
Markov Network Structure Learning:
A Randomized Feature Generation Approach

Jan Van Haaren and Jesse Davis
Department of Computer Science, KU Leuven

Celestijnenlaan 200A - box 2402, 3001 Heverlee, Belgium
{jan.vanhaaren, jesse.davis}@cs.kuleuven.be

Abstract
The structure of a Markov network is typically learned
in one of two ways. The first approach is to treat this
task as a global search problem. However, these al-
gorithms are slow as they require running the expen-
sive operation of weight (i.e., parameter) learning many
times. The second approach involves learning a set of
local models and then combining them into a global
model. However, it can be computationally expensive to
learn the local models for datasets that contain a large
number of variables and/or examples. This paper pur-
sues a third approach that views Markov network struc-
ture learning as a feature generation problem. The algo-
rithm combines a data-driven, specific-to-general search
strategy with randomization to quickly generate a large
set of candidate features that all have support in the data.
It uses weight learning, with L1 regularization, to select
a subset of generated features to include in the model.
On a large empirical study, we find that our algorithm is
equivalently accurate to other state-of-the-art methods
while exhibiting a much faster run time.

Introduction
A Markov network is an undirected graphical model for
compactly representing a joint probability distribution over
a set of random variables. The goal of structure learning is
to discover conditional (in)dependencies in the data such
that the joint distribution can be represented more com-
pactly. Markov networks are often represented as a log-
linear model, which means that structure learning can be
posed as a feature induction problem.

Typically, the structure learning problem is addressed
through standard search based techniques. Algorithms that
follow this strategy use the current feature set to con-
struct a set of candidate features. After evaluating each
feature, the highest scoring feature is added to the model.
The search can follow a top-down (i.e., general-to-specific)
strategy (e.g., McCallum (2003); Della Pietra, Della Pietra,
and Lafferty (1997)) or bottom-up (i.e., specific-to-general)
strategy (e.g., Davis and Domingos (2010); Mihalkova and
Mooney (2007)). Search based approaches tend to be slow
due the large number of candidate structures. Further-
more, scoring each candidate structure requires learning the

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

weights of each feature. Weight learning requires iterative
optimization, where each iteration requires running infer-
ence over the model. Unfortunately, inference is often in-
tractable.

An alternative approach that has gained popularity in re-
cent years involves learning a set of local models and then
combining them into a global model. Algorithms that fol-
low this strategy consider each variable in turn and build a
model to predict this variable’s value given the remaining
variables. Each predictive model is then transformed into a
set of features, each of which is included in the final, global
model. Two successful approaches that use this strategy are
Ravikumar et al.’s (2010) algorithm, which employs L1 lo-
gistic regression as the local model and DTSL (Lowd and
Davis 2010), which uses a probabilistic decision tree learner
as the local model. Still, it can be computationally expen-
sive to learn the local models if the dataset contains a large
number of variables and/or examples.

This paper presents GSSL, a two-step approach to
Markov network structure learning. The first step involves
quickly generating a large set of candidate features by com-
bining aspects from randomization and specific-to-general
search. GSSL constructs an initial feature set by converting
each training example into a feature. It then repeatedly picks
a feature at random, generalizes it by dropping an arbitrary
number of variables, and adds the generalized feature to the
feature set. Note that the same feature can be generated mul-
tiple times. The second step selects a subset of features to
include in the final model. GSSL prunes all features that
were generated fewer times than a pre-defined threshold and
then performs weight learning with L1 regularization to en-
force sparsity in the final model. This approach is similar to
that of Huynh and Mooney’s (2008) for discriminative struc-
ture learning algorithm for Markov logic networks (which
are templates for constructing Markov networks). Their ap-
proach generates features in the form of first-order definite
clauses and then uses weight learning with L1 regularization
to select a subset of the features. The algorithm restricts the
structure of the features and in essence it learns the features
for a logistic regression model.

GSSL combines some of the benefits of recent approaches
to structure learning. In the feature generation phase, the al-
gorithm proceeds in a data-driven, bottom-up fashion to ex-
plore the space of candidate features. As a result, GSSL only

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1148

constructs features that have support in the data. In the fea-
ture selection phase, the algorithm performs weight learn-
ing only once to select the best features. Here, it follows the
philosophy of local model based approaches that try to min-
imize the computational expense of weight learning. A large
scale empirical evaluation on 20 real-world datasets demon-
strates the advantages of GSSL. Despite its simplicity, its
run times are on average twice as fast as DTSL and 15 times
faster than Ravikumar et al.’s L1 approach. Furthermore, it
learns more accurate models than its competitors.

Markov Networks
This section reviews the basics about representation, infer-
ence and learning for Markov networks.1

Representation
A Markov network is a model for compactly represent-
ing the joint distribution of a set of variables X =
(X1, X2, . . . , Xn) (Della Pietra, Della Pietra, and Lafferty
1997). It is composed of an undirected graph G and a set of
potential functions φk. The graph has a node for each vari-
able, and the model has a potential function for each clique
in the graph. The joint distribution represented by a Markov
network is:

P (X=x) =
1

Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the
variables that appear in that clique), and Z is a normaliza-
tion constant. Markov networks are often conveniently rep-
resented as log-linear models, with each clique potential re-
placed by an exponentiated weighted sum of features of the
state:

P (X=x) =
1

Z
exp

∑
j

wjfj(x)

 (2)

A feature fj(x) may be any real-valued function of the state.
For discrete data, a feature typically is a conjunction of tests
of the formXi = xi, whereXi is a variable and xi is a value
of that variable. We say that a feature matches an example if
it is true for that example.

Inference
The main inference task in graphical models is to compute
the conditional probability of some variables (the query)
given the values of some others (the evidence), by summing
out the remaining variables. This problem is #P-complete.
Thus, approximate inference techniques are required. One
widely used method is Markov chain Monte Carlo (MCMC)
(Gilks, Richardson, and Spiegelhalter 1996), and in particu-
lar Gibbs sampling, which proceeds by sampling each vari-
able in turn given its Markov blanket (the variables it appears
with in some potential). Another popular method for approx-
imate inference is loopy belief propagation (Murphy, Weiss,
and Jordan 1999).

1Markov networks are also called Markov random fields.

Weight Learning
Weight learning uses data to automatically learn the weight
associated with each feature by optimizing a given objec-
tive function. Ideally, each candidate model would be scored
by its training set log-likelihood. For Markov networks, the
log-likelihood is a convex function of the weights and learn-
ing can be solved via convex optimization. However, this
typically requires an iterative optimization technique where
each step of the optimization must calculate both the log-
likelihood and its gradient. This is often computationally in-
feasible as it requires computing the partition function Z
(see equation 2). Additionally, Kulesza and Pereira (2008)
have found that employing approximate inference can mis-
lead weight learning algorithms.

Optimizing the pseudo-likelihood (Besag 1975) is a more
efficient alternative that has been widely used in domains
such as spatial statistics, social network modeling and lan-
guage processing. The pseudo-likelihood is defined as:

logP •w(X=x) =∑V
j=1

∑N
i=1 logPw(Xi,j=xi,j |MBx(Xi,j)) (3)

where V is the number of variables, N is the number of ex-
amples, xi,j is the value of the jth variable of the ith exam-
ple, MBx(Xi,j) is the state of Xi,j’s Markov blanket in the
data. This is much more efficient to compute and can also be
optimized via convex optimization.

Structure Learning
Most Markov network structure learning approaches pose
the task as a feature induction problem.

Search Based Structure Learning. Della Pietra et al.’s
algorithm (1997) is the standard approach to Markov net-
work structure learning and it uses a greedy, general-to-
specific (i.e., top-down) search. The algorithm starts with a
set of atomic features (i.e., just the variables in the domain).
It creates candidate features by conjoining each feature to
each other feature, including the original atomic features. It
evaluates each candidate feature f by estimating how much
including f in the model would improve the model’s log-
likelihood. It adds the feature that results in the largest gain
to the feature set. This procedure terminates when no candi-
date feature improves the model’s score.

BLM (Davis and Domingos 2010) is a more recent al-
gorithm that employs a greedy, specific-to-general (i.e.,
bottom-up) search. BLM starts by treating each complete
example as a long feature in the Markov network. The algo-
rithm repeatedly iterates through the feature set. It considers
generalizing each feature to match its k nearest previously
unmatched examples by dropping variables. If incorporating
the newly generalized feature improves the model’s score, it
is retained in the model. The process terminates when no
generalization improves the score.

Search based approaches suffer the drawback that they
must perform weight learning to score each candidate fea-
ture. This is computationally expensive even when optimiz-
ing the pseudo-likelihood.

1149

Local Model Based Structure Learning. More recently,
researchers have explored ways to learn a set of local models
and combine them into a global model. At a high level, these
algorithms try to discover the Markov blanket of each vari-
able Xi by building a model to predict the value of Xi given
the remaining variables. Finally, all features are added to the
model and their weights are learned globally using any stan-
dard weight learning algorithm. Ravikumar et al.’s (2010)
algorithm employs L1 logistic regression models as local
model. In the limit of infinite data, consistency is guaranteed
(i.e., Xi is in X ′js Markov blanket iff Xj is in X ′is Markov
blanket). In practice, this is often not the case and there are
two methods to decide which edges to include in the net-
work. One includes an edge if either Xi is in Xj’s Markov
blanket or Xj is in Xi’s Markov blanket. The other includes
an edge if both Xi is in Xj’s Markov blanket and Xj is in
Xi’s Markov blanket. A weakness of this algorithm is that
it only constructs pairwise features. DTSL (Lowd and Davis
2010) employs this general strategy using a probabilistic de-
cision tree learner as local model. Each tree is converted
to a set of conjunctive features. The most straightforward
conversion constructs one feature for each root-to-leaf path
through the tree (the paper proposes several other conversion
methods).

Still, it can be computationally expensive to learn the local
models if the dataset contains a large number of variables
and/or examples.

Algorithm
We now describe GSSL (Generate Select Stucture
Learning), an algorithm for Markov network structure
learning. GSSL has two main steps: (1) feature generation,
and (2) feature selection. In the feature generation step,
starting from an initial feature set, GSSL quickly generates
a large set of candidate features by combining aspects from
randomization and specific-to-general search. In the feature
selection step, GSSL attempts to discard irrelevant features
through a preprocessing step and then by applying weight
learning with a L1 penalty.

The four key elements of GSSL, introduced in the next
subsections, are: (i) how to construct the initial feature set,
(ii) how to generate new features, (iii) how to perform fea-
ture selection and (iv) how the overall algorithm functions.

Initial Feature Set
The algorithm requires an initial feature set. Since the gener-
ation process generalizes features, the initial features should
be specific so that it is possible to generalize them. The train-
ing examples can provide very specific features and GSSL
considers two ways of converting them into the initial fea-
ture set. The first approach creates one long feature for each
unique training example by forming a conjunction over all
variables in that example. Because the features are maxi-
mally specific, generalization can generate every feature that
has support in the data. The second approach works for prob-
lems that have only binary variables and it builds “positive”
features by forming a conjunction only over those variables
that have a value of true. Because many domains are sparse,

this conversion has the advantage of being more compact.
Both approaches have the advantage that every initial feature
has support (i.e., occur) in the data. Consequently, general-
izing any of these features yields a feature that is guaranteed
to match at least one training example.

The following example dataset, where each row is a train-
ing example, illustrates the conversion process.

V0 V1 V2 V3 V4

1. true false false true true
2. true false true false true
3. false true true true true
4. true false true false true

The first approach yields the following initial feature set:

1a V0 = 1 ∧ V1 = 0 ∧ V2 = 0 ∧ V3 = 1 ∧ V4 = 1
2a V0 = 1 ∧ V1 = 0 ∧ V2 = 1 ∧ V3 = 0 ∧ V4 = 1
3a V0 = 0 ∧ V1 = 1 ∧ V2 = 1 ∧ V3 = 1 ∧ V4 = 1

The second approach yields the following initial feature set:

1b V0 = 1 ∧ V3 = 1 ∧ V4 = 1
2b V0 = 1 ∧ V2 = 1 ∧ V4 = 1
3b V1 = 1 ∧ V2 = 1 ∧ V3 = 1 ∧ V4 = 1

In this example, the initial feature set is smaller than the ex-
ample dataset since GSSL removes duplicate training exam-
ples as a preprocessing step. Note that the second feature
matches both the second and the fourth training example.

Feature Generation
The key step involves generating the features. To create a
new feature, GSSL uniformly picks a feature, f , at random
from the feature set. It generalizes f by dropping n arbitrary
variables, where n is drawn from the uniform distribution
between 1 and l− 2, with l the length of f . The one ensures
that the new feature is actually a generalization. The l − 2
ensures the length of the generalized feature is at least length
two since atomic features (i.e., features of length one) cannot
be further generalized. To decide which variables to drop
from the feature, GSSL shuffles the order of variables in the
ungeneralized feature and drops the first n to create the new
feature f

′
. Note that f

′
is added back into the feature set

so that it can be selected for generalization in the future.
This does not change which features can be generated, but it
biases the generation towards shorter features. This process
is repeated for a fixed number of times. Note, that the same
generalization can be produced multiple times. As a final
step, GSSL adds an atomic feature for each variable, which
captures its marginal probability, to its feature set. This is
known to help performance in practice.

To illustrate the process, suppose that GSSL picks feature
1a from the above dataset. Since this feature is of length
five, it uniformly draws an arbitrary number between one
and three. Let us assume that this number is two. The algo-
rithm then continues with dropping two arbitrary variables,
say V2 and V3, such that the resulting feature is V0 = 1 ∧

1150

V1 = 0 ∧ V4 = 1. The new feature is more general and now
matches the second and fourth training examples in addition
to the first training example.

Feature Selection
GSSL does feature selection in two steps. In the first step,
GSSL tries to identify and discard unnecessary features. One
idea would be to perform pruning based on the support of
each feature (i.e., how many examples it matches) in the
data. However, GSSL does not count the number of train-
ing examples that each feature matches as this is a compu-
tationally expensive endeavor. As a result, GSSL requires
another mechanism to identify features that potentially have
high support in the data. GSSL removes any feature that was
generated fewer times than a given threshold value. The use
of a threshold is based on the assumption that GSSL is likely
to generate features with high support in the data more often.
In a second step, the algorithm performs L1 weight learning
on the remaining features to produce the final model. Plac-
ing a L1 penalty on the magnitude of the weight forces many
of the weights to be zero, which has the effect of removing
them from the model. Thus the weight learning helps select
the most relevant features.

Algorithm Overview
The overall control structure of GSSL proceeds in two
phases. The first step, outlined in Algorithm 1, generates a
large number of features. As input, this subroutine receives
a set of training examples, TS , and the desired number of
non-unique features to be generated, max . The TS is con-
verted into the initial feature set FS . Then, a feature f is
randomly selected, generalized to f

′
, and f

′
is added to FS .

The procedure iterates until it has generated max number of
(non-unique) features. Finally, it adds an atomic feature for
each variable to FS .

Algorithm 1 FEATURE GENERATION (training set TS ,
number of non-unique features max)

1: Feature set FS ← Convert TS into features
2: while |FS | < max do
3: Uniformly draw a feature f from FS
4: Let l be the length of f
5: Uniformly draw a number n ∼ [1, l − 2]
6: Drop n arbitrary variables from feature f
7: FS ← FS ∪ {f}
8: end while
9: Add unit clause for each variable to FS

The second step is outlined in Algorithm 2. As input, this
subroutine receives the generated features, FS , and a lower
bound, thres, on the number of times each feature was pro-
posed during feature generation. First, the algorithm loops
through the feature set and discards all features that were
generated fewer than thres times. Second, the algorithm
learns the weights for each feature through L1 optimization,
which reduces the number of features in the model by forc-
ing many weights to be zero.

Algorithm 2 FEATURE SELECTION (feature set FS , lower
bound on the desired number of occurrences thres)

1: for all features f in FS do
2: if f occurs ≤ thresh times then
3: FS ← FS \ {f}
4: end if
5: end for
6: Perform L1 weight learning on FS

Dataset
Size of Size of Size of Numb.

Density
train set tune set test set of var.

NLTCS 16,181 2,157 3,236 16 0.332
MSNBC 291,326 38,843 58,265 17 0.166
KDDCup 2000 180,092 19,907 34,955 64 0.008
Plants 17,412 2,321 3,482 69 0.180
Audio 15,000 2,000 3,000 100 0.199
Jester 9,000 1,000 4,116 100 0.608
Netflix 15,000 2,000 3,000 100 0.541
Accidents 12,758 1,700 2,551 111 0.291
Retail 22,041 2,938 4,408 135 0.024
Pumsb Star 12,262 1,635 2,452 163 0.270
DNA 1,600 400 1,186 180 0.253
Kosarak 33,375 4,450 6,675 190 0.020
MSWeb 29,441 3,270 5,000 294 0.010
Book 8,700 1,159 1,739 500 0.016
EachMovie 4,524 1,002 591 500 0.059
WebKB 2,803 558 838 839 0.064
Reuters-52 6,532 1,028 1,540 889 0.036
20 Newsgroups 11,293 3,764 3,764 910 0.049
BBC 1,670 225 330 1,058 0.078
Ad 2,461 327 491 1,556 0.008

Table 1: Dataset characteristics

Experimental Results
In this section, we evaluate GSSL on 20 real-world datasets.
The evaluation consists of two parts. In the first part, we
compare GSSL to three state-of-the art Markov network
structure learning algorithms in terms of accuracy and run
time: DTSL (Lowd and Davis 2010), Ravikumar et al.’s al-
gorithm (2010), referred to as L1, and BLM (Davis and
Domingos 2010). In the second part, we investigate how
GSSL’s parameters influence its performance.

Datasets
Table 1 describes the characteristics of each dataset. Note
that each dataset only contains binary variables. The datasets
are shown in ascending order by number of variables. We
used the 13 datasets from Lowd and Davis (2010). Addition-
ally, we used seven new datasets: Accidents,2 Ad,3 BBC,4
DNA,5 Kosarak,2 Pumsb Star2 and Retail.2 For Ad and
DNA, we used all the provided binary features. For BBC,
we created one binary feature for each word in the train-
ing set. The remaining four datasets are for frequent itemset

2http://fimi.ua.ac.be/data/
3http://archive.ics.uci.edu/ml/datasets.html
4http://mlg.ucd.ie/datasets/bbc.html
5http://www.cs.sfu.ca/ wangk/ucidata/dataset/DNA/

1151

mining. Here, we subsampled the data and divided our sub-
sample into a training, a tuning and a test set. We counted
the number of occurrences of each item in the training set.
We constructed one binary feature for each item that met a
particular threshold (500 for Accidents and Pumsb Star and
50 for Kosarak and Retail) on the training set.

Methodology
We used the training data to learn the structure and weights
for all four methods. The code for GSSL is publicly avail-
able.6 To learn the models we used the publicly available
code for DTSL and BLM. For L1, we used the OWL-QN
software package (Andrew and Gao 2007) for performing
L1 logistic regression. For GSSL, we generated half a mil-
lion, one million, two million and five million features and
used pruning thresholds of one, two and five. We tried both
methods for converting the training set to the initial feature
set. For the baseline algorithms, we used the parameter set-
tings described in Lowd and Davis (2010).

GSSL, DTSL and L1 all produce feature sets and it is
necessary to learn the weights for each feature. For weight
learning, we used the Libra Toolkit7 to optimize the train
set pseudo-likelihood, which was done for computational
tractability. In order to allow for a fair comparison, we per-
formed the exact same weight learning procedure and em-
ployed the same set of L1 regularization parameters for all
three algorithms. For each dataset, we used Gaussian priors
with standard deviations 0.1, 0.5 and 1, combined with L1
norm weights of 1, 5 and 10, resulting in 9 different setups.
For each algorithm, we selected the model that maximized
the pseudo-log-likelihood on the validation set.

We evaluated the best model using test set condi-
tional marginal log-likelihood (CMLL) (Lee, Ganapathi,
and Koller 2007; Lowd and Davis 2010). First, we divided
the variables into a query set Q and an evidence set E. Then,
we computed CMLL(X = x) =

∑
i∈Q logP (Xi = xi|E)

for each example in the test set. We divided the variables
into four disjoint groups for each dataset. One set served as
query variables while the remaining three sets served as evi-
dence. We repeated this procedure such that each set served
as the query variables once. We computed the conditional
marginal probabilities using the Gibbs sampler that is part
of the Libra Toolkit. We used a burn-in of 100 samples and
then computed the probability using the next 1,000 samples.

Results
Table 2 reports the CMLLs, averaged over all test examples,
for each of the algorithms on all 20 datasets. We compared
GSSL with each of the baselines using a Wilcoxon signed-
rank test, which is a non-parametric, paired difference test.
The comparison between any two algorithms involves 20
paired samples, where each sample corresponds to the test
set CMLL scores on a different dataset. GSSL achieves the
best overall CMLL score on 8 of the 20 datasets. According
to the Wilcoxon signed-rank test, GSSL is equivalently ac-
curate to L1, where it achieves a better CMLL score on 11

6http://dtai.cs.kuleuven.be/ml/systems/gssl
7http://libra.cs.uoregon.edu

Dataset GSSL L1 DTSL BLM
NLTCS -5.175 -5.232 -5.209 -5.248
MSNBC -5.947 -6.281 -5.727 -5.815
KDDCup 2000 -2.071 -2.108 -2.046 -2.077
Plants -9.854 -10.739 -10.709 -10.445
Audio -36.803 -36.878 -37.484 -37.452
Jester -49.464 -49.476 -50.252 -52.762
Netflix -52.339 -52.401 -53.342 -56.521
Accidents -18.180 -16.543 -16.957 -37.558
Retail -10.547 -10.534 -10.578 -10.620
Pumsb Star -17.245 -13.905 -19.508 -133.155
DNA -81.034 -69.035 -69.197 -99.560
Kosarak -10.137 -10.183 -10.068 -10.217
MSWeb -8.819 -8.959 -16.201 -8.848
Book -34.048 -34.025 -34.120 -34.650
EachMovie -49.873 -50.002 -51.448 -58.582
WebKB -144.206 -143.290 -148.192 -164.844
Reuters-52 -79.501 -78.743 -81.267 -90.852
20 Newsgroups -148.565 -147.007 -151.723 -160.841
BBC -242.424 -239.642 -250.302 -265.486
Ad -14.848 -15.393 -16.751 -45.638

Table 2: Test set CMLL scores averaged over all test
examples. The best score for each dataset is shown in bold.

of the 20 datasets. GSSL significantly outperforms DTSL
at the 0.0193 significance level according to a Wilcoxon
signed-rank test, producing a better CMLL score on 15 of
the 20 datasets. GSSL significantly outperforms BLM at the
0.0002 significance level according to a Wilcoxon signed-
rank test, beating BLM on 19 of the 20 datasets. Despite its
simplicity, GSSL is often (significantly) more accurate than
its competitors.

GSSL exhibits outstanding run time performance, which
is reported in Table 3. GSSL is the fastest algorithm on 13
of the 20 datasets, being slower to L1 and/or DTSL only
when datasets have very few variables. GSSL is faster than
L1 on 16 of the 20 datasets. On average, it exhibits a run
time that is 15 times faster than L1. GSSL is faster than
DTSL in addition to being significantly more accurate than
it. GSSL’s run time is lower than DTSL’s on 13 of the 20
datasets and is twice as fast on average. Naturally, GSSL is
significantly faster than BLM, showing an average speed-up
of 4634, as it avoids the computational cost associated with
running weight learning to evaluate each candidate feature.

Table 4 shows statistics about the best learned model on
each dataset for each algorithm. The models that GSSL
and Ravikumar et al.’s algorithm learn have more features.
Ravikumar et al.’s algorithm has the lowest average feature
length because it is restricted to atomic and pairwise fea-
tures. On average, GSSL results in shorter features than ei-
ther DTSL or BLM.

Apart from weight learning, GSSL relies on only two pa-
rameters: a desired number of features and a pruning thresh-
old. Table 5 shows the parameters that yielded the best
model for GSSL as well as the effect of thresholding on the
number of features. The number of features needed to get
the best performance depends on the characteristics of the
dataset. Generally, if a dataset has more variables or a higher
density (i.e., a greater proportion of the variables that are
true), it is necessary to generate more features. Intuitively,

1152

GSSL L1 DTSL BLM
Dataset FG WL Total FG WL Total FG WL Total Total
NLTCS 5 69 74 5 4 9 2 5 7 8,738
MSNBC 5 218 223 72 38 110 126 80 206 458,691
KDDCup 2000 7 114 121 624 21 645 780 75 855 2,814,585
Plants 8 375 383 194 38 232 34 84 118 128,825
Audio 9 186 195 166 126 292 49 153 202 184,858
Jester 10 192 202 321 193 514 27 108 135 107,156
Netflix 10 333 343 385 322 707 47 336 383 188,455
Accidents 9 1,171 1,180 833 116 949 43 242 285 166,767
Retail 8 165 173 398 100 498 112 126 238 414,684
Pumsb Star 9 891 900 939 219 1,158 43 116 159 164,378
DNA 9 38 47 53 25 78 6 14 20 20,614
Kosarak 9 259 268 1,113 171 1,284 238 214 452 881,393
MSWeb 8 222 230 2,634 186 2,820 485 303 788 1,773,963
Book 11 223 234 1,731 290 2,021 256 538 794 944,807
EachMovie 10 234 244 5,922 310 6,232 191 171 362 701,127
WebKB 11 186 197 7,652 718 8,370 212 167 379 775,808
Reuters-52 10 344 354 10,331 1,099 11,430 589 748 1,337 2,158,685
20 Newsgroups 11 663 674 19,615 2,375 21,990 1,455 690 2,145 5,279,550
BBC 11 136 147 6,028 555 6,583 173 87 260 625,467
Ad 9 131 140 8,711 208 8,919 740 216 956 2,677,445

Table 3: Feature generation (FG), weight learning (WL) and total run time for each algorithm.
All run times are shown in seconds. The best run time for each dataset is shown in bold.

this makes sense. More variables increases the number of
possible features such that we need to try more combina-
tions to get the best feature set. A higher density suggests the
presence of more regularities in the data such that the mod-
els will need more features to capture them. GSSL got the
best results (based on tune set pseudo-likelihood) with half a
million features three times, one million features four times,
two million features seven times and five million features
six times. Our experiments have shown that using a pruning
threshold value of two is generally better than a threshold
value of one. Furthermore, using a threshold value of five
seems to be too strict and rules out too many potentially use-
ful features.

On average, GSSL spends more than 95% of its time on
weight learning, which is reported in Table 3. The time de-
pends on both the number of generated features and the
pruning threshold. Generally, generating smaller feature sets
and using a higher pruning threshold yields the lowest run
times for weight learning. Averaged acrossed all datasets
and pruning thresholds, GSSL spends 124.87 seconds on
weight learning when generating half a million features,
206.31 seconds when generating one million features, and
442.45 seconds when generating two million features. We
have omitted the run time for five million features as run-
ning weight learning using a pruning threshold is often in-
tractable. Averaged acrossed datasets and number of gener-
ated features, GSSL spends 414.83 seconds on weight learn-
ing for a pruning threshold of one, 235.22 seconds for a
threshold of two, and 123.52 seconds for a threshold of five.

The other choice that GSSL has is in terms of its seed set
of initial features. Using an initial feature set of only “posi-
tive features” (i.e., initial features that are only conjunctions
over true variables) is better on 14 of the 20 datasets. Gen-
erally, limiting the feature set to positive features allows for

Dataset
Numb. of Numb. of Numb. of Percent. Thres-
generated unique features pruned hold
features features after TH by TH value

NLTCS 500,000 143,364 12,184 91.50% 2
MSNBC 2,000,000 491,885 52,591 89.31% 1
KDDCup 2000 5,000,000 373,041 102,667 72.48% 2
Plants 1,000,000 690,390 52,709 92.37% 1
Audio 1,000,000 524,688 12,991 97.52% 2
Jester 500,000 369,000 9,679 97.38% 2
Netflix 500,000 382,760 9,393 97.55% 2
Accidents 2,000,000 1,462,685 40,669 97.22% 1
Retail 2,000,000 168,979 19,617 88.39% 2
Pumsb Star 2,000,000 1,565,510 26,419 98.31% 1
DNA 2,000,000 1,383,102 39,088 97.17% 1
Kosarak 1,000,000 288,936 97,023 66.42% 1
MSWeb 1,000,000 149,689 57,576 61.54% 1
Book 2,000,000 855,347 101,451 88.14% 1
EachMovie 5,000,000 2,200,237 113,172 94.86% 2
WebKB 5,000,000 2,738,782 179,473 93.45% 2
Reuters-52 5,000,000 2,514,634 163,971 93.48% 2
20 Newsgroups 5,000,000 3,037,720 159,013 94.77% 2
BBC 5,000,000 2,975,003 215,000 92.77% 2
Ad 2,000,000 578,322 78,797 86.37% 1

Table 5: Statistics of the best model GSSL learned for each
dataset. TH stands for thresholding.

much faster weight learning. Full run time and accuracy re-
sults for all of GSSL’s parameter settings are available in the
online appendix.8

Conclusions
While striking in its simplicity, GSSL offers outstanding per-
formance, in terms of both accuracy and run time, as demon-

8http://dtai.cs.kuleuven.be/ml/systems/gssl

1153

GSSL L1 DTSL BLM

Dataset
Numb. of Numb. of Average Numb. of Numb. of Average Numb. of Numb. of Average Numb. of Average
generated features feature generated features feature generated features feature features feature
features after WL length features after WL length features after WL length after WL length

NLTCS 12,184 8,881 3.83 134 134 1.88 2,958 2,185 6.15 385 4.17
MSNBC 52,591 52,355 4.18 153 152 1.88 24,530 21,435 10.33 4,213 4.69
KDDCup 2000 102,666 21,023 3.34 2,080 1,433 1.95 8,585 6,039 7.64 4,877 3.25
Plants 52,709 52,499 3.24 2,404 2,286 1.96 12,289 6,243 6.50 2,469 5.95
Audio 12,991 11,317 2.20 5,049 4,878 1.97 4,946 4,805 3.08 1,938 2.21
Jester 9,679 9,461 1.99 5,008 4,966 1.97 4,796 4,751 3.70 992 8.27
Netflix 9,393 9,335 1.99 4,985 4,952 1.97 6,659 6,604 3.74 1,140 5.82
Accidents 40,669 39,236 3.28 5,840 5,786 1.98 10,194 5,390 6.85 1,329 8.33
Retail 19,617 8,813 2.51 9,113 3,383 1.96 4,439 3,944 5.26 2,823 2.12
Pumsb Star 26,419 24,337 3.16 6,475 6,392 1.97 4,666 4,434 5.24 5,789 28.20
DNA 39,088 25,936 2.99 4,302 4,167 1.96 2,246 2,221 3.11 1,413 10.74
Kosarak 97,023 24,193 2.85 7,771 4,725 1.95 8,724 6,402 5.37 3,860 2.95
MSWeb 57,576 24,234 2.90 33,828 11,548 1.97 14,788 11,911 18.17 5,756 3.01
Book 101,451 15,930 1.97 120,833 10,647 1.95 11,720 6,589 3.57 6,077 1.97
EachMovie 113,171 58,792 2.54 70,568 15,900 1.96 19,568 9,399 4.44 2,561 4.10
WebKB 179,472 43,787 2.01 216,123 35,901 1.97 17,939 10,633 3.43 3,029 8.61
Reuters-52 163,970 93,233 2.12 172,730 91,373 1.99 30,684 19,660 4.33 5,907 11.33
20 Newsgroups 159,012 88,005 2.01 193,177 120,881 1.99 21,008 18,915 2.69 4,256 9.69
BBC 215,000 43,566 1.97 270,623 42,297 1.97 4,417 4,131 1.91 2,299 9.56
Ad 78,797 33,222 2.31 212,663 23,786 1.93 13,708 11,335 3.34 2,370 3.87

Table 4: Statistics of each algorithm’s best model for each dataset. WL stands for weight learning.

strated by a large empirical evaluation on 20 real-world
datasets. It is 15 times faster than Ravikumar et al.’s (2010)
L1 approach while being equivalently accurate. It is also
faster and significantly more accurate than both DTSL and
BLM. GSSL gains its efficiency by avoiding the compu-
tational expense associated with building local models. It
accomplishes this by using the training data to guide the
feature generation. Furthermore, the data-driven generation
guarantees that each generated feature occurs in the data.
By using a pruning strategy and L1 weight learning, GSSL
selects which features to include in the final model. In the
future, it may be possible to improve the run time further by
exploring more sophisticated pruning strategies. Reducing
the number of features considered during weight learning
would greatly improve its efficiency.

Acknowledgments. We thank Daniel Lowd and Wannes
Meert for their helpful comments. This research is partially
funded by the Research Fund K.U.Leuven and the EU FP7
Marie Curie Career Integration Grant (#294068).

References
Andrew, G., and Gao, J. 2007. Scalable Training of L1-
Regularized Log-Linear Models. In Proceedings of the Twenty-
Fourth International Conference on Machine Learning, 33–40.
ACM Press.
Besag, J. 1975. Statistical Analysis of Non-Lattice Data. The
Statistician 24:179–195.
Davis, J., and Domingos, P. 2010. Bottom-Up Learning of
Markov Network Structure. In Proceedings of the Twenty-
Seventh International Conference on Machine Learning. ACM
Press.
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. Induc-
ing Features of Random Fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19:380–392.

Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J. 1996.
Markov Chain Monte Carlo in Practice. Chapman and Hall.
Huynh, T., and Mooney, R. 2008. Discriminative Structure and
Parameter Learning for Markov Logic Networks. In Proceedings
of the Twenty-Fifth International Conference on Machine Learn-
ing, 416–423. ACM Press.
Kulesza, A., and Pereira, F. 2008. Structured Learning with
Approximate Inference. In Advances in Neural Information Pro-
cessing Systems 20. 785–792.
Lee, S.-I.; Ganapathi, V.; and Koller, D. 2007. Efficient Structure
Learning of Markov Networks using L1-Regularization. In Ad-
vances in Neural Information Processing Systems 19. 817–824.
Lowd, D., and Davis, J. 2010. Learning Markov Network Struc-
ture with Decision Trees. In Proceedings of the Tenth IEEE In-
ternational Conference on Data Mining.
McCallum, A. 2003. Efficiently Inducing Features of Condi-
tional Random Fields. In Proceedings of the Nineteenth Confer-
ence on Uncertainty in Artificial Intelligence, 403–410.
Mihalkova, L., and Mooney, R. J. 2007. Bottom-Up Learn-
ing of Markov Logic Network Structure. In Proceedings of the
Twenty-Fourth International Conference on Machine Learning,
625–632.
Murphy, K. P.; Weiss, Y.; and Jordan, M. I. 1999. Loopy Belief
Propagation for Approximate Inference: An Empirical Study. In
Proceedings of the Fifteenth Conference on Uncertainty in Arti-
ficial Intelligence.
Ravikumar, P.; Wainwright, M. J.; and Lafferty, J. 2010. High-
Dimensional Ising Model Selection using L1-Regularized Logis-
tic Regression. Annals of Statistics 38(3):1287–1319.

1154

