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Abstract
The sparse principal component analysis is a variant of
the classical principal component analysis, which finds
linear combinations of a small number of features that
maximize variance across data. In this paper we propose
a methodology for adding two general types of feature
grouping constraints into the original sparse PCA opti-
mization procedure. We derive convex relaxations of the
considered constraints, ensuring the convexity of the re-
sulting optimization problem. Empirical evaluation on
three real-world problems, one in process monitoring
sensor networks and two in social networks, serves to
illustrate the usefulness of the proposed methodology.

Introduction
Sparse Principal Component Analysis (PCA) is an extension
to the well-established PCA dimensionality reduction tool,
which aims at achieving a reasonable trade-off between the
conflicting goals of explaining as much variance as possible
using near orthogonal vectors that are constructed from as
few features as possible. There are several justifications for
using Sparse PCA. First, regular principal components are,
in general, combinations of all features and are unlikely to be
sparse, thus being difficult to interpret. Sparse PCA greatly
improves the relevance and interpretability of the compo-
nents, and is more likely to reveal the underlying structure
of the data. In many real-life applications, the features have a
concrete physical meaning (e.g. genes, sensors, people) and
interpretability, i.e. feature grouping based on correlation, is
an important factor worth sacrificing some of the explained
variance. Second, under certain conditions (Zhang and El
Ghaoui 2011), sparse components can be computed faster.
Third, Sparse PCA provides better statistical regularization.

Sparse PCA has been the focus of considerable research
in the past decade. The first attempts at improving the in-
terpretation of baseline PCA components were based on
post-processing methods such as thresholding (Cadima and
Jolliffe 1995) and factor rotation (Jolliffe 1995). Greedy
heuristic Sparse PCA formulations have been investigated
in (Moghaddam et al. 2006) and (d’Aspremont et al. 2008).
More recent methods cast the problem into the optimiza-
tion framework. Maximizing the explained variance along
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a normalized vector penalized for the number of non-zero
elements of that vector, aims at simultaneous delivery of
the aforementioned goals. Majority of these algorithms are
based on non-convex formulations, including SPCA (Zou
et al. 2006), SCoTLASS (Jolliffe et al. 2003), the Regular-
ized SVD method (Shen and Huang 2008), and the Gener-
alized Power method (Journée et al. 2010). Unlike these ap-
proaches, the l1-norm based semidefinite relaxation DSPCA
algorithm (d’Aspremont et al. 2007) guarantees global con-
vergence and has been shown to provide better results than
other algorithms, i.e. it produces sparser vectors while ex-
plaining the same amount of variance.

Interpreting Sparse PCA as feature grouping, where each
component represents a group and group members corre-
spond to non-zero component elements, we propose an ex-
tension of the DSPCA algorithm in which the user is allowed
to add several types of constraints regarding the groups’
structure. The idea is to limit the set of feasible solutions by
imposing additional goals regarding the components’ struc-
ture, which are to be reached simultaneously through opti-
mization. An alternative way of handling these constraints
is to post-process the solution by removing component ele-
ments to meet the constraints. However, this can lead to sig-
nificant variance reduction. Unlike this baseline approach,
the proposed solution is optimal, as it directly maximizes
the variance subject to the constraints.

The first type of constraints we consider are the distance
constraints. Let us consider an on-street parking problem,
where features are on-street parking blocks and examples
are hourly occupancies. For purposes of price management,
the goal may be to group correlated parking blocks, such that
the sums of geographic distances between blocks in a group
are less than a specific value. Therefore, non-zero elements
of each sparse component must satisfy this requirement.

The second type of constraints we consider are the relia-
bility constraints that aim to maximize the overall reliabil-
ity of the resulting groups. Assuming that each feature (e.g.
sensor) has a certain reliability defined by its failure prob-
ability and that the entire component becomes temporarily
suspended if any of its features fails, the use of features with
low reliability can be costly. These constraints are especially
important in industrial systems where we wish to group cor-
related sensors such that the groups are robust, in terms of
maintenance. Another example can be found in social net-
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works, when we wish to group correlated users making sure
not to include users that do not spend enough time on-line.

The proposed Constrained Sparse PCA methodology was
evaluated on several real-world problems. We illustrate its
application to constrained decentralized fault detection in
industrial processes using the Tennessee Eastman Process
data. In addition, we demonstrate its application to con-
strained user grouping on Digg and Facebook social network
data. In the experimental portion of the paper, we also illus-
trate how link and do-not-link constraints, which explicitly
specify that some features should or should not be grouped
together, could be handled within our framework.

Preliminaries
We have multivariate observations in form of a data set X
of size m × n with n features and m observations. Let us
assume that the features are centered and denote the covari-
ance matrix as S = XTX. Assuming that S1 = S, the 1-st
principal component u1 can be found as

maximize uTS1u

subject to uTu ≤ 1.
(1)

The second component can be found by updating the covari-
ance matrix as S2 = S1−(uT1 S1u1)u1u

T
1 and applying (1).

The iterative procedure stops after K = rank(S) iterations,
since Srank(S)+1 is empty.

A Direct Formulation of Sparse PCA (DSPCA)
The objective of Sparse PCA is to decompose the covari-
ance matrix S into near orthogonal principal components
[u1,u2, ...,uK ], while constraining the number of non-zero
elements (cardinality) of each uk to r ∈ N, where r is a user
defined parameter that controls the sparsity.

The problem of maximizing the variance of component u
with a constraint on its cardinality is defined as

maximize uTSu

subject to ||u||2 = 1, card(u) ≤ r,
(2)

where card(u) is the number of non-zero elements of u.
Due to the cardinality constraint, this problem is NP-hard.

(d’Aspremont et al. 2007) proposed an approximate solution
to this problem based on a convex relaxation of (2) in which
the vector u is replaced by a matrix U = uuT . They first
form the following problem which is equivalent to (2),

maximize Tr(SU)

subject to Tr(U) = 1,Rank(U) = 1

card(U) ≤ r2,U � 0,

(3)

where card(U) is the number of non-zero elements of U
and U � 0 means that U is positive semidefinite. Problems
(2) and (3) are equivalent. If U is a solution to the above
problem, then U � 0 and Rank(U) = 1 mean that we
have U = uuT , while Tr(U) = 1 means that ||u||2 = 1.
Finally, if U = uuT , then card(U) ≤ r2 ≡ card(u) ≤ r.

Since (3) is nonconvex, both rank and cardinality con-
straints are relaxed to obtain an approximate convex prob-
lem. This is achieved by dropping the rank constraint and re-
placing the nonconvex constraint card(U) ≤ r2 by a weaker

but convex constraint 1T |U|1 ≤ r, where 1 is a vector of
ones and matrix |U| contains absolute values of U elements,

maximize Tr(SU)

subject to Tr(U) = 1,1T |U|1 ≤ r,U � 0.
(4)

Let us denote the solution to (4) as U1. Since U might not be
rank 1, the first sparse component u1 is obtained as the most
dominant eigenvector of U1. Similarly to PCA, this process
iterates by updating S, S2 = S1−(uT1 S1u1)u1u

T
1 to obtain

the second component.
An alternative interpretation penalizes the cardinality,

maximize Tr(SU)− ρ1T |U|1
subject to Tr(U) = 1,U � 0,

(5)

where parameter ρ controls the magnitude of the penalty. In
practice, a range of ρ values needs to be explored to obtain a
solution with the desired cardinality. Formulation (5) has an
advantage of yielding a dual form. We can rewrite (5) as

max
Tr(U)=1,U�0

min
|Vij |≤ρ

Tr(U(S + V))

in variables U and V, which is upper bounded by its dual

minimize λmax(S + V)

subject to |Vij | ≤ ρ, i, j = 1, ..., n,
(6)

where λmax(S + V) is the maximum eigenvalue of S + V.
A recent result (Zhang and El Ghaoui 2011), shows that

feature i is guaranteed to be absent from U if its variance
is less than ρ. Therefore, features with variances lower than
ρ can be safely eliminated before applying DSPCA, which
can dramatically reduce the computational cost.

Constrained Sparse PCA
Sparse PCA can be used to produce components of desired
cardinality. This section shows how additional constraints
can be incorporated into the optimization procedure. With-
out loss of generality, we only consider the 1-st component.

Distance constraint
The distance constraint is motivated by the fact that there
is a certain cost associated with grouping features together,
determined by prior knowledge about the domain (e.g. some
features might be highly correlated but expensive to group).

We model the cost as a distance metric, through a zero-
diagonal symmetric matrix D. Therefore, we define the total
cost associated with the principal component as

C =
1

2

n∑
i=1

n∑
j=1

I(Uij 6= 0)Dij , (7)

where I is an indicator function, Dij is the distance between
features i and j and U is the solution to problem (4) .

We constrain the set of possible solutions for U by in-
troducing the distance constraint C ≤ d, where d is user-
specified threshold.

For example, in sensor networks, the within-group com-
munication cost is proportional to the length of the commu-
nication channels between the sensors that form the group.
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In that case, d is a limit on the amount of allowed communi-
cation within a group.

By introducing the distance constraint, the optimization
problem becomes,

maximize Tr(SU)

subject to Tr(U) = 1,1T |U|1 ≤ r
C ≤ d, U � 0,

(8)

Since C is non-convex, we consider replacing it with the
convex function C∗, defined as

C∗ =
1

2

n∑
i=1

n∑
j=1

|Uij |Dij .

Proposition 1 establishes a connection between C and C∗.
We begin with Lemma 1.
Lemma 1. For matrix U of size n × n, n > 1,Tr(U) = 1
and U � 0, it holds that |Uij | ≤ 0.5 for r(r − 1) non-zero
elements outside the diagonal, i 6= j.

Proof. |Uij | ≤
√
UiiUjj ≤ 0.5(Uii + Ujj) ≤ 0.5,

where the first two inequalities follow from U � 0 (Horn
and Johnson 1985) and the third inequality follows from
Tr(U) = 1.

Proposition 1. Suppose n > 1 and 1 ≤ i, j ≤ n,
(a.1) Dij is a distance metric (Dij ≥ 0,D is symmetric

zero-diagonal, and satisfies triangle inequality)
(a.2) U satisfies Lemma 1

Then C∗ ≤ 0.5 · C. Furthermore, the inequality is tight in
the sense that there exist D and U satisfying (a.1) and (a.2),
such that C∗ = 0.5 · C.

Proof.∑
i,j

|Uij |Dij ≤ max
i,j
{|Uij |}

∑
i,j

I(Uij 6= 0)Dij by Hölder

≤ 0.5 · C by Lemma 1.

To show that the bound is tight, let |u(i)| = 2−1/2

for i ∈ {1, 2} and u(i) = 0 otherwise. Then, C∗ =∑
i,j |Uij |Dij = 1

2

∑
i,j I(Uij 6= 0)Dij = 1

2C.

The proven inequality is guaranteed in the worst case. In
practice, we could assume that U components have the max-
imum value of 1/r. From there it follows that constraints
such as C∗ ≤ C/r could be considered as well.

Motivated by Proposition 1, we propose to use convex re-
laxation of (8) obtained by replacing C ≤ d with 2C∗ ≤ d.
The resulting constrained Sparse PCA problem is

maximize Tr(SU)

subject to Tr(U) = 1,1T |U|1 ≤ r
1T |U ◦D|1 ≤ d, U � 0,

(9)

where ◦ is the Hadamard product. Similarly to (5), to tackle
larger problems, we can replace (9) with its penalized form,

maximize Tr(SU)− ρ1T |U|1− ρd1T |U ◦D|1
subject to Tr(U) = 1,U � 0,

(10)

where parameter ρd controls the magnitude of the penalty
on distance. Rewriting this problem as

max
Tr(U)=1,U�0

min
|Vij |≤ρ+ρdDij

Tr(U(S + V)), (11)

leads to the following dual,
minimize λmax(S + V)

subject to |Vij | ≤ ρ+ ρdDij , i, j = 1, ..., n,
(12)

where the Karush-Kuhn-Tucker (KKT) conditions are
(S + V)U = λmax(S + V)U

V ◦U = (ρ+ ρdDij)|U|
Tr(U) = 1, U � 0

|Vij | ≤ ρ+ ρdDij , i, j = 1, ..., n.

(13)

Reliability constraint
The reliability constraint is inspired by the maintenance
scheduling problem (Ben-Daya et al. 2000) in industrial sen-
sor networks. Assuming knowledge of the sensors’ reliabil-
ity and considering that an entire sensor group must go off-
line during the maintenance of any one sensor, the goal is
to make groups of correlated sensors such that their group
reliability is above a certain threshold.

Let us denote by l a feature reliability vector, where
li ∈ [0, 1) is a probability that sensor i will need mainte-
nance during a certain time period, e.g. one month. Then,
the reliability of a group of features defined by sparse com-
ponent u is defined as

R =

n∏
i=1

(1− I(ui 6= 0)li), (14)

In the context of constrained Sparse PCA, it is convenient
to rewrite the reliability of component u as

R =
n∏
i=1

n∏
j=1

(
1− I(Uij 6= 0)Lij

) 1
r−1 , (15)

where matrix L is obtained by making all of its columns
equal to l, and then setting all of its diagonal elements to 0.

Let us consider constraining the set of possible solutions
for U by requiring R ≥ l, where 0 < l ≤ 1 is some user
specified threshold, representing the lowest allowed compo-
nent reliability. After taking the logarithm, we can rewrite
the constraint as

1

r − 1
·
n∑
i=1

n∑
j=1

log(1− I(Uij 6= 0)Lij) ≥ log l. (16)

By introducing the reliability constraint, the optimization
problem becomes,

maximize Tr(SU)

subject to Tr(U) = 1,1T |U|1 ≤ r,U � 0

logR ≥ log l.

(17)

Since logR is neither concave nor convex, we consider re-
placing logR with convex function logR∗, defined as

logR∗ =
1

r − 1
·
n∑
i=1

n∑
j=1

|Uij | log(1− Lij). (18)
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Using the Proposition 1 arguments, it can be determined
that logR and logR∗ are related as logR∗ ≥ 1

2 logR.
Therefore, a convex relaxation of (17) can be obtained by
replacing logR ≥ log l with logR∗ ≥ 1

2 log l.
Alternatively, we consider another relaxation by replacing

logR with function logR+, defined as

logR+ =
1

r − 1
·
n∑
i=1

n∑
j=1

log(1− |Uij |Lij). (19)

Proposition 2 establishes a relationship between R and R+.
Proposition 2. Suppose n > 1, 1 ≤ i, j ≤ n, L is a zero-
diagonal reliability matrix and that U satisfies Lemma 1.
Then,

logR+ ≥ r(r − 1) log((1 +R
1

r(r−1) )/2). (20)
Furthermore, this inequality is tight as there exist L,U for
which the equality holds and the conditions are satisfied.

Proof. First, using Lemma 1 it follows that∏
i,j

(1− |Uij |Lij) ≥
∏

i,j:Uij 6=0

(1− 1

2
Lij). (21)

Next, we show that the following inequality holds∏
i,j:Uij 6=0

(1−1

2
Lij)

1
r(r−1) ≥

1 +
∏
i,j:Uij 6=0(1− Lij)

1
r(r−1)

2
,

(22)
where r(r − 1) is the number of product elements. By de-
noting xij = 1− Lij , we can restate (22) as∏

i,j:Uij 6=0

(1 + xij)
1

r(r−1) ≥ 1 +
∏

i,j:Uij 6=0

x
1

r(r−1)

ij . (23)

To prove (23), let us take the logarithm of the left hand side,

g :=

∑
i,j:Uij 6=0 log(1 + xij)

r(r − 1)
=

∑
i,j:Uij 6=0 log(1 + eyij )

r(r − 1)
,

where xij =: expyij . By convexity it follows,

g ≥ log
(
1 + e

∑
i,j:Uij 6=0 yij

r(r−1)
)

= log
(
1 +

∏
i,j:Uij 6=0

x
1

r(r−1)

ij

)
,

which proves (23), since g is the arithmetic mean of a convex
function log(1 + expy) and log is an increasing function.
This concludes the proof as (20) follows from (22) and (21).

To show that the bound is tight, let |u(i)| = 2−1/2 for i ∈
{1, 2} and u(i) = 0 otherwise. Further, let Lij = Lji = L∗.
Then, r − 1 = 1, R = (1 − L∗)r(r−1) and logR+ = 1

r−1 ·∑
i,j:Uij 6=0 log( 1+(1−L∗)

2 ) = r(r− 1) log(1+R
1

r(r−1)

2 ).

Motivated by Proposition 2, we propose to use convex re-
laxation of (17) obtained by replacing logR ≥ log l with

logR+ ≥ r(r − 1) log 1+l
1

r(r−1)

2 .
maximize Tr(SU)

subject to Tr(U) = 1,1T |U|1 ≤ r,U � 0,

1T log (1− |U| ◦ L)1 ≥ log(
1 + l

1
r(r−1)

2
)r(r−1)

2

.

(24)

Alternatively, we can use the penalized optimization form,

maximize Tr(SU)− ρ1T |U|1 + ρl1
T
(
|U| ◦ log (1− L)

)
1

subject to Tr(U) = 1,U � 0,
(25)

where parameter ρl controls the reliability of the component.
Finally, (25) leads to dual form,

minimize λmax(S + V)

subject to |Vij | ≤ ρ− ρl log(1− Lij), i, j = 1, ..., n.
(26)

The KKT conditions for problem (25) and (26) are
(S + V)U = λmax(S + V)U

V ◦U = (ρ− ρl log(1− Lij))|U|
Tr(U) = 1, U � 0

|Vij | ≤ ρ− ρl log(1− Lij), i, j = 1, ..., n.

(27)

Empirical Studies
Empirical studies were conducted on two types of problems;
one is the grouping of sensors in industrial networks to per-
form decentralized fault detection, the other is the group-
ing of people in social networks based on their activity. For
small problems, the semidefinite programs (9) and (24) were
solved using interior-point solver SEDUMI (Sturm et al.
1999). Larger-scale problems were solved using an optimal
first-order method (Nesterov et al. 1983) with an approx-
imate gradient (d’Aspremont et al. 2008), specialized for
problems such as (12) and (26). The code is written in C,
with partial eigenvalue decompositions that are computed
using the ARPACK package.

In addition, the following baselines were used:
1) Post-processed Random r starts by formingK groups

of randomly selected features of size r. To satisfy the dis-
tance or reliability constraints, features are removed one by
one from a group that breaks the constraint. This is done in
a greedy manner that removes the feature with the biggest
impact on distance cost C or reliability cost R.

2) Post-processed Sparse PCA starts by using Sparse
PCA to create the first K principal components of maxi-
mal cardinality r. Then, for each component that breaks the
distance or reliability constraints, features are removed in a
greedy manner as described above.

Application to Industrial Sensor Networks
Timely fault detection in complex manufacturing systems is
critical for effective operation of plant equipment. For small-
scale sensor networks, it is reasonable to assume that all
measurements are sent to some central location (sink) where
fault predictions are made. This is known as a centralized
fault detection approach. For large scale networks, a decen-
tralized approach is often used (Grbovic and Vucetic 2012),
in which the network is decomposed into potentially over-
lapping blocks, where each block provides local decisions
that are fused at the sink. The appealing properties of the
decentralized approach include fault tolerance, scalability,
and reusability. For example, when one or more blocks go
offline due to maintenance of their sensors, the predictions
can still be made using the remaining blocks.
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(a) distance constr. (r = 4,K = 20) (b) reliability constr. (r = 4,K = 20) (c) imposed constraints vs. resulting costs

Figure 1: TEP decentralized fault detection performance results in terms of Area Under the Curve (AUC)

Data. The Tennessee Eastman Process (TEP) (Downs
and Vogel 1993) is a chemical process with 53 variables
(pressure, temperature, etc.), measured by 53 sensors at dis-
tributed locations and 20 known fault types. The available
data includes a training set X of 50, 000 normal operation
examples and a test set that consists of 150, 000 normal op-
eration examples and 150, 000 examples of faulty process
operation. The sensor layout in TEP can be described by a
fully connected undirected graph, where the edges represent
the distances between physically connected sensors. This in-
formation was stored in matrix D. The average edge length
is 0.022 and the average distance between two sensors is
0.24. Different sensor types have different reliabilities and
we have assigned them to vector l. We set l within the range
0.8 - 0.98 with an average reliability of 0.93.

Baseline network decomposition approaches. We con-
sidered a completely decentralized approach in which each
sensor represents one block. We also considered several ap-
proaches that decompose sensors into K overlapping blocks
of size up to r sensors. Mainly, a topology based approach
(Zhang et al. 2010) in which we grouped sensors based on
domain knowledge; randomly splitting sensors into overlap-
ping groups; and baseline Sparse PCA where each of the
first K principal components defines a block of size up to r.

Constrained network decomposition. We considered
Sparse PCA with communication constraints (9), with reli-
ability constraints (24), and with both communication and
reliability constraints where both convex relaxation con-
straints were added to (4). We also evaluated the post-
processing approaches to maintaining the constraints that
greedily remove sensors until the constraints are satisfied.

Local predictors. To create fault detectors for the k-th
sensor group, we performed PCA using local training data
Xk ∈ Rnk×m, where nk is the k-th group size. We calcu-
lated the amount of variation in the residual subspace (SPE
values) spanned by a = max(1, nk − τ99) smallest princi-
pal components, where τ99 is the number of principal com-
ponents that explain 99% variance. Then, we determined an
SPE threshold such that it is exceeded p% of the time on nor-
mal operation training data. If for a new example the thresh-
old is exceeded, the k-th local detector reports an alarm.

Decision Fusion. Local predictions are sent to the sink.
An alarm is signaled if any of the local detectors reports it.

Baselines (no constraints) K r Cost Reliability AUC
Centralized 1 53 122.9 8.72% .988

Completely Decentralized 53 1 ≈ 0 93% .919

Topology Based 10 6 .347 76.9% .947

Random r 20 4 1.54 71.6% .932

Sparse PCA 20 4 3.6 68.6% .984

Both const. d = 1.5, l = .8 K r Cost Reliability AUC
Post-processed Sparse PCA 20 4 1.49 79.0% .966

Post-processed Random r 20 4 1.38 75.6% .913

Constrained Sparse PCA 20 4 1.49 79.2% .981

Table 1: TEP fault detection performance results

Results. Test data were used to evaluate fault detection
abilities of various decomposition schema in terms of AUC
calculated by considering thresholds p from 0.1 to 99.9.

Table 1 (top) compares 5 different network decomposi-
tion methods. The resulting average block communication
cost (C̄), reliability (R̄) and AUC are reported. We can ob-
serve that the Sparse PCA model performed better than other
decentralized models and similarly to the centralized model,
while providing increased flexibility and fault tolerance.

In Figure 1 and Table 1 (bottom), we compare constrained
network decomposition methods. Figure 1.a shows the fault
detection performance (AUC) versus the resulting average
within-block distance cost (C̄). The performance curves
were obtained by changing the distance threshold d (the av-
erage distance between sensors in a block) from 0.05 to 3.

Figure 1.b shows the fault detection performance results
(AUC) versus the resulting average block reliability (R̄). The
performance curves were obtained by changing the reliabil-
ity threshold l (the failure probability of each block is less
than l · 100%) from 0.65 to 0.99.

Figure 1.c shows that the proposed relaxations success-
fully produce models with desired costs. The use of 2d/r in
problem (9) and r(r−1) log((1+l1/r(r−1))/2) in (24) shows
good results in practice, as the resulting C corresponds to d
and the resulting logR corresponds to log l.

Finally, Table 1 (bottom) shows the results when both
constraints were used. We set the distance threshold to d =
1.5 and the reliability constraint to l = 0.8.

In all cases constrained Sparse PCA produced models
with desired cost, while performing better than the baselines.
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Figure 2: Digg social network results (distance vs. variance)

Application to Social Networks
The Digg social network consists of 208, 926 users con-
nected with 1, 164, 513 edges that made 39, 645 ”diggs” of
5, 000 news articles. Data matrix X was constructed as fol-
lows, X(i, j) was set to 1 if user j diggs news i, and to 0
otherwise. In addition, there is an associated sparse friend-
ship graph in which an edge indicates that the two users are
friends on Digg. The distances Dab between users a and b in
the graph were calculated via Breath-first search. The maxi-
mum pairwise distance is 7 and the mean distance is 4.28.

We used Sparse PCA with distance constraint (12) to find
small groups of users with similar taste that are in addition:

1) Close in the network graph. The social network could
benefit from such groups in the following manner. Instead of
sending a notification of type ”your friend x digged article
y” to all of your friends, it could notify only the friends that
belong to the same interest group as you.

2) Far from each-other in the network graph (using (12)
with D∗, D∗ab = 1/Dab , D∗aa = 0). Such groups would
allow a social network to make smart friend suggestions to
similar taste users located far from each other in the graph.

We used feature elimination to remove users with vari-
ances lower than ρ, which dramatically reduced the size of
the problem, allowing us to work on covariance matrices of
order at most n = 2, 000, instead of the full order.

Figure 2 compares the baseline Sparse PCA result to the
Constrained Sparse PCA and post-processed Sparse PCA re-
sults in the two scenarios. Default parameters were selected,
ρ = ρd = 0.5. We report the average within-group distances
in the first 8 groups versus the amount of explained variance.

Compared to Sparse PCA, the constrained and post-
processed Sparse PCA groups had reduced average group
distances in the 1-st, and increased average group distances
in the 2-nd scenario. However, the constrained Sparse PCA
components were more compact, and accounted for twice as
much variance when compared to the baseline.

The Facebook social network consists of 953 friends of
a single user that are tagged in 7, 392 photos. Data matrix X
was constructed as follows, X(i, j) was set to 1 if friend j
was tagged in photo i, and to 0 otherwise.

The goal of this investigation was to test link(a, b) and

Sparse Principal Component
Strategy 1 2 3

109 259 277 183 188 527 221
DSPCA, ρ = 0.5 309 312 495 317 379 181 336 482

159 180 224 257 385 418 138 31 41 275
Constrained DSPCA 109 259 277 138 188 183 221
do-not-link(183,188) 309 312 495 385 418 31 121
ρ = 0.5, ρd = 0.5 159 180 224 257 379 129

remove-tags(109,259) 109 565 277 585 183 188 527 221
+ 309 159 180 312 317 379 181 336 482

DSPCA, ρ = 0.5 224 257 629 251 385 418 138 31 41 275
remove-tags(109,259) + 109 259 277 183 188 527 221

DSPCA with Prior 309 312 495 317 379 181 336 482
link(109,259), ρ = 0.5 159 180 224 257 385 418 138 31 41 275

Table 2: Facebook social network - resulting user groups

do-not-link(a, b) constraints when grouping users based on
tag information. We can think of this setup in terms of a
Facebook application that would visualize clusters of user’s
friends that interact in real life (based on tags), and allow the
user to refine the results using link and do-not-link.

The do-not-link(a, b) constraints are important because
spam photos with incorrect tags can lead to the wrong
groups. These constraints can be enforced using distance
constraints, where we set Dab = Dab = +∞, and 0 oth-
erwise. If we do not absolutely insist, the fields can be set
to some high value. Constraints such as do-not-link(a, b) >
do-not-link(c, d) are also possible, by setting Dab > Dcd.

The do-not-link(a, b) constraints were tested by repeat-
ing the following procedure many times: a) perform DSPCA
b) randomly select a and b, which belong to the same group
c) repeat DSPCA with do-not-link(a, b). We observed dif-
ferent outcomes: 1) exclusion of a or b from the group, and
2) the group split into subgroups that contain a or b.

The link(a, b) constraints are important due to missing
tags. They cannot be directly enforced using the proposed
framework. However, we have tested their soft enforcement
through a covariance matrix prior, S = XTX+P, where P
is a symmetric matrix used to express user beliefs.

The link(a, b) constraints were tested by removing tags
from photos containing both a and b, and attempting to com-
pensate for the missing tags through prior knowledge, e.g.
Pab = 0.5. In most cases the original groups were recov-
ered, unless Pab was set too high, which resulted in another
group that contained only a and b.

Table 2 shows an example of the results. The first column
describes the applied strategy, while the remaining columns
show the non-zero elements (i.e. user IDs) of the first 3
sparse components. The first row shows the resulting groups
when baseline DSPCA with ρ = 0.5 was applied. For eval-
uation of our constrained Sparse PCA framework, we ran-
domly selected two users from both the first and the second
group (shown in bold).

The second row shows the results of DSPCA with a do-
not-link(188, 183) constraint. It can be observed that the
first group remained unchanged, while the second and third
group changed in order to account for the imposed con-
straint. Hence, users 188 and 183 belong to separate groups.
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The third and fourth row show the results of DSPCA with
a link(109, 259) constraint. Since current data already sug-
gests that these two users should be grouped together, we
first need to remove the evidence. This was done by deleting
tags from photos containing both 109 and 259, i.e. setting
their 1 entries in corresponding X rows to 0. To ensure that
all evidence was removed, we repeated DSPCA on new data
(third row). It can be observed that users 109 and 259 no
longer belong to the same group. Next, we attempted to im-
pute the missing information through an appropriate prior,
by setting P109,259 = P259,109 = 0.5 and the remaining P
entries to 0. The resulting DSPCA decomposition with the
link(109, 259) constraint (fourth row) was able to recover
the original components from the first row.

Conclusion
We have presented a framework for adding constraints to the
Sparse PCA problem. The constraints limit the set of pos-
sible solutions by imposing additional goals to be reached
trough optimization along with the existing Sparse PCA
goals. We have demonstrated the proposed framework on
two real-world problems, industrial and social networks.
The results show that Sparse PCA can utilize prior knowl-
edge, which is not directly available in data, in order to pro-
duce desirable network partitions. All material used in the
paper is available online1.
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