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Abstract

Probabilistic relational PCA (PRPCA) can learn a pro-
jection matrix to perform dimensionality reduction for
relational data. However, the results learned by PRPCA
lack interpretability because each principal component
is a linear combination of all the original variables. In
this paper, we propose a novel model, called sparse
probabilistic relational projection (SPRP), to learn a
sparse projection matrix for relational dimensionality
reduction. The sparsity in SPRP is achieved by impos-
ing on the projection matrix a sparsity-inducing prior
such as the Laplace prior or Jeffreys prior. We propose
an expectation-maximization (EM) algorithm to learn
the parameters of SPRP. Compared with PRPCA, the
sparsity in SPRP not only makes the results more inter-
pretable but also makes the projection operation much
more efficient without compromising its accuracy. All
these are verified by experiments conducted on several
real applications.

Introduction
Principal component analysis (PCA) (Jolliffe 2002) and
probabilistic PCA (PPCA) (Tipping and Bishop 1999) are
very popular dimensionality reduction methods which have
been widely used to explore the structure of a high-
dimensional data set by mapping the data set into a low-
dimensional space via a projection (or called transforma-
tion) matrix. However, it is difficult to interpret the re-
sults of PCA and PPCA because each principal compo-
nent is a linear combination of all the original variables.
To achieve interpretability, some sparse versions of PCA or
PPCA have been proposed by enforcing many entries of
the projection matrix to go to zero. Sparse PCA (SPCA)
(Zou, Hastie, and Tibshirani 2006) first reformulates PCA
as a regression-type optimization problem and then applies
the elastic net (Zou and Hastie 2005) constraint on the re-
gression coefficients to get a sparse projection matrix. In
(Sigg and Buhmann 2008), sparsity is achieved by putting
a 1-norm (L1) constraint on the projection matrix during the
expectation-maximization (EM) (Dempster, Laird, and Ru-
bin 1977) learning procedure of PPCA. In (Archambeau and
Bach 2008) and (Guan and Dy 2009), sparse versions of
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PPCA are proposed by putting some sparsity-inducing pri-
ors such as the Jeffreys prior on the projection matrix.

All the variants of PCA and sparse PCA mentioned above
assume that the instances are independent and identically
distributed (i.i.d.). Hence, they are not suitable for model-
ing relational data (Getoor and Taskar 2007; Li and Yeung
2009; Li, Zhang, and Yeung 2009; Li 2010; Li and Yeung
2011; Li, Yeung, and Zhang 2011) in which the instances are
not i.i.d. In relational data, besides the content information,1
there also exist links (i.e., relations) between the instances
in the data. The attributes of the linked instances are often
correlated rather than i.i.d. (Li, Yeung, and Zhang 2009).
One typical example of relational data is a collection of re-
search papers which contain both paper content and citations
between the papers. The existence of a citation relation be-
tween two papers often implies that they are about the same
topic. In (Li, Yeung, and Zhang 2009), probabilistic rela-
tional PCA (PRPCA), which extends PPCA by eliminating
the i.i.d. assumption, is proposed to perform dimensional-
ity reduction for relational data. By explicitly modeling the
covariance between instances, PRPCA dramatically outper-
forms PCA and PPCA. However, as in PCA and PPCA, the
results learned by PRPCA also lack interpretability.

In this paper, we propose a novel model, called sparse
probabilistic relational projection (SPRP), to learn a sparse
projection matrix for relational dimensionality reduction.
Compared with PRPCA, the sparsity in SPRP not only
makes the results more interpretable but also makes the pro-
jection operation much more efficient without compromis-
ing its accuracy.

Notation
For the convenience of presentation and comparison, we
adopt the same notation as that in (Li, Yeung, and Zhang
2009). More specifically, we use boldface lowercase letters,
such as v, to denote vectors and vi to denote the ith ele-
ment of v. Boldface uppercase letters, such as F, are used
to denote matrices, with the ith row and the jth column of
F denoted by Fi∗ and F∗j , respectively. Fij is the element
at the ith row and jth column of F. We use |F| to denote
the determinant of a matrix F, tr(F) to denote its trace, FT

1As in (Li, Yeung, and Zhang 2009), we use the term ‘content
information’ to refer to the feature vectors describing the instances.
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for its transpose and F−1 for its inverse. F � 0 means that
F is positive semi-definite (psd) and F � 0 means that F is
positive definite (pd). P ⊗ Q denotes the Kronecker prod-
uct (Gupta and Nagar 2000) of P and Q. In is the identity
matrix of size n × n and e is a vector of 1’s whose dimen-
sionality depends on the context.N (·) is overloaded for both
multivariate normal distributions and matrix variate normal
distributions (Gupta and Nagar 2000). We use cov(·) to de-
note the covariance operation and 〈·〉 to denote the expecta-
tion operation. The operation diag(v) converts the vector v
into a diagonal matrix in which the ith diagonal entry is vi.

As in (Tipping and Bishop 1999) and (Li, Yeung,
and Zhang 2009), {tn}Nn=1 denotes a set of observed d-
dimensional data (content) vectors, µ denotes the data sam-
ple mean, the d × q matrix W denotes the q principal
axes (often called factor loadings or projection matrix), and
xn = WT (tn − µ) denotes the corresponding q princi-
pal components (or called latent variables) of tn. We further
use the d × N matrix T to denote the content matrix with
T∗n = tn and the q×N matrix X to denote the latent vari-
ables of T with X∗n = WT (tn−µ). As in (Li, Yeung, and
Zhang 2009), we assume that the links are undirected. For
data with directed links, we first convert the directed links
into undirected links which can keep the original physical
meaning of the links (Li, Yeung, and Zhang 2009). The ad-
jacency (link) matrix of the N instances is denoted by A.
Aij = 1 if there exists a link between instances i and j, and
otherwise Aij = 0. Moreover, Aii = 0, which means that
there exist no self-links.

Probabilistic Relational PCA
With matrix variate normal distributions (Gupta and Na-
gar 2000), the generative model of PRPCA (Li, Yeung, and
Zhang 2009) is defined as:

Υ |Θ ∼ Nd,N (0, σ2Id ⊗Φ),

X |Θ ∼ Nq,N (0, Iq ⊗Φ),

T = WX + µeT + Υ,

where Θ = {µ,W, σ2} denotes the set of parameters,
Φ = ∆−1 and ∆ , γIN+(IN+A)T (IN+A) with γ being
typically a very small positive number to make ∆ � 0. In
(Li, Yeung, and Zhang 2009), Φ is called relational covari-
ance which reflects the covariance between the instances.

Then, we can get the following results:

T |X,Θ ∼ Nd,N (WX + µeT , σ2Id ⊗Φ),

T |Θ ∼ Nd,N

(
µeT , (WWT + σ2Id)⊗Φ

)
.

Based on the generative process, Figure 1(a) shows the
graphical model of PRPCA.

If we set C = WWT + σ2Id, the log-likelihood of the
observation matrix T in PRPCA is

L = ln p(T |Θ) = −N
2

[
ln |C|+ tr(C−1H)

]
+ c,

where c is a constant independent of the parameters Θ and
H is defined as follows:

H =
(T− µeT )∆(T− µeT )T

N
. (1)

(a) PRPCA (b) SPRP
Figure 1: Graphical models of PRPCA and SPRP, in which T is
the observation matrix, X and Z are the latent variable matrices,
µ, W and σ2 are the parameters to learn, λ is the hyperparameter,
and the other quantities are kept constant.

In (Li, Yeung, and Zhang 2009), two maximum likelihood
estimation (MLE) methods, one based on a closed-form so-
lution and another based on EM, are proposed to learn the
parameters of PRPCA.

Sparse Probabilistic Relational Projection
In this paper, we propose to put a sparsity-inducing prior
on W to encourage many of its entries to go to zero.
The resulting model is called sparse probabilistic relational
projection (SPRP) due to its sparsity property. Although
there exist many sparsity-inducing priors in the literature,
e.g., (Figueiredo 2003; Caron and Doucet 2008; Archam-
beau and Bach 2008; Guan and Dy 2009), here we consider
only two of them, the Laplace prior and Jeffreys prior. Using
other sparsity-inducing priors in SPRP is expected to follow
the same principle and will be left to our future pursuit.

SPRP with Laplace Prior
In SPCA (Zou, Hastie, and Tibshirani 2006), sparsity is
achieved by putting an L1 regularization term on the projec-
tion matrix. Here we learn a sparse W for SPRP in a simi-
lar way. However, unlike SPCA which is formulated from a
non-probabilistic view, SRPR is based on a probabilistic for-
mulation which can automatically learn the hyperparameters
while the non-probabilistic formulation cannot.

We adopt the Laplace (i.e., double-exponential) prior
(Park and Casella 2008; Guan and Dy 2009) for W:

p(Wij |λ) =

√
λ

2
exp

{
−
√
λ‖Wij‖1

}
,

p(W |λ) =
d∏

i=1

q∏
j=1

p(Wij |λ)

=
(√λ

2

)dq
exp

{
−
√
λ‖W‖1

}
,

where ‖ · ‖1 denotes the absolute value for a scalar and the
1-norm for a matrix.

Using Bayes’ rule, the log-posterior of Θ can be com-
puted as follows:

ln p(Θ |T) = ln p(T |Θ) + ln p(Θ) + c0

=− N

2

[
ln |C|+ tr(C−1H)

]
−
√
λ‖W‖1

+ ln p(µ) + ln p(σ2) + c1, (2)

where c0 and c1 are constants independent of Θ.
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For simplicity, here we adopt the maximum a posteriori
(MAP) strategy to estimate the parameters. Due to the L1

constraint on W, the MAP estimation of W will naturally
induce sparsity, which means that many entries of W will be
automatically driven to zero during the learning procedure.
In this paper, we assume that p(µ) and p(σ2) are uniform.

Remark 1 Of course, we may also put non-uniform priors,
such as conjugate priors, on µ and σ2. Here, uniform pri-
ors for µ and σ2 are adopted mainly for fair comparison
because they are also adopted in PRPCA. Alternatively, we
may also treat all the parameters as random variables and
resort to fully Bayesian methods, such as variational meth-
ods (Jordan et al. 1999), for learning and inference. How-
ever, since the focus of this paper is on demonstrating the
promising advantages of sparsity under the PRPCA frame-
work, all these possible variants are left to future extensions.

It is not easy to directly optimize the objective function
in (2) though. As in (Park and Casella 2008; Guan and Dy
2009), we adopt a hierarchical interpretation of the Laplace
prior:

p(Zij |λ) =
λ

2
exp

{
−λ

2
Zij

}
, for Zij ≥ 0, (3)

Wij |Zij ∼ N (0, Zij). (4)

It is easy to show that this hierarchical reformulation is
equivalent to the original Laplace prior, because

p(Wij |λ) =

∫
p(Wij |Zij)p(Zij |λ)dZij

=

√
λ

2
exp

{
−
√
λ‖Wij‖1

}
. (5)

Figure 1(b) depicts the graphical model of SPRP as com-
pared with that of PRPCA in Figure 1(a).

Learning By setting the gradient of ln p(Θ |T) with re-
spect to µ to zero, we get the (closed-form) MAP estimate
for µ as follows:

µ̂ =
T∆e

eT∆e
. (6)

For the other parameters (W and σ2) of SPRP, we derive an
(iterative) EM (Dempster, Laird, and Rubin 1977) algorithm
to learn them. For the rest of this paper, we still use Θ to refer
to the parameters but they only contain W and σ2 because
µ can be directly computed by (6). During the EM learning
procedure, we treat {Z,X} as missing data and {T,Z,X}
as complete data. The EM algorithm for MAP estimation
operates by alternating between the following two steps:

• E-step: The expectation of the complete-data log-
posterior with respect to the distribution of the missing
variables {Z,X} is computed. This expected value is of-
ten called the Q-function which is defined as follows:

Q (Θ |Θ(t)) =∫
dZ dX p(Z,X |Θ(t),T) ln p(Θ |T,Z,X).

• M-step: The Q-function is maximized to update the pa-
rameters:

Θ(t+ 1) = argmax
Θ

Q (Θ |Θ(t)) .

The whole EM learning procedure is summarized in Al-
gorithm 1 and the detailed derivation can be found in (Li
2010). Note that as in (Li, Yeung, and Zhang 2009), we use
W and σ2 to denote the old values and W̃ and σ̃2 for the
updated ones.

Algorithm 1 EM algorithm for SPRP
Initialize W and σ2.
for t = 1 to T

E-step: Compute the sufficient statistics
M = WTW + σ2Iq ,
〈X〉 = M−1WT (T− µeT ),
〈X∆XT 〉 = Nσ2M−1 + 〈X〉∆〈X〉T ,
〈 1
Zij
〉 =

√
λ

‖Wij‖1
.

M-step: Update the parameters
for i = 1 to d

Σi = diag
( ‖Wi1‖1√

λ
, · · · , ‖Wiq‖1√

λ

)
,

W̃i∗ = Hi∗WM−1Σi

[
(σ2Iq

+M−1WTHW)M−1Σi +
σ2

N
Iq
]−1.

end for
σ̃2 = tr[H−HWM−1W̃T ]

d
.

end for

To learn the hyperparameter λ, we may resort to the cross-
validation strategy. Alternatively, we may treat λ as one of
the parameters, just like W, to get the following EM updat-
ing equation: λ = 2dq∑d

i=1

∑q
j=1〈Zij〉

.

SPRP with Jeffreys Prior
The Jeffreys prior (Figueiredo 2003; Guan and Dy 2009) is a
noninformative prior. To use the Jeffreys prior, we only need
to change the density function ofZij in (3) to: p(Zij) ∝ 1

Zij
.

We can see that there exist no hyperparameters in the Jef-
freys prior but the Laplace prior does have the hyperparam-
eter λ which needs to be learned.

With the Jeffreys prior, the log-posterior can be computed
as follows:

ln p(Θ |T) = ln p(T |Θ) + ln p(Θ) + c2

=− N

2

[
ln |C|+ tr(C−1H)

]
− ln ‖W‖1

+ ln p(µ) + ln p(σ2) + c3, (7)

where c2 and c3 are constants independent of the parameters.
We can see that the only difference between (2) and (7) lies
in the difference between the regularization terms

√
λ‖W‖1

and ln ‖W‖1.
To learn the parameters for SPRP with the Jeffreys prior,

we only need to change 〈 1
Zij
〉 and Σi in Algorithm 1 as fol-

lows: 〈 1
Zij
〉 = 1

W 2
ij
,Σi = diag

(
W 2

i1, . . . ,W
2
iq

)
.
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Time Complexity
To train the model, we need O(dN) time to compute H and
O(Tqd2 + Tdq3) for the T EM iterations. Hence, the total
time complexity is O(dN +Tqd2 +Tdq3). If d > q2, Tqd2

will be larger than Tdq3 and so the time complexity will
become O(dN + Tqd2) which is equal to that of PRPCA.

If we want to use the learned W to perform projection, the
time complexity will depend on the number of nonzero en-
tries in W. Generally speaking, SPRP has lower projection
cost than PRPCA because the W in SPRP is more sparse
than that in PRPCA.

Experimental Evaluation
As in (Li, Yeung, and Zhang 2009), we adopt PCA to ini-
tialize W, initialize σ2 to 10−6, and set γ to 10−6. We
set the number of EM iterations T to 30 because 30 itera-
tions are sufficient for both PRPCA and SPRP to achieve
good performance. The baseline methods for comparison in-
clude PCA, sparse probabilistic projection (SPP) (Archam-
beau and Bach 2008) and PRPCA. Through the experi-
ments we want to verify the following claims: (1) PCA
cannot effectively exploit the relational information in rela-
tional data. Furthermore, it cannot learn interpretable results.
(2) Due to its i.i.d. assumption, SPP cannot achieve satis-
factory performance even though it can learn interpretable
results. (3) PRPCA can effectively exploit the relational in-
formation, but it cannot learn interpretable results. (4) SPRP
not only can effectively exploit the relational information,
but it can also learn interpretable results.

Data Sets
Three data sets are used for our experimental evaluation. The
first two are the preprocessed WebKB (Craven et al. 1998)
and Cora (McCallum et al. 2000) data sets used in (Zhu et
al. 2007; Li, Yeung, and Zhang 2009). The third data set is
called Cora-IR, which contains the information retrieval pa-
pers from the original Cora data set (McCallum et al. 2000).
All these data sets use the bag-of-words representation for
the content information.

The WebKB data set contains 4,017 web pages from
the computer science departments of four universities (Cor-
nell, Texas, Washington, and Wisconsin). Each web page
is labeled with one of seven categories: student, professor,
course, project, staff, department, and “other”. The original
links are directed. We adopt the same strategy as that in (Li,
Yeung, and Zhang 2009) to convert the directed links into
undirected ones. Some characteristics of the WebKB data
set are summarized in Table 1.

Table 1: Characteristics of the WebKB data set.
Data Set #classes #instances #words
Cornell 7 827 4,134
Texas 7 814 4,029
Washington 7 1,166 4,165
Wisconsin 6 1,210 4,189

The Cora data set used in (Li, Yeung, and Zhang 2009)
contains 4,343 research papers from the computer science

community. The content information refers to the paper ab-
stracts and the links refer to the citations. The task is to clas-
sify each paper into one of the subfields of data structure
(DS), hardware and architecture (HA), machine learning
(ML), and programming language (PL). Some characteris-
tics of the Cora data set are summarized in Table 2.

Table 2: Characteristics of the Cora data set.
Data Set #classes #instances #words
DS 9 751 6,234
HA 7 400 3,989
ML 7 1,617 8,329
PL 9 1,575 7,949

Because we do not have the dictionary for generating
the bag-of-words representation in the preprocessed WebKB
and Cora data sets, we collect another data set, called
Cora-IR. The Cora-IR data set contains 350 information re-
trieval papers from the original Cora set (McCallum et al.
2000). There are four subfields (classes) in Cora-IR: re-
trieval, filtering, extraction, and digital library. We use the
title of each paper for the content information. After pre-
processing, we get a dictionary of 787 words. For each
word, there is at least one instance (paper) containing it. We
will use this dictionary to demonstrate the interpretability of
SPRP.

In (Li, Yeung, and Zhang 2009), only information about
the words (bag-of-words) is used to represent the con-
tent information. We expand the original content features
by adding some extra features extracted from the origi-
nal directed links. The ith link feature is referred to as
link-to-instancei. For example, if instance k links to instance
i, the ith link feature of instance k will be 1. Otherwise,
it will be 0. In fact, this kind of link features can also be
treated as content information. For example, given a paper,
the link-to-instancei feature actually reflects whether the ref-
erence part of that paper contains paper i. For a web page,
the link-to-instancei feature can also be directly extracted
from the HTML file (content) of that page. Note that it is
somewhat impractical to treat the linked-by-instancei fea-
tures as content features because they cannot be directly ex-
tracted from the content of the instances. For example, the
papers citing a specific paper i are not included in the con-
tent of paper i. After extracting the link features, we com-
bine the original bag-of-words with the link features to ob-
tain the expanded content features. We can see that the way
to get the expanded content features also assumes that the
instances are i.i.d. We will show that this way of using link
information is not good enough to capture the structure in-
formation in relational data. On the contrary, PRPCA and
SPRP, which are not based on the i.i.d. assumption, can pro-
vide more effective ways to model relational data. In what
follows, we will refer to the original bag-of-words represen-
tation as original content features.

Laplace Prior vs. Jeffreys Prior
We define the degree of sparsity (DoS ) of W as follows:

DoS =
number of zero entries in W

dq
× 100%.
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From (2), we can see that λ in the Laplace prior controls
the DoS of the learned W. The larger λ is, the larger will
the DoS of W be. Here, we vary λ to get different DoS
and then evaluate the corresponding accuracy. Due to space
limitation, we only report here results on the DS data set be-
cause other data sets exhibit similar properties. The accuracy
of PRPCA on the DS data set is 68.1%. The corresponding
results of SPRP with the Laplace prior are shown in Table 3.

Table 3: Accuracy (Acc) against DoS for SPRP with the Laplace
prior.

DoS (%) 30 50 60 70 76 80 90 96
Acc (%) 68.8 68.7 68.1 67.5 66.9 66.7 65.9 63.2

From Table 3, we can discover some interesting properties
of SPRP:
• In general, the larger the DoS is, the lower will the accu-

racy be. This is reasonable because less information about
the features will be used to construct the principal compo-
nents with larger DoS .
• Compared with PRPCA, SPRP can achieve a DoS as

large as 60% without compromising its accuracy. Even
when DoS = 70%, the accuracy of SPRP is still compa-
rable with that of PRPCA. This shows that the sparsity
pursuit in SPRP is very meaningful because it can obtain
interpretable results without compromising its accuracy.
For the Jeffreys prior, there are no hyperparameters to

tune. After learning, we get an accuracy of 68.1% with
DoS = 76%. Hence, with similar DoS , the Jeffreys prior
can achieve slightly higher accuracy than the Laplace prior.
From Table 3, we also find that a relatively good tradeoff
between the DoS and accuracy can be obtained if 70% <
DoS < 80%. Hence, we can say that the Jeffreys prior can
adaptively learn a good DoS . Due to this nice property, we
only report the results of SPRP with the Jeffreys prior in the
rest of this paper. For fair comparison, we also use the Jef-
freys prior for SPP (Archambeau and Bach 2008).

Interpretability
For all the projection methods, we set the dimensionality of
the latent space to 50. For Cora-IR, we adopt the original
content features because we need to use the selected words
for illustration. For all the other data sets, we use the ex-
panded content features.

The DoS comparison of PCA, SPP, PRPCA and SPRP is
shown in Table 4. We can see that the DoS of both PCA and
PRPCA on WebKB and Cora-IR is either 0 or close to 0,
which means that all the original variables (i.e., words) will
be used to compute the principal components for PCA and
PRPCA. For Cora, there exist some features (words) that no
instances (papers) contain them. That is to say, all entries in
the corresponding rows of the content matrix T will be zero.
We also find that the zeroes in W are from those rows cor-
responding to the all-zero rows in T. Hence, we can say that
on Cora, PCA and PRPCA cannot learn sparse projection
matrices either. Due to this non-sparse property, the results
of PCA and PRPCA lack interpretability. On the contrary,
both SPP and SPRP can learn sparse projection matrices.
Compared with SPP, SPRP achieves lower DoS . However,

Table 4: DoS (in %) comparison of PCA, SPP, PRPCA and SPRP.

PCA SPP PRPCA SPRP

Cora

Cora-IR 0 90 0 72
DS 18 88 20 76
HA 16 86 18 72
ML 10 90 12 76
PL 11 90 13 76

WebKB

Cornell 0 74 0 48
Texas 0 77 0 42
Washington 1 74 1 47
Wisconsin 0 75 0 47

the discrimination ability of SPRP is much higher than SPP,
as to be shown later.

To further compare the results of SPP and SPRP in terms
of interpretability, we show some details of the first six
columns of W in Table 5. In the table, the ‘Selected Words’,
arranged in descending order in terms of their W values,
correspond to the top 10 nonzero entries in W. It is easy
to see that the learned projection matrix of either SPRP or
SPP does show some discrimination ability. More specifi-
cally, W∗1 mainly corresponds to the class retrieval, W∗2 to
filtering, W∗3 and W∗4 to extraction, and W∗5 and W∗6 to
digital library. This is very promising because we can use
the magnitude of the corresponding principal components
to measure the class proportions of each instance. Detailed
comparison between the words selected by SPP and SPRP
shows that the words selected by SPRP is more discrimina-
tive than those selected by SPP. For example, ‘dictionary’ is
more related to retrieval than ‘agents’, and ‘symbolic’ and
‘wrapper’ are more related to extraction than ‘multi’ and
‘empirical’.

For SPRP, 116 out of 787 words are not used to construct
any principal component, which means that the entire rows
of W corresponding to those words are zero. Hence, SPRP
can also be used to perform feature elimination, which will
speed up the collection process for new data. For example,
some eliminated words include ‘wwww’, ‘aboutness’, ‘uu’,
‘erol’, ‘stylistic’, ‘encounter’, ‘classificatin’, ‘hypercode’,
‘broswer’, ‘lacking’, ‘multispectral’, and ‘exchanges’. It is
interesting to note that most of them are typos or not related
to information retrieval at all.

Accuracy
As in (Li, Yeung, and Zhang 2009), we adopt 5-fold cross
validation to evaluate the accuracy. The dimensionality of
the latent space is set to 50 for all the dimensionality re-
duction methods. After dimensionality reduction, a linear
support vector machine (SVM) is trained for classification
based on the low-dimensional representation. The average
classification accuracy for 5-fold cross validation, together
with the standard deviation, is used as the performance met-
ric.

The results on Cora and WebKB are shown in Figure 2
and Figure 3, respectively. PRPCA based on the original
content features is denoted as PRPCA0, which achieves per-
formance comparable with the state-of-the-art methods (Li,
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Table 5: Some details of the projection matrices learned by SPRP and SPP.

Selected Words (arranged in descending order in terms of their W values)

SPRP

W∗1 information; retrieval; cross; language; extraction; system; evaluation; techniques; dictionary; incremental
W∗2 text; categorization; learning; classification; information; feature; retrieval; selection; classifiers; algorithm
W∗3 web; wide; learning; world; information; extract; symbolic; aid; formatting; extraction
W∗4 extraction; information; learning; structured; rules; wrapper; documents; induction; grammatical; machine
W∗5 text; language; digital; wide; world; high; processing; structured; sources; information
W∗6 digital; library; learning; libraries; image; market; services; decoding; stanford; metadata

SPP

W∗1 information; retrieval; agents; evaluation; system; cross; language; intelligent; dissemination; distributed
W∗2 text; categorization; learning; classification; information; feature; selection; extraction; study; case
W∗3 web; wide; world; learning; information; search; multi; patterns; server; performance
W∗4 extraction; information; learning; rules; disclosure; automatically; structured; basis; dictionary; empirical
W∗5 text; digital; world; wide; information; system; library; categorization; processing; high
W∗6 digital; library; learning; services; libraries; market; video; access; navigating; agents

Figure 2: Results in average classification accuracy with standard
deviation on the Cora data set.

Figure 3: Results in average classification accuracy with standard
deviation on the WebKB data set.

Yeung, and Zhang 2009). All the other methods are based
on the expanded content features. Compared with PCA,
the higher accuracy of PRPCA0 shows that it is not good
enough to just extract the extra information from the links
and still assume the instances to be i.i.d. Comparison be-
tween PRPCA and PRPCA0 shows that slightly better per-
formance can be achieved with the expanded content fea-
tures, particularly for the Cora data set. Comparison between
PRPCA and PCA verifies the claim in (Li, Yeung, and Zhang
2009) that PRPCA dramatically outperforms PCA by elim-
inating the i.i.d. assumption. Comparison between SPP and
PCA shows that the sparsity pursuit does not necessarily de-
teriorate the accuracy for the case with the i.i.d. assumption.
Comparison between SPRP and SPP shows that under the
sparsity pursuit case, dramatic accuracy improvement can

Table 6: Projection time (in seconds) comparison.

PRPCA SPRP

Cora

DS 2.431 0.749
HA 0.834 0.284
ML 8.225 2.272
PL 7.507 2.123

WebKB

Cornell 2.362 1.241
Texas 2.273 1.323
Washington 3.588 1.946
Wisconsin 3.778 2.029

also be achieved by explicitly modeling the covariance be-
tween instances, which once again verifies that the i.i.d. as-
sumption is unreasonable for relational data. Finally, com-
parison between SPRP and PRPCA shows that under the
PRPCA framework, we can also achieve sparsity without
compromising accuracy.

Projection Cost
When the projection matrix learned is used to perform pro-
jection, the sparsity of SPRP will make its projection cost
much lower than that of PRPCA. Table reports the pro-
jection time needed to perform projection on the Cora and
WebKB data sets. The test is performed with MATLAB im-
plementation on a 2.33GHz personal computer. We can see
that SPRP is much faster than PRPCA for the projection op-
eration.

Conclusion and Future Work
In this paper, we have proposed a novel model, SPRP, to
learn a sparse projection matrix for relational dimensional-
ity reduction. Compared with PRPCA, the sparsity in SPRP
not only makes its results interpretable, but it also makes the
projection operation much more efficient without compro-
mising its accuracy. Furthermore, SPRP can also be used to
perform feature elimination, which will speed up the collec-
tion process for new data. Compared with traditional sparse
projection methods based on the i.i.d. assumption, SPRP can
learn a more discriminative projection by explicitly model-
ing the covariance between instances. SPRP brings about
some theoretical contributions to the area of sparsity pur-
suing because SPRP is the first model that pursues sparsity
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without requiring the i.i.d. assumption. Hence, it can inspire
us to relax the i.i.d. assumption in other sparse models as
well to further boost model performance.
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