEF-based method (Gilad-Bachrach et al. 2004). The 
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method is an online algorithm that solves a convex optimi-
zation problem with a margin-based objective function.  
Markov Blanket-based methods perform feature selection 
by searching an optimal set of features using Markov 
Blanket approximation. The method proposed at (Lou and 
Obradovic, 2010) removed the feature whose Markov 
Blanket can be found in the rest of features. Dependence 
estimation-based methods use the Hilbert-Schmide Inde-
pendence Criterion as a measure of dependence between 
the features and the labels (Song et al. 2007). The key idea 
in this method is that good features should maximize such 
dependence. However, all these methods assume that the 
data is complete without missing values.  
    Several classification methods have been proposed re-
cently to handle the missing values directly, without imput-
ing missing values in advance.  A method was presented 
for incorporating second order uncertainties about the 
samples while keeping the classification problem convex 
in the presence of missing values (Pannagadatta et al. 
2006). A method is presented to handle incomplete data 
where the missing features are structurally absent for some 
of the instances (Chechik et al. 2008). Instances are con-
sidered as sets of (feature value) pairs that naturally handle 
the missing value case (Grangier and Melvin, 2010). How-
ever, all of these are classification methods rather than fea-
ture selection methods and they are not applicable to high 
dimensional data with a large number of irrelevant features, 
since they are classifying on whole dimensional data in-
stead of informative low dimensional data. In contrast, our 
method can handle high dimensional incomplete data by 
selecting informative features directly, without estimating 
the missing values in a pre-processing stage. 

The Proposed Method 
Let {( , | 1,..., )} 1M

n nD x y n N� � �� ��  be the data set with N 
instances and M features. For a given instance xn, let In be 
the index function indicating whether features in xn are 
missing or not. Specifically, In

 

 is defined as 
0       ( ) is missing

( )   1, 2,...
1       otherwise

n
n

x j
I j where j M

�
� ��
	

                 (1) 

   We will first define the uncertainty margin for each in-
stance xn

Uncertainty Margin 

, and then present the uncertainty margin-based 
objective function as well as the algorithm for solving the 
corresponding optimization problem.  

Given an instance, the margin of a hypothesis is the dis-
tance between the hypothesis and the closest hypothesis 
that assigns an alternative label. For a given instance xn, 
we find two nearest neighbors for xn, one with the same 
class label (called nearhit), and the other with different 

class label (called nearmiss). The hypothesis-margin of a 
given instance xn

1
( ) (|| nearmiss( ) || || nearhit( ) ||)

2D n n n n nL � 
 
 
x x x x x

 in data set D is defined as: 

               (2) 

    In margin-based feature selection, we scale the feature 
by assigning a non-negative weight vector w, and then 
choose the features with large weights that maximize the 
margin. One idea is to then calculate the margin in 
weighted feature space rather than the original feature 
space, since the nearest neighbor in the original feature 
space can be completely different from the one in the 
weighted feature space. Therefore, we define the instance 
margin for each instance xn

( | ) ( , nearmiss( ) | )

                                    ( , nearhit( ) | )
D n n n

n n

d

d

� �




x w x x w

x x w

 from D in a weighted feature 
space as: 

                        (3) 

where d(.) is a distance function. Although one can apply 
any kind of distance function, for the purpose of our study, 
we apply the Manhattan distance. Therefore, the above def-
inition can be written as ( | ) T

D n n� ��x w w ,                                                 
where | nearmiss( ) | | nearhit( ) |n n n n n� � 
x x x x , and | |  is the el-
ement-wise absolute operator. 
    In an incomplete data set, we cannot apply a uniform 
weight w to each instance to get the margin since each xn 
has different missing values. We need to maintain a weight 
vector wn for each instance xn

n n�w w I�
, which is defined as 

, where In is the pre-defined indicative index for 
each instance xn � and is the element-wise product. 

In order to take into account the uncertainty due to dif-
ferent values in each instance, for each xn

1 1|| || / || ||n n�s w w
, we define a 

scaling coefficient . Therefore, the in-
stance-based margin can be written as: 

( | , ) ( , nearmiss( ) | , )
                                       ( , nearhit( ) | , )

                      

D n n n n n n n

n n n n
T

n n n

d
d

�

�

�




�

x w s x x w s
x x w s

s w

                        (4) 

After applying the scaling coefficient sn, we decrease the 
instance margin for xn, which has a huge number of miss-
ing values. Another important aspect affected by missing 
values is the calculation of nearest neighbors for each xn. 
Due to the missing values, we cannot tell exactly which 
one is the nearest neighbor for xn. Therefore, extending the 
definition in (Sun et al. 2009) by taking into account the af-
fects of missing values, we calculate the uncertainty of 
each instance being the nearest neighbor of xn. The uncer-
tainty is evaluated by standard Gaussian kernel estimation 
�������	
������������. Specifically, we define the uncer-
tainty that an instance xi with the same class label as xn 
can be the nearest hit neighbor of xn

nearhit
exp( ( , | , ) / )

( | , , )
exp( ( , | , ) / )

                          where 1 , ,
                           and 1 ,

n i n n
i n n n

n j n n
j

i n

j n

d
U

d

i N i n y y
j N y y

�
�

�

� � � �

� � �

�
x x w I

x x w I
x x w I

 as: 

                 (5)  
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Similarly, the uncertainty that an instance xi with a differ-
ent class label from xn can be the nearest miss neighbor of 
xn

nearmiss
exp( ( , | , ) / )

( | , , )
exp( ( , | , ) / )

                          where 1 ,
                           and 1 ,

n i n n
i n n n

n j n n
j

i n

j n

d
U

d

i N y y
j N y y

�
�

�

� � �

� � �

�
x x w I

x x w I
x x w I

 is defined as: 

                   (6) 

Please note that || ||
nn i
 wx x in equations (5) and (6) de-

notes the distance between xn and x i in weighted space de-
termined by xn’s weight vector wn. Finally, by checking 
the uncertainty of each instance to be the nearest neighbor 
of xn, we define our uncertainty margin as the expecta-
tion of the instance margin of xn,

nearmiss
,  

nearhit
,  

( | , )

     where ( | , ) | |

                          ( | , ) | |

n n

n
i n

i n

T
n n n n n

i n n n i
i when y y

i n n n i
i when y y

E

U

U

� �

�
�

�

�

�  



  


�

�

x w s s w E

E x x w x x

x x w x x

 which can be written as: 

              

(7) 

    As we mentioned before, our uncertainty margin incor-
porates the uncertainty due to the missing values in each 
instance (sn), and the uncertainty in calculating two nearest 
neighbors (E�
). We maintain a weight vector wn for each 
instance xn

Optimization Based on Uncertainty Margin 

 such that our defined uncertainty margin can 
handle incomplete data directly. 

We define the uncertainty margin of the entire data D as 
the sum of instance margins, which can be written as: 

1
( | , )

D n

N

n n n
n

E E� �
�

� � x w s                                                         (8) 

    The feature weights can be learned by solving an opti-
mization problem that maximizes the uncertainty margin of 
data D. This optimization problem can be represented as: 

1
( | , )     subject to 0max n

N

n n n
n

E�
�

��
w

x w s w                               (9) 

    We followed logistic regression formulation framework. 
In order to avoid huge values in weight vector w, we add a 
normalization condition 1|| || ��w . Given this condition, 
for each instance xn with missing values, the weight vector 
wn 1 1|| || || || ,  1, 2,...n n N� � �w w satisfies . Therefore, we can 
rewrite the optimization problem as: 

1
1
log(1 exp( ( | , ))  subject to  0,|| ||min n

N

n n n
n

E� �
�

� 
 � ��
w

x w s w w   (10)           

    The above formulation is an optimization problem with 
respect to wn. It cannot be solved since there is a different 
wn for each instance xn. Using pre-defined wn

1

1

log(1 exp( )     

                                 subject to 0,|| ||

min n

N

n n
n

�

�
�

� 


� �

�
w

s wE I

w w

�

 , we can re-
write the formulation with respect to w. The optimization 
formulation (10) can also be written as: 

                           (11) 

    The above formulation is called nonnegative garrote. We 
can rewrite the formulation (11) as: 

1
1
log(1 exp( ) || ||

                                subject to 0

min n

N

n n
n

� �
�

� 
 �

�

�
w

s wE I w

w

�                           (12) 

    For each solution to (12), there is a parameter ����		e-
s�
��
�� �� ��������
����� �
� ���), which gives the same 
solution in (14). Formulation (12) is actually the optimiza-
tion problem with 1�  regularization. The benefits of add-
ing the 1�  penalty have been well studied (Rosset, 2005) 
and it is shown that the 1�  penalty can effectively handle 
sparse data and huge amounts of irrelevant features. 

Algorithm for Learning Feature Weights 
In this section we will introduce our feature selection 
method which solves the optimization problem introduced 
in Section 3.2. As we can see from (12), the optimization 
problem is convex if E�
 is fixed. Fox a fixed E�


2: ,  where ( ) ( ) ,  1, 2,...f i i i M� � � �w u w u

, (12) is a 
constrained convex optimization problem. However, it 
cannot be directly solved by gradient descent because of 
the nonnegative constraints on w. To handle this problem, 
we introduce a mapping function: 

                    (13) 
Therefore, the formulation (12) can be rewritten as: 

2
2

1
log(1 exp( ) || ||min n

N

n n
n

� �
�

� 
 ��
w

s wE I u�                (14) 

    By taking the derivative with respect to u, we obtain the 
following updated rule for u: 

2

1 1( ) ( )

2

1 1

exp( ( ))

( )

1 exp( ( ))

n

n

N M

n j n
n jnew old

N M

n j n
n j

j

j

�

�

� � � �

� �




� 
 
 �

� 


� �

� �

s u E I

u u u
s u E I

�

�

             (15) 

where ��is learning rate and � is the Hadamard product. 
    However, E�


    The SID algorithm starts with initializing the values of 
w to be 1. With such initialization we can estimate the s

 is determined by w so that (14) is not a 
convex problem. We use a fixed-point EM algorithm to 
find the optimal w. The proposed algorithm for Margin-
based Feature Selection in Incomplete data (we call it 
SID) is shown in Table 1. 

n  
and E�
 for each instance xn. Then, in each iteration, the 
weights vector w is updated by solving the optimization 
problem (14) with estimated values of sn and E�


 

 in the 
previous iteration. We repeat the iteration until conver-
gence. The SID algorithm requires pre-defined kernel 
���������
����	�����	�����
���	�����	�� �!����plied cross 
validation to select the values of parameters. 
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TABLE I.  SID FEATURE SELECTION METHOD 

Input:       data set D  {(xn, yn
                  Indicate index I

)} 
n for each x

                  ��	
���������� 
n 

                  	�����	�����
���	�����	�� 
Output:    feature weights w 
Initialization:      set w(0)

Do 
1, t  1 

         Calculate scaling coefficient sn
(t) |wn

(t-1)|/|w(t-1)

         Calculate E
| 

�

(t) using w(t-1)

         Update u
 and equation (7) 

(t)

         Update w
 using updated rule in equation (15) 

(t) using u(t)

        t  t + 1 
 using equation (13) 

Until convergence  
 

To prove convergence of SID algorithm we will use the 
following theorem. 
Theorem 1 (Contraction Mapping Theorem). Let T: 
X��� ��� �� �	
�����	
� ����
�� 	
� �� �	������� ������
space X. The sequence generated by xn=T(xn-1

1 1 0( *, ) ( , )
1

n

n
rd x x d x x

r
� �




) for n = 1, 
2,3,…converges to unique limit x*, where x* is the fixed 
point of T (T(x*)=x*). In other words, there is a nonnega
tive real number r<1 such that 

. 

Proof: See (Kirk and Sims, 2001).  
Based on this theorem we prove the following: 
Theorem 2. There exists �0 such that for any �����0 the 
SID algorithm converges to a fixed unique solution w* 
when initial feature weights w(0)

Proof sketch:  Let U and W be sets of all possible uncer-
tainty values defined in (8) and (9), and all possible feature 
weights values defined in (13), respectively. Specifically, 
we defined

 are nonnegative. 

nearhit nearmiss{ | ( ( | ), ( | ))}i n i nu u u u� �U x x x x and 
{ | ,|| || , 0}M �� �� � �W w w w w . Obviously, M�  is a finite 

dimensional Banach space (complete normed vector space), 
and W is a closed subset of M� . Therefore, W is a com-
plete metric space (Kress, 1998, Sun et al. 2009). 

The first step of SID algorithm calculates the uncertainty 
based on current feature weights and missing index, which 
can be represented by function F1: W��, where F1(w(t-

1) |{In, sn}n 1,2,…,N)=u(t). The second step updates feature 
weights using current uncertainty, and can be represented 
by function F2: U��, where F2(u(t) |{In, sn}n 1,2,…,N)=w(t). 
Therefore, our SID algorithm can be represented as 
w(t)=F2(F1(w(t-1)))=T(w(t-1)), where T is the composition of 
function F2 and F1

� � ��
. Note that T is a function mapping a 

complete metric space W to itself. When , we 
have 1 2|| ( , ) ( , ) || 0lim T T

�
� �

���


 �w w   for each w1 and w2. 

We can rewrite it for each w1 and w2 

1 2 1 0|| ( , ) ( , ) || || ( , ) ( , ) ||   0.
1lim rT T T T where r

r�
� � � �

���


 � 
 �



w w w w

as: 

 

"��	��	���"��#����
�	����
������
���
�������������� �!��
	���	��	��#�����
���
���� and have 	��$%&����
�� � �� . 
So�� �	� ����� '(&�� ���	�� �)�#�#� �� �0

0( )    r � � � �� � �

 such that 

. Therefore, for '<1, T is a contraction 
mapping.  Consequently, based on Theorem 1 it follows 
that T converges to a unique fixed point. �  
    The complexity of the SID algorithm is O(TN2M) where 
T is the total number of iterations, N is the number of in-
stances, and M is the number of features. Our experimental 
results show that the algorithm converges in a small num-
ber of iterations (less than 25). Therefore, the complexity 
of SID algorithm in real application is about O(N2

Experiments 

M). Note 
that the SID algorithm is linear to the number of features, 
such that the proposed method can handle a huge number 
of features. 

To characterize the proposed algorithm, we conducted 
large-scale experiments on both synthetic and UCI bench-
mark data sets. All experiments of this study were per-
formed on a PC with 3 GB of memory. We compared our 
proposed SID algorithm in incomplete data with three tra-
ditional margin-based feature selection methods (the meth-
od proposed in (Sun et al. 2009) that we call LBFS, Simba 
(Gilad-Bachrach et al. 2004) and Relief (Kira and Rendell, 
1992)) based on applying the following three popular im-
putation methods (Chechik et al. 2008) in a pre-processing 
stage of three alternatives to estimate the missing values: 
    Mean. Missing values are estimated as the average val-
ue of the feature over all data (training + testing sets). 
    kNN. Missing values are estimated as the mean values 
obtained from K nearest neighbors. The number of neigh-
bors is varied from K=1,5,10 and the best result is shown. 
    EM. A Gaussian mixture model is learned by iterating 
between learning the model with imputed data and re-
imputing missing values with the model learned in the pre-
vious iteration. We apply the algorithm proposed in 
(Ghahramani and Jordan, 1994). 

Results on Synthetic Data 
Synthetic data experiments were designed to evaluate the 
ability of our SID algorithm to select relevant features in 
incomplete data in the presence of a large number of irrel-
evant variables. For this, 500 instances in 100 dimensional 
space were generated where two features define a xor func-
tion while the remaining 98 features were irrelevant sam-
pled independently from a zero mean and one standard de-
viation normal distribution. 

For simplicity, in experiments on synthetic data we 
compare only with LBFS (Sun et al. 2009). The number of 
irrelevant features selected together with both relevant fea-
tures is compared when using SID and three alternatives 
methods. The methods are compared when 5% to 65% of 
data were missing randomly in each feature. In feature se-
lection experiments with 5% of missing values SID and 
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feature selection based on EM and mean imputation 
worked equally well, selecting only two relevant features 
(see results at Fig. 1). However, the kNN based method 
had problems in computing nearest neighbors even with 
such a small number of missing values in the presence of a 
huge number of irrelevant features. When a large fraction 
of the data was missing, SID clearly outperformed the al-
ternatives. In particular, in the presence of 35% of missing 
values in two relevant variables SID was still selecting on-
ly two relevant variables, while to capture these two varia-
bles alternative methods were also selecting 2 to 12 irrele-
vant variables on average.  All methods performed badly 
when extremely large fractions of data were missing 
(>50%), but SID was still a better choice than the alterna-
tives. The square mark on each line in Fig. 1 indicates the 
position from which the result of each method becomes 
unstable resulting in a large variance and high chance of 
selecting random features. As shown at Fig. 1, the SID 
method becomes unstable much later than the alternatives. 
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Figure 1: The number of irrelevant features selected together with two 
relevant features.  Our method (SID) vs. LBFS applying three different 

estimation methods (Square on each line indicates the fraction of missing 
values where a particular feature selection algorithm has large variance in 

the number of features selected, and becomes unstable.) 

Results on Benchmark Data 
In this section we present the results on 6 benchmark data 
sets called Wpbc, Splice, USPS, MNIST, DLBCL, and 
Arecene. The properties of these data sets are summarized 
in Table 2. We perform binary classification on all data 
sets. For the multi-class data sets (USPS, MNIST), we con-
verted the original 10-class problem to binary by setting 
digits 3, 6, 8, 9, 0 (round digits) as one class, and digits 1, 2, 
4, 5, 7 (non-round digits) as the other class. For data with a 
small number of features (Wpbc and Splice), we added 
2000 irrelevant features independently sampled from a 
Gaussian distribution with 0-mean and 1-variance. 
    Unlike the synthetic data from the previous section, in 
these experiments we didn't know the optimal features for 
all benchmark data, as there might be some irrelevant and 
weakly relevant features in the data. To evaluate the quali-

ty of selected features selected by different methods, we 
trained a SVM on selected features and tested the classifi-
cation error on the selected feature space. We trained the 
same SVM with a Gaussian kernel on the features selected 
by different methods. The kernel width of SVM Gaussian 
was set to be the median distance between points in the 
sample. We applied 5-cross validations on data sets with 
more than 500 instances, and leave-one-out procedure on 
data sets with less than 500 instances. 

TABLE II.  SUMMARY OF BENCHMARK DATA SETS. 
Dataset Feature Instance Class 

Wpbc 33+2000 194 2 
Splice 60+2000 1655 2 
USPS 256 7291 10 
MNIST 484 5000 10 
DLBCL 5469 77 2 
Arecene 10000 100 2 

     
    The classification errors of SID are compared to those of 
LFSB, SIMBA and Relief with respect to their accuracy 
for different fractions of missing values on benchmark data. 
These results for the Mean-based imputations in LFSB, 
SIMBA and Relief are reported at Fig. 2 where the three 
alternatives are labeled as LFSB-mean, SIMBA-mean and 
Relief-mean. In all comparisons, parameters in the SID 
��������	����)�������	
�����������%����
��	�����	�����
�
��	�����	��%�1. Similarly, in Fig. 3 and Fig. 4 the results of 
SID are compared to three alternatives based on kNN and 
EM imputation  
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Figure 2. Classification error with respect to fraction of missing values by 

SID compared to three alternative feature selection methods that used 
Mean to perform data imputation 

The results summarized at Fig. 2 and Fig. 3 provide evi-
dence that kNN and EM methods for data imputation did-
n't work well on Wpbc and Splice for feature selection even 
when the data had a small fraction of missing values. The 
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reason is that 2000 completely irrelevant features were 
added to these two data sets. In a feature space with so 
many irrelevant features, nearest neighbors can be com-
pletely different from the nearest neighbors in the original 
feature space. EM estimated the missing values by exploit-
ing the correlation among instances. However, instances 
with high correlation in the original feature space can be 
almost independent, as evident from Fig. 4 in the experi-
ments where 2000 completely independent irrelevant fea-
tures were present. 
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Figure 3 Classification error with respect to fraction of missing values by 

SID compared to three alternative feature selection methods that used 
KNN to perform data imputation 
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Figure 4. Classification error with respect to fraction of missing values by 
SID compared to three alternative feature selection methods that used EM 

to perform data imputation 
 

Feature selections based on kNN and EM imputation 
were good on USPS and WNIST data, which have a small 
number of irrelevant features (see Fig. 2 and Fig. 3). How-

ever, these methods failed on DLBCL and Arecene, as most 
features in these datasets are irrelevant. 
    Fig. 2 shows that, similar to Mean, our SID was not 
sensitive to the number of irrelevant features. The Mean 
method estimated missing values for each feature by the 
observed values in the same values, so that irrelevant fea-
tures did not affect estimation of the missing values. There-
fore, the feature selection based on the Mean method is not 
sensitive to irrelevant features. Our proposed SID meas-
ured the distance in weighted feature space together by tak-
ing into account the uncertainty due to the missing values. 
It can correctly capture the nearest neighbors even in high-
ly irrelevant feature space. The results shown at Fig. 2, Fig. 
3 and Fig. 4 also provide evidence that SID method outper-
formed alternatives in all data sets for different fractions of 
missing values. 
Number of selected features. Our SID method can auto-
matically select optimal feature set by eliminating features 
with weight zero. SID selected 18 out of 2033 features on 
Wpbc, 32 out of 2060 features on Splice, 13 out of 256 fea-
tures on USPS, 28 out 484 features on MNIST, 35 out of 
5469 features on DLBCL, and 59 out of 10000 features on 
Arecene. However, LBFS, Simba and Relief cannot select 
optimal feature set automatically, since they are all feature 
ranking method. In all experiments, we let three alterna-
tives select the same number as SID selected on each data. 
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Figure 5. Convergence analysis. The number of selected features and 

classification error with respect to the number of iterations are shown at 
the left and the right panel, respectively. 

Analysis of Convergence 
To simplify convergence experiments we fixed the rate of 
missing values in each data set at 35%. For each data set, 
the number of features selected by SID at every 5 iterations 
is shown at the left side of Fig. 5. We can see that SID 
converged quickly on each data set (SID converged in 45 
iterations on Arecene data, and in about 30 iterations on 
other data). The obtained results provide evidence that our 
method is applicable to large-scale data. 

The classification error of SID on each data set at every 
5 iterations until convergence is shown at the right side of 
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Fig. 5.  Our method converged on all data sets in a small 
number of iterations (45 iterations on Arecene data and 
about 30 iterations on other data). 

Conclusion  
The proposed SID method performs feature selection di-
rectly from incomplete data, without applying an imputa-
tion method to estimate the missing values in advance. In 
SID, the objective function is formulated by taking into ac-
count the uncertainty of the instance due to the missing 
values. The weight for each feature is obtained by solving 
the revised optimization problem using an EM algorithm. 
Experimental results provide evidence that our method 
outperforms the alternative feature selection methods that 
require a data imputation step in a data pre-processing 
stage. 
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