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Abstract

Selecting the optimal kernel is an important and difficult
challenge in applying kernel methods to pattern recog-
nition. To address this challenge, multiple kernel learn-
ing (MKL) aims to learn a kernel from a combination
of base kernel functions that perform optimally on the
task. In this paper, we propose a novel MKL-themed
approach to combine base kernels that are multiplica-
tively shaped with low-rank positive semidefinitve ma-
trices. The proposed approach generalizes several pop-
ular MKL methods and thus provides more flexibility
in modeling data. Computationally, we show how these
low-rank matrices can be learned efficiently from data
using convex quadratic programming. Empirical studies
on several standard benchmark datasets for MKL show
that the new approach often improves prediction accu-
racy statistically significantly over very competitive sin-
gle kernel and other MKL methods.

1 Introduction
Kernel methods have been successfully applied to many
classification and recognition tasks (Scholköpf and Smola
2001). However, selecting the optimal kernel for a given
task so far remains a challenging open problem. For most
users, choosing the right kernel is largely based on trial
and error. A more appealing approach is to learn a sin-
gle composite kernel from a fixed set of base kernels.
This general framework is known as “multiple kernel learn-
ing” (MKL) (Lanckriet et al. 2004; Chapelle et al. 2002;
Ong, Smola, and Williamson 2005; Argyriou, Micchelli, and
Pontil 2005).

Early research has focused on learning convex combina-
tions of the base kernels (Lanckriet et al. 2004; Bach, Lanck-
riet, and Jordan 2004; Kloft et al. 2011; Rakotomamonjy et
al. 2008). This formulation is appealing because the com-
bination coefficients can be efficiently computed with con-
vex optimization. Despite the seemingly restrictive formula-
tion, several empirical studies have demonstrated that learn-
ing convex combinations can significantly improve classifi-
cation accuracy (Gehler and Nowozin 2009; Lampert 2009;
Vedaldi et al. 2009; Longworth and Gales 2008).
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Other forms of combinations have also been explored
(Lewis, Jebara, and Noble 2006; Gönen and Alpaydin 2008;
Xu et al. 2010; Yang et al. 2009; Cortes, Mohri, and Ros-
tamizadeh 2009). In particular, Cortes, Mohri, and Ros-
tamizadeh (2009) proposed to combine kernels polynomi-
ally with the Hadamard product between base kernels. These
types of nonlinear combinations give rise to higher-order in-
teractions among base kernels and are thus more flexible
than ordinary convex combination. This flexibility appears
to be beneficial in practice: extensive studies have shown
that nonlinear combinations attain lower classification errors
than convex combination (Gönen and Alpaydin 2011). How-
ever, nonlinear MKL formulations often lead to non-convex
optimization problems where a global optimum is not guar-
anteed.

Can we harvest the benefits of both worlds? To this end,
we propose a novel formulation of combining base ker-
nels. The key insight of our approach is to identify previ-
ous schemes as two opposing extremes. In convex combina-
tion, the elements of a base kernel matrix are homogeneously
weighted by a single scalar (the combination coefficient). In
nonlinear combinations with Hadamard products, the base
kernel matrix is weighted element-wisely by another kernel
matrix whose elements are in general not constant.

Our approach imposes additional and special structures on
weighting base kernel matrices, thus interpolating between
these two extremes. Concretely, our weighting matrices are
positive semidefinite and composed of block (sub)matrices.
Within each block, the elements are the same. This structure
offers more flexibility than convex combination, which es-
sentially weights a kernel using a single block. At the same
time, the structure is more restrictive than the generic ker-
nel matrices used in nonlinear combinations with Hadamard
products, as our weighting matrices are low-rank and thus
have fewer degrees of freedom.

Using low-rank matrices to shape base kernels provides
a desirable tradeoff between flexibility and computational
tractability. These matrices multiplicatively (thus nonlin-
early) interact with the base kernels, yet they can be learned
efficiently with convex optimization. By decreasing the de-
grees of freedom, our method has less risk of overfitting than
generic fully-ranked kernel matrices do.

We present empirical studies on several standard bench-
mark datasets that demonstrate that our method often attains
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statistically significant improvement in classification accu-
racy over other MKL methods.

The paper is organized as follows. In section 2 we briefly
review MKL and related work. In section 3 we describe our
approach for MKL in details. Section 4 presents the results
from our empirical studies. We conclude and discuss future
work in section 5.

2 Background
We briefly review existing approaches for multiple kernel
learning (MKL). We start by describing how kernels are
used in support vector machines (SVMs) for classification.
We then describe two popular MKL methods which inspired
our own method.

Note that using SVMs as a case example is not overly
restrictive — ideas developed for learning kernels in SVMs
can often be adapted to other types of kernelized methods
for classification and regression.

2.1 Kernels in support vector machines
For binary classification, an SVM computes a hyperplane as
its decision boundary. The hyperplane is uniquely defined as
it maximizes the margin — the minimum distance of the data
points to the hyperplane. Formally, given N labeled train-
ing data {(xn, yn)}Nn=1, the normal vector of the hyperplane
is determined by the solution to the following convex opti-
mization problem, referred as the dual formulation,

max
α

αTe− 1

2
αTY KY α

subject to αTy = 0, αn ≥ 0, ∀ n
(1)

where α is the N-dimensional vector of dual variables,
one per training sample. y is the vector of all labels
(y1, . . . , yN)

T. Y denotes the diagonal matrix with y as di-
agonal elements and e denotes an all-one vector. For sim-
plicity, we have assumed that the training data is separable.

The kernel matrixK ∈ RN×N plays a pivotal role in con-
structing the classifier. Its elements are defined as Kij =
〈φ(xi), φ(xj)〉, the inner product between nonlinearly trans-
formed features φ(xi) and φ(xj). By the “kernel trick”, the
inner product can be equivalently computed using a ker-
nel function K(xi,xj) without explicitly specifying φ(·).
Common choices for kernel functions include the polyno-
mial kernel K(x, z) = (1 + xTz)d, or the Gaussian RBF
kernel K(x, z) = exp{−‖x− z‖22/σ2}), and others.

By choosing a specific kernel function, we commit to
a particular feature transformation or representation of the
data. For a given task however, identifying the optimal ker-
nel — either the right type of kernel or by selecting the right
parameters for a given kernel type (such as the degree d or
bandwidth σ2 in the above functions) — is a challenging and
unsolved problem. To overcome this challenge, MKL aims
to directly learn an optimal kernel from the data.

2.2 Convex combination for MKL
The main idea of MKL is to identify the desired kernel by
combining a fixed set of base kernel functions {Km(·, ·)}Mm.
Popular choices for base kernels are Gaussian RBF kernels

using only subsets of features or varying over several values
of bandwidths. One major constraint is that the composited
kernel should be positive semidefinite.

A simple way to maintain this constraint is to use a convex
combination of the base kernels. The desired kernel function
K(·, ·) is parameterized as (Lanckriet et al. 2004),

K(x,z) =
M∑

m=1

βmKm(x, z) (2)

where the combination coefficients are constrained to be
nonnegative and sum to one. To identify {βm}Mm=1, we sub-
stitute K(·, ·) of eq. (2) into the objective function of eq. (1)
and arrive at:

min
β

max
α

αTe− 1

2
αTY

(∑
m

βmKm

)
Y α

subject to αTy = 0, αn ≥ 0, ∀ n
βTe = 1, βm ≥ 0, ∀ m

(3)

Eq. (3) is a convex optimization program where the objec-
tive function is convex in β and concave in α. The program
can be solved efficiently (we defer the discussion on opti-
mization techniques to the appendix).

2.3 Nonlinear combination for MKL
Arguably, convex combination is just one of infinitely many
possibilities of composing kernels. To incorporate nonlinear
interactions among base kernels, Cortes, Mohri, and Ros-
tamizadeh (2009) proposed the following parametric form,

K(x, z) =
M∑

m=1

M∑
l=1

βmβlKm(x, z)Kl(x, z) (4)

In a slightly more compact form, the final kernel matrix
is a linear combination of Hadamard products between base
kernel matricesK =

∑
ml βmβlKm ◦Kl. Since Hadamard

products preserve positive semidefiniteness, the resulting
kernel is valid as long as the coefficients βm are nonnega-
tive. The quadratic interaction in eq. (4) can also be extended
to high-order polynomials, though we focus on the former.

Substituting the kernel function in eq. (4) into the SVM
dual problem of eq. (1) leads to a non-convex program1.

A recent study has shown that nonlinear combination such
as eq. (4) generally outperform convex combination (Gönen
and Alpaydin 2011), though at the cost of identifying solu-
tions that are only locally optimal.

How can we harvest benefits of both convex and nonlinear
combinations? In the following, we describe our approach.

3 Low-rank Multiplicative Shaping
A key insight to our approach is to intuitively identify the
convex and nonlinear MKL approaches as two opposing ex-
tremes. We begin by elaborating on this intuition. We then
describe our formulation and approach (numerical optimiza-
tion details are deferred to the appendix). We conclude the
section with a brief discussion on related work.

1Carefully restricting βm seems to lead to convexity, cf. Prop.
4 in (Cortes, Mohri, and Rostamizadeh 2009), though it is not clear
whether that has been used in practice.
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3.1 Intuition
Kernels measure similarities between samples in their fea-
ture space. Intuitively, we desire a kernel function that out-
puts high values on pairs of samples that belong to the same
class, and low values on pairs that do not. Thus, MKL can
be viewed as adjusting each base kernel’s elements until the
resulting kernel satisfies our desideratum.

For convex combination, each base kernelKm is adjusted
“coarsely” — the value of Km(xi,xj) is multiplied by a
scalar βm irrespective of the relation between samples xi

and xj . Thus, we cannot selectively adjust the kernel en-
tries. For example, suppose xi and xj belong to the same
class while xk is from the other. If both Km(xi,xj) and
Km(xi,xk) are high valued (as the base kernel is not “per-
fect”), we would ideally want to increase the former and de-
crease the later. This is impossible with convex combination.

On the other end, nonlinear combinations with Hadamard
products offer a very “fine” shaping. The value of
Km(xi,xj) is multiplied by another kernel Kl(xi,xj).
Thus, even if the former does not meet our requirement,
hopefully the latter will correct. Obviously, this kind of
shaping is very detailed — the change to the base kernelKm

is not homogeneous as in the case of convex combination.
With the extra flexibility comes the cost of computation: the
optimization is no longer convex.

Can we find a middle-ground shaping mechanism? Our
approach explores this notion. In particular, we argue that it
suffices to have shapings at the “cluster” level. Each cluster
contains a subset of data points, all sharing the same shaping
factors — to be made more precise soon.

Choosing the word “cluster” is not incidental. In fact,
our approach uses each base kernel to generate partitions of
the data points (by running kernelized K-means algorithms).
Thus, cluster membership assignments with their associated
shaping factors can be viewed as a summary of the base ker-
nel.

To ensure the shaping is maximally adaptive to the data,
the cluster-associated shaping factors are optimized from the
data directly — we only use the base kernel to generate the
cluster structure and ignore its kernel function values after-
wards. Because of this decoupling, the optimization is con-
vex and can be efficiently solved.

As opposed to the typically fully ranked matrices used
in the nonlinear combination approach (cf. section 2.3), our
shaping matrices are low-ranked, due to the use of a small
number of clusters. In the following, we formalize these in-
tuitions and present our approach of low-rank multiplica-
tive shaping (LMS) for MKL.

3.2 Formulation
Low-rank Multiplicative Shaping (LMS) Assume we
are given a set of base kernel functions {Km(·, ·)}Mm=1. As
describe above, we use the base kernels to generate parti-
tions of the data into disjoint clusters. We denote the par-
titions with Sp ∈ {0, 1}N×C where the ik-th element is a
binary indicator of whether xi is assigned to the k-th clus-
ter. For simplicity, we assume the number of clusters is fixed
at C for all partitions.

We use a different subscript p to imply that the number of
used partitions, denoted P, is independent of M. Indeed, sev-
eral partitions can be generated using the same base kernel
and a selection process can be applied (In our experiments,
we used kernelized K-means with different initializations
and kept partitions with high normalized mutual information
between cluster membership and classification labels).

For each kernel Km and partition Sp pair, we follow the
intuition described above and define C2 cluster-level shap-
ing factors as follows. If xi is assigned to cluster s and xj

is assigned to cluster t, then the base kernel value is multi-
plicatively shaped by the factor

θst ·Km(xi,xj) (5)

where all θst form a matrix Θm,p ∈ RC×C. For reasons soon
to be clear, we impose the constraint Θm,p � 0, i.e., Θm,p

is positive semidefinite (PSD).
We define the following low-rank multiplicative shaping

matrix, which is of key importance to our approach,

Ωm,p = SpΘm,pS
T
p (6)

It is easy to verify that the shaped kernel value in eq. (5)
is the ij-th element of the matrix Ωm,p ◦Km, namely, the
Hadamard product between the base kernel and the low-rank
shaping matrix. The proof of the following propositions is
omitted due to its simplicity.

Proposition 3.1. rank(Ωm,p) ≤ rank(Θm,p) ≤ C ≤ N

Proposition 3.2. Θm,p � 0 =⇒ Ωm,p � 0 =⇒ Ωm,p ◦
Km � 0

Having defined the low-rank shaping matrices Ωm,p, we
are now ready to present our MKL approach.

MKL with LMS We parameterize our kernel as

K =
∑
m,p

Ωm,p ◦Km (7)

Note that the kernel is PSD due to Proposition 3.2. The shap-
ing matrices Θm,p are optimized directly from data, by solv-
ing the following convex program:

min
{Θm,p}

max
α

αT e− 1

2
αTY (K + λI)Y α

subject to αTy = 0, αn ≥ 0 ∀ n∑
m,p

Trace(Θm,p) = C

Θm,p � 0 ∀m, p

(8)

where the inclusion of the identity matrix I scaled by a small
positive constant λ ensures the strict concavity of the objec-
tive function in α. The constraint on the trace ensures that
when the number of the clusters C is one, the formulation
degenerates to the convex combination (eq. (2)).
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Task Name Source N D
Advert UCI 2359 1554

Australian UCI 690 13
Splice UCI 1527 240
TIS2007 UCSD 1980 200
Spambase UCI 4601 57
German UCI 1000 24

Table 1: Datasets used in classification tasks. N: the num-
ber of samples. D: the number of feature dimensions. The
Source column denotes the origins of the datasets.

Extensions to soft-clustering Our formulation can also
use soft cluster assignments, as Proposition 3.2 is valid for
any choice of Sp. One particular assignment matrix that we
used in our empirical studies is given by

Sp = γSHARD
p + (1− γ)eeT/C (9)

which is a convex combination between a hard assignment
matrix and a matrix that assigns each data point to the C
clusters with equal probability. Note that, when γ = 0, the
above formulation “backs off” to the approach of convex
combination eq. (2).

Numerical optimization Eq. (8) is a convex optimization
program as both the objective function and the constraints
are convex in Θm,p. We describe our numerical optimization
technique for learning shaping matrices in the appendix.

3.3 Related work
Other forms of shaping matrices have also been proposed
(Lewis, Jebara, and Noble 2006; Gönen and Alpaydin 2008;
Xu et al. 2010; Yang et al. 2009). In those methods, the
base kernel Km(x,z) is multiplied by ηm(x)ηm(z). This
is equivalent to learning a rank-one PSD matrix η which is
composed with the kernel as η ◦ Km. However, learning
either ηm(x) explicitly or η results in non-convex optimiza-
tion. In contrast, the weights we learn are specified in pair-
wise and form block structures according to the clustering.
This style of shaping should not be considered as localized
and leads to convex optimization.

Close in spirit to our approach is the recent work in (Mu
and Zhou 2011). Their method also pre-computes a cluster-
ing structure from the training data, but requires solving a
non-convex graph embedding problem to learn kernels.

4 Experimental Results
We validate our approach empirically by comparing it to the
methods described in section 2 and other common baselines
classifiers. The results demonstrate the advantages of our
method in improving classification accuracy as well as in
using fewer support vectors.

4.1 Setup
Datasets Table 1 lists the 6 datasets we have used in our
experiments. Samples with missing values were filtered out.
For the biological classification tasks Splice and TIS2007,

a 1-to-4 encoding was used to represent amino-acids. The
datasets were obtained from the UCI Machine Learning
Repository (Frank and Asuncion 2010) and the UCSD
MKL Repository (Lanckriet et al. 2009)

Baselines We compare our method to 4 other methods: i)
BestSingle: the best single kernel among all base kernels; ii)
Uniform: the uniform (equal weight) combination of base
kernels; iii) SimpleMKL: the convex combination of base
kernels, with the combination coefficients computed using
the SimpleMKL algorithm proposed in (Rakotomamonjy et
al. 2008); iv) Quadratic: the non-linear combination eq. (4)
proposed in (Cortes, Mohri, and Rostamizadeh 2009),
after being adapted to classification tasks from its original
regression setting. A recent study shows that Quadratic
generally outperforms the aforementioned methods (Gönen
and Alpaydin 2011), as well as Localized MKL (Gönen and
Alpaydin 2008).

Base kernels We investigate two different settings for se-
lecting base kernels, as in (Gönen and Alpaydin 2011) and
in the instructions at the UCSD MKL Repository. We re-
strict our base kernels to a set of either linear or Gaussian
RBF kernels (with bandwidth normalized by the median
distance) generated from non-overlapping attributes of the
training data. For the Gaussian RBF base kernels, we added
one additional kernel that uses all attributes. We typically
use M = 5 or 6 base kernels.

Our method For our method of Low-rank Multiplicative
Shaping (LMS), we use what is described in section 3 with
the following extension: i) each partitions could have a dif-
ferent number of clusters Cp ∈ {4, 16, 32, 48, 56, 64}. The
trace constraint is changed from C to maxp Cp. ii) soft clus-
tering assignment is used by choosing a γ from 3 possible
values 0.05, 0.1, and 0.15.

For each of the M base kernels and for each Cp, a partition
of the training data is computed using kernelized K-means
on the training data. We chose P ≤ M partitions, whose nor-
malized mutual information between cluster membership as-
signment and the ground-truth labels are the highest.

Parameter tuning and cross-validation For all methods,
ours or the baselines, we calculated results over 15 random
splits of the data (40/30/30% for training/validation/test re-
spectively). The SVM regularization parameter C (for in-
seprable datasets) was cross-validated by selecting from
{102, . . . , 106}.

4.2 Classification accuracy
Tables 2 reports the averaged classification errors on test
data over 15 random splits, as well as the standard errors,
computed as the standard deviation in classification errors
divided by

√
15.

When linear base kernels are used, our method (LMS)
generally outperforms all other 4 methods, attaining the low-
est classification errors. In 3 out of 6 datasets, the improve-
ment in accuracy (over the second best method) is signifi-
cant, beyond one standard error.

When Gaussian RBF base kernels are used, while our
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Dataset P γ LMS SimpleMKL Quadratic Uniform BestSingle
Advert 4 0.15 3.78 (0.14) 3.89 (0.19) 5.33 (0.22) 4.24 (0.20) 4.51 (0.24)

Australian 6 0.10 13.88 (0.58) 14.17 (0.56) 20 (0.99) 14.27 (0.56) 14.24 (0.58)
Splice 6 0.15 2.98 (0.19) 3.4 (0.16) 5.42 (0.23) 3.41 (0.13) 5.23 (0.24)
tis2007 2 0.10 9.57 (0.20) 10.17 (0.29) 19.38 (0.31) 10.89 (0.17) 16.32 (0.38)
Spambase 6 0.15 6.78 (0.17) 7.31 (0.17) 17.45 (0.23) 7.33 (0.20) 14.86 (0.17)
German 4 0.15 24.73 (0.28) 24.87 (0.38) 29.84 (0.25) 24.47 (0.33) 29.8 (0.14)

(a) Linear base kernels

Dataset P γ LMS SimpleMKL Quadratic Uniform BestSingle
Advert 6 0.05 3.56 (0.18) 3.66 (0.20) 3.55 (0.19) 3.71 (0.17) 3.61 (0.18)

Australian 2 0.15 13.91 (0.62) 14.46 (0.66) 14.17 (0.58) 14.17 (0.64) 14.59 (0.47)
Splice 2 0.10 2.41 (0.15) 3.27 (0.20) 2.79 (0.17) 3.17 (0.16) 3.38 (0.15)
tis2007 6 0.05 9.18 (0.25) 9.66 (0.21) 9.84 (0.23) 10.4 (0.23) 10.32 (0.16)
Spambase 2 0.05 6.22 (0.10) 6.28 (0.10) 6.19 (0.09) 6.37 (0.11) 7.02 (0.17)
German 4 0.05 23.4 (0.42) 23.07 (0.29) 23.27 (0.53) 23.38 (0.34) 24.82 (0.58)

(b) Gaussian RBF base kernels

Table 2: Averaged classification error rates (in %) by different methods on 6 standard benchmark datasets. For our method,
the number of partitions P and the soft assignment regularizer γ are also shown. Entries are highlighted if they are statistically
significant better than all other methods. See the text for details.

method still outperforms others in general, the improve-
ments are only significant in 2 out of 6 datasets.

Our results are also consistent with a well-known fact:
well-tuned best single kernel (cf. BestSingle) and non-
adaptive combination of kernels (cf. Uniform) are very com-
petitive baselines and are often very hard to be improved
over. In fact, in several datasets, either of the two methods is
very close to the second best performing one.

Note that, when γ = 0, our method reduces to
SimpleMKL. Our empirical results from Table 2 show, how-
ever, that the optimal γ is strictly positive, illustrating the
benefits of using low-rank shaping matrices that nonlinearly
interact with base kernels through Hadamard products.

On the other hand, we find that using fully-ranked matri-
ces (such as base kernels themselves) to shape the base ker-
nels, as in Quadratic, does not yield consistent benefits. In
particular, in the case of linear base kernels, for the datasets
Splice, tis2007 and Spambase, our method does signif-
icantly better than Quadratic which is significantly worse
than SimpleMKL. There are two possible reasons for the
poor performance: the algorithm could be trapped in a lo-
cal optimum or the method is overfiting due to the use of
full-rank matrices.

4.3 The number of support vectors
The number of support vectors is often used as another
metric for evaluating MKL approaches. Intuitively, a “well
learned” composite kernel might be able to cover the feature
space with several base kernels, thus resulting in an overall
reduction in the number of support vectors.

Fig. 1 contrasts the averaged percentage of support vec-
tors (of the total number of data points) by our methods and
baselines. We can see that our method attains similar low
percentages as SimpleMKL, while other methods tend to be
higher. Quadratic attains the highest percentage.

Figure 1: Averaged percentage of support vectors by differ-
ent methods. See the text for details.

Moreover, except Quadratic, all other methods use higher
percentage of support vectors when Gaussian RBF base ker-
nels are used. This is likely due to the fact that RBF kernels
have stronger localized properties where the kernel func-
tion decays exponentially fast with respect to the distances
among data points.

5 Conclusions
Various kernel composition schemes have been studied in
the literature. Ideally, one would want the composition to be
flexible (spanning a large subspace of all possible kernels),
yet remain computationally tractable.

The basic convex combination scheme results in a convex
optimization program for learning the combination coeffi-
cients. Many numerical optimization techniques have been
developed to solve this problem efficiently. Despite its suc-
cess on several large-scale problems in terms of improving
classification accuracy, it does not consistently outperform
a well-tuned single kernel or a simple rule-based combina-
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tion schemes such as trivially averaging all kernels (Zhuang,
Tsang, and Hoi 2011; Gönen and Alpaydin 2011). Nonlinear
combination of base kernels, such as those using Hadamard
products to combine kernels, has been shown to be superior
to convex combination (Gönen and Alpaydin 2011). How-
ever, these methods are generally not based on convex opti-
mization and thus a global optimum is not guaranteed. Fur-
thermore, they often use more support vectors than simpler
schemes, including single kernels (cf. Fig. 1).

This paper proposes a new approach that has the ben-
efits of both worlds. Our low-rank multiplicative shaping
approach incorporates nonlinear interactions between ker-
nels by learning low-rank positive semidefinite matrices, and
combining them with the base kernels using the Hadamard
product. At the same time, learning is cast as a convex
optimization, retaining the computational attractiveness of
simple schemes. Empirical studies on standard benchmarks
clearly demonstrate the advantages of our method: our
method often outperforms other methods statistically signif-
icantly. Moreover, our method uses fewer support vectors
than other approaches.

For future work, we plan to study the utility of our ap-
proach on large-scale problems, as well as the possibility
of using other MKL learning criteria in lieu of the SVM
loss function used in this paper (Cortes, Mohri, and Ros-
tamizadeh 2010).
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A Numerical Optimization
In this appendix, we provide the details of our numerical
method for solving eq. (8).

A.1 General procedure
We employ the “SVM wrapper” approach (Rakotomamonjy
et al. 2008; Xu et al. 2010). The approach is an iterative pro-
cedure. The outmost iteration minimizes the objective func-
tion by updating Θm,p, using the method of projected gradi-
ent descent. Inside the loop, we solve a SVM in α assuming
fixed Θm,p parameters.

Let Θ denote the block diagonal matrix composed of all
factor matrices Θm,p. Program (8) can then be posed as:

min
Θ

g(Θ)

subject to Θ � 0, Trace(Θ) = C
(10)

where, for a fixed Θ, g(Θ) is the standard SVM optimiza-
tion eq. (1) with the kernel computed using eq. (7):

g(Θ) =max
α

αTe− 1

2
αTY (K + λI)Y α

subject to αTy = 0, αn ≥ 0, ∀ n
(11)

The inclusion of λI inK ensures that the objective function
eq. (8) is strictly concave in α and therefore has a unique
maximizer. Consequently, g(Θ) is differentiable in Θ, due

Input: {Km}Mm=1, {Sp}Pp=1, Θ0

Output: Θt

t← 0;1
repeat
αt := SVMSOLVER(Θt);2

compute∇g(Θt) at αt;3
line search for a suitable step size ηt and update4

Θt+1 := PROXC(Θ
t − ηt · ∇g(Θt));

t← t+ 1;5
until stopping condition ;

Algorithm 1: Main steps in our numerical optimization

to Danskin’s theorem ((Bonnans and Shapiro 1998), The-
orem 4.1). Specifically, the gradient ∇g(Θ) exists and is
given by

∂g(Θ)

∂Θm,p
=− 1

2
ST
p (Km ◦ [Y α∗α∗TY ])Sp (12)

where α∗ is the unique solution to eq. (11) at Θ.
We apply the proximal method, a popular method for con-

strained optimization (Rockafellar 1976). Iteratively, we use
gradient descent to update Θ from its current value, which
might violate the constraints, and then project it back to the
feasible region defined by the constraints. The pseudocode
in Algorithm 1 sketches the main steps of our optimization
procedure.

Concretely, Step 2 of the Algorithm solves the SVM of
eq. (11). Step 3 computes the gradient according to eq. (12).
Step 4 performs a line search to find a suitable step size and
project Θ back to the feasible region, denoted by C. The
projection is computed using the prox-operator.

The step size ηt is chosen with Armijo’s rule. Starting
from its maximal value ηmax (tunable in practice), we suc-
cessively decrease ηt by a factor of β < 1 until Θt+1 yields
a sufficient decrease (with respect to the chosen step size) in
the objective function.

The stopping condition is simply ||Θt+1 −Θt||2 ≤ ε for
some ε > 0.

A.2 Computing PROXC(Θ̂)

The prox-operator computes the projection of Θ̂ onto the
convex feasible region C:

min
Θ

‖Θ− Θ̂‖2F
subject to Θ ∈ C

(13)

We show this problem can be reformulated as a quadratic
program (QP) despite the semidefinite constraint on Θ.

Since Θ̂ is symmetric, it can be diagonalized: Θ̂ =

V D̂V T, where V is a unitary matrix and D̂ is diagonal.
Therefore, the objective function can be rewritten as:

‖Θ− Θ̂‖2F = ‖V TΘV − D̂‖2F (14)

Let A denote V TΘV . We observe that the minimizer Θ of
eq. (13) necessarily makesA diagonal, since D̂ is.
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In other words, the minimizer Θ is in the form ofV AV T,
whereA is the solution to

min
A

‖A− D̂‖2F
subject to A � 0, Trace(A) = C

(15)

where we have rewritten the feasible region C in terms of
the variable A. To transform (15) into QP form, we simply
consider only the diagonal terms of the (diagonal) matrices
A and D̂.

Since A is diagonal, eq. (15) is therefore an instance of
quadratic programming and can be solved efficiently. Note
that the size of A does not depend on the number of data
points, therefore, the algorithm is scalable to large-scale
problems.
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