
Investigating Contingency Awareness
Using Atari 2600 Games

Marc G. Bellemare and Joel Veness and Michael Bowling
University of Alberta, Edmonton, Canada
{mg17,veness,bowling}@cs.ualberta.ca

Abstract
Contingency awareness is the recognition that some aspects
of a future observation are under an agent’s control while
others are solely determined by the environment. This pa-
per explores the idea of contingency awareness in reinforce-
ment learning using the platform of Atari 2600 games. We
introduce a technique for accurately identifying contingent
regions and describe how to exploit this knowledge to gener-
ate improved features for value function approximation. We
evaluate the performance of our techniques empirically, using
46 unseen, diverse, and challenging games for the Atari 2600
console. Our results suggest that contingency awareness is a
generally useful concept for model-free reinforcement learn-
ing agents.

1 Introduction
Contingency awareness is the recognition that components
of a future observation can be affected by one’s choice of
action. Within the cognitive science literature, contingency
awareness is considered a crucial step in the intellectual de-
velopment of children, and is widely believed to be acquired
during early infancy (Watson and Ramey 1972). Experience
with contingent stimulation appears to transfer to efficient
learning and competency in new situations (Finkelstein and
Ramey 1977). Furthermore, contingent observations seem
to encourage the repetition of causal behavior irrespective of
extrinsic reward (White 1959). While it is not yet clear what
mechanisms produce contingency awareness in humans, it
seems plausible that some form of contingency awareness
could play an important role in the construction of artificially
intelligent agents.

When using function approximation with popular model-
free reinforcement learning algorithms such as SARSA(λ),
it is well known (Sutton 1996; Tesauro 1995) that good per-
formance hinges on having access to an appropriate set of
basis functions or features. While automatic feature con-
struction methods (Parr et al. 2007; Konidaris, Osentoski,
and Thomas 2011) and generic feature sets (Schweitzer and
Seidmann 1985) have been proposed, current techniques do
not explicitly incorporate any notion of contingency aware-
ness. Our work proposes a complementary feature genera-
tion technique that accurately captures this notion for a wide

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

class of domains. To this end, we formalize the notion of
contingent regions: the parts of an observation whose im-
mediate future value depends on the the agent’s choice. We
then propose a mechanism to identify the contingent regions
from a single stream of interaction with the environment.
Finally, we describe how we use these contingent regions to
generate contingency-aware features for value function ap-
proximation. The general applicability of our methods is
evaluated in over 50 different Atari 2600 games.

2 Background
We begin by describing the Atari 2600 platform and review-
ing related reinforcement learning work on video games.
The Atari 2600 was a popular second generation game con-
sole, originally released in 1977. Over 900 games were
developed for the Atari 2600, spanning a diverse range of
genres such as shooters, beat’em ups, puzzle, sports and
action-adventure games. Many popular arcade games, in-
cluding Space Invaders, Pac-Man, and Donkey Kong were
also ported to the Atari 2600. While these games are consid-
erably simpler than modern video games, they remain chal-
lenging for game-independent techniques (Naddaf 2010).

Prior work on Reinforcement Learning on the Atari 2600
platform has outlined the challenges in finding good state
features for this domain. Diuk, Cohen, and Littman (2008)
applied their DOORMAX algorithm to a restricted version
of the game of Pitfall. Their method extracts objects from
the displayed image. These objects are then converted into
a first-order logic representation of the world, the Object-
Oriented Markov Decision Process (OOMDP). Their results
show that DOORMAX can discover the optimal behavior
for this OOMDP within one episode. Wintermute (2010)
proposed a method that also extracts objects from the dis-
played image and embeds them into a logic-based architec-
ture, SOAR. Their method uses a forward model of the scene
to improve the performance of the Q-Learning algorithm
(Watkins and Dayan 1992). They showed that by using such
a model, a reinforcement learning agent could learn to play
a restricted version of the game of Frogger. More recently,
Cobo et al. (2011) investigated automatic feature discovery
in the games of Pong and Frogger, using their own simulator.
Their proposed method takes advantage of human trajecto-
ries to identify state features that are important for playing
console games. Once such features are identified, they are

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

864



used by a reinforcement learning agent to abstract the game
state. Their empirical results show increased performance
when using the reduced feature set.

The methods discussed above all require significant hu-
man intervention, either in designing the first-order logic
predicates and model or in obtaining expert human trajec-
tories. The need for human intervention makes it difficult
to apply algorithms from scratch to new problems. One of
the aims of this paper is to show that contingency awareness
can be used to automatically augment a feature set. Further-
more, the technique is effective for a broad range of Atari
2600 games, with no additional human knowledge needed
for new games.

Lastly, Naddaf (2010) studied how one could develop
game-independent AI agents for the Atari 2600. These
agents were designed to perform well across a broad set
of games. He studied search-based methods, using the
Atari simulator as a forward model, and explored the perfor-
mance of different handcrafted feature sets for linear func-
tion approximation in the reinforcement learning setting.
His work illustrated the challenges involved in developing
game-independent agents in both search and reinforcement
learning settings.

3 Black Box RL
For this work, we adopt a discrete action, finite hori-
zon, bounded reward, deterministic black-box reinforcement
learning setup. This involves two entities, an agent and
an environment, which communicate over a fixed number
N ∈ N of discrete time cycles. Interaction begins with the
agent selecting an action from the action space, a finite set
A. The environment then responds with a percept, which is
an observation-reward pair. Each observation is an element
from a setO known as the observation space. Each reward is
a scalar value from a compact setR ⊂ R, the reward space.
We denote the percept space byX := O×R. A history is an
alternating string of action-percepts from the history space,
which is defined asH := ∪Ni=0(A×X )i∪ (A×X )i×A. A
history contains all of the information available to an agent
at a particular point in time.

The goal of the agent is to act in such a way as to max-
imize its accumulated reward over the N cycles. The be-
haviour of an agent is summarized by a policy: a set of prob-
ability distributions π(·|h) over the action space A, one for
each distinct history h ∈ H that ends in a percept. The
only additional property of our black box environments we
require is that they have the option to be reset to a starting
configuration. This allows us to meaningfully evaluate the
performance of a given policy by averaging across multiple
runs of N cycles for any given environment.

4 Contingency Awareness
Broadly speaking, contingency awareness is the recognition
that a future observation is under an agent’s control and not
solely determined by the environment. From an AI perspec-
tive, one of the main challenges faced when attempting to
exploit this natural idea comes from having to translate the
abstract notion of contingency into mathematical terms. In

Figure 1: The contingent regions, shown by a transparent
overlay, for Freeway (left) and Beam Rider (right).

this section we describe a notion of contingency awareness
for the Atari 2600 platform.

4.1 Contingency within Atari 2600
Intuitively, the contingent regions of an observation are the
components whose value is dependent on the most recent
choice of action. In the context of the Atari domain, this
corresponds to a set of pixel locations. This set changes over
time and depends on the exact sequence of actions made by
the agent. We now formalize this intuition by introducing
some notation to describe the Atari 2600 observation space.

Each observation represents an image structured as a two-
dimensional array of pixels. We useDx ⊂ N andDy ⊂ N to
denote the set of row and column indices respectively, and
D := Dx × Dy to denote the joint index space. The color
space C is a finite set of possible pixel colors. A pixel is a tu-
ple (x, y, c) ∈ Dx×Dy×C, where x and y denote the pixel’s
row and column location and c denotes the color of this lo-
cation. Each observation is therefore a set of |D| pixels; the
observation space O is the set of all possible observations.

We can now define the notion of contingent regions in the
black-box Atari 2600 reinforcement learning setup.
Definition 1 ∀n ∈ N, given a history h ∈ (A × X )n, the
contingent regions C(h) of history h is defined as

C(h) :=
{
(x, y) ∈ D : ∃a, a′ ∈ A, oax,y(h) 6= oa

′

x,y(h)
}
,

where oax,y(h) denotes the color of the pixel at location
(x, y) within the observation that follows history ha ∈
(A×X )n ×A.

Thus the contingent regions of history h is the set of pix-
els within the next observation whose value is dependent on
the action that follows h. Figure 1 depicts examples of con-
tingent regions in Freeway and Beam Rider. Because of the
discrete and highly non-linear nature of Atari games, con-
tingent regions are not necessarily connected: for example,
bullets and missiles are separate from the region surrounding
the player’s avatar.

4.2 Learning the Contingent Regions
We now discuss some general approaches for learning a clas-
sifier that can predict whether or not a pixel belongs to the
contingent regions within an arbitrary Atari 2600 game.

The most direct approach is to construct a training set
and employ supervised learning methods. We can exploit

865



the determinism of the Atari, as well as its ability to re-
set, to compute the contingent regions C(h) for any par-
ticular history h. Therefore, from a given set of histories
H := {h1, h2, . . . }, we can construct a set of training ex-
amples{(

h, l, t
)
∈ H ×D × {0, 1} : t = I

[
l ∈ C(h)

]}
. (1)

An alternate method is to construct the training set on-
line. An online approach is appealing because, unlike the
offline approach, it can be applied to no-reset, stochastic do-
mains. Our online learning method works by building an
approximate model of the game’s dynamics. Although the
Atari domain is deterministic, from the agent’s perspective
it is reasonable to view the system as a stochastic process.
We capture the notion of contingency within the stochastic
setting by generalizing Definition 1.

Definition 2 ∀n ∈ N, given a history h ∈ (A × X )n, the
contingent regions C(h) of history h is defined as

C(h) :=
{
(x, y)∈D : ∃a, a′ ∈A, T a

x,y(· |h) 6= T a′

x,y(· |h)
}
,

where each T a
x,y(· |h) describes a pixel-level transition

model: a distribution over the color of the pixel at loca-
tion (x, y) within the observation that follows history ha ∈
(A×X )n ×A.

Although we do not have access to the true underlying
pixel-level transition models, we can approximate Defini-
tion 2 by replacing each T a

x,y(· |h) term with a learned ap-
proximation T̃ a

x,y(· |h) and the non-equality test with a di-
vergence threshold. As both transition models are approxi-
mate, we use a symmetric form of the KL divergence,

D(p || q) := DKL(p || q) +DKL(q || p),

to measure the distance between each pixel-level transition
model, where DKL(p || q) :=

∑
s∈S p(s) log p(s)/q(s)

and p and q are discrete probability distributions over a com-
mon domain S. Our approximate notion of the contingent
regions of history h now becomes

C̃(h) :=

{
(x, y)∈D : max

a,a′∈A
D

(
T̃ a
x,y(· |h) || T̃ a′

x,y(· |h)
)
≥ δ

}
,

(2)
where δ ∈ R+ is a positive threshold parameter. Thus the

effects of an action on a pixel need to cause a divergence of
at least δ before this pixel is considered part of the approxi-
mate contingent regions of a history h.

4.3 Implementation Details
This section describes how we translate the ideas of Sections
4.1 and 4.2 into an implementation fast enough to run in real-
time. The main obstacle lay in the complexity introduced by
the 7 bits per pixel, 210× 160 pixel observation space.

Block Decomposition. In many cases, predicting the con-
tingent regions at the pixel level is unnecessary. To reduce
the method’s computational cost, we divide the observation
space into k × k blocks, k ∈ N, and assume that pixels
within a block share the same contingency behavior. This

Figure 2: Exact (left) and 5x5 Block Decomposed (right)
contingent regions in Seaquest.

leads to the following definition of the contingent regions
using a block size of k:

Bk(h) :=
{
(x, y) ∈ D : Sk(x, y) ∩ C(h) 6= ∅

}
,

where Sk(x, y) :=
{
(x′, y′) ∈ D : rk(x, y) = rk(x

′, y′)
}

,
rk(x, y) := (fk(x), fk(y)) and fk(x) := k dx/ke − bk/2c.
The approximate block contingent regions B̃k(h) is defined
similarly, with C̃(h) replacing C(h) in the above definition.
This leads to a speedup proportional to k2 since only one
prediction is made for every k×k block of pixels. We found
k = 5 to provide a good trade-off between performance and
accuracy. Figure 2 shows an example of the exact contingent
regions of a Seaquest frame and its corresponding 5×5 block
decomposition.

Contingency Learning. We now describe how we use su-
pervised learning to generate a probabilistic predictor of the
contingent regions. We first construct a training set in the
form of Equation 1 with C(h) replaced by B5(h). We then
fit a parametrized logistic regression model to this data by
finding an approximate maximum likelihood solution. Un-
der our logistic model, the likelihood that a pixel at loca-
tion l ∈ D is part of the contingent regions of history h is
p(l |h;w) := σ

(
wTΦl(h)

)
, where w ∈ Rm×1 is a vector

of weights, σ(x) := (1 + exp(−x))−1 is the logistic func-
tion and Φl(h) ∈ Rm×1 is a column vector of features that
depend on the current history h and the location l of interest.
Thus, given a training set T of the form specified by Equa-
tion 1, the likelihood of the observed data under our logistic
model is
p(T ;w) :=

∏
(h,l,t)∈T

p(l |h;w)t(1− p(l |h;w))1−t. (3)

Equation 3 can be maximized by minimizing the cross en-
tropy error function E(w) := − log(p(T ;w)), which upon
rearranging and simplifying becomes

E(w):=−
∑

(h,l,t)∈T

t log p(l |h;w)+(1−t) log
(
1−p(l |h;w)

)
.

We minimize E(w) with stochastic gradient descent as
it allows us to avoid having to keep the entire training
set in memory. This gives, for the kth training example
(hk, lk, tk) ∈ T , the following update equation

wk ← wk−1 + η
[
tk − σ

(
wT

k−1Φlk(hk)
)]

Φlk(hk) ,
where η ∈ R is the learning rate parameter.

866



Color Change Prediction. Although Equation 2 gives a
natural criterion for detecting contingent regions with a
learned probabilistic color model, learning such a model
over the full 7-bit Atari color space requires a prohibitive
number of samples. An acceptable level of accuracy can be
achieved by predicting whether a pixel changes color rather
than predicting the color to which it changes. In effect, we
reduce learning a full pixel-level transition model (the T̃ a

x,y
term) to learning a binary predictor. This also reduces the
number of summands needed to compute the symmetrized
KL divergence by a factor of 26. We also used logistic re-
gression in combination with stochastic gradient descent to
predict color changes.

5 Contingency-based Feature Generation

To illustrate how contingent regions can be used, we de-
scribe one way to integrate them into a reinforcement learn-
ing agent. Since value function approximation holds a
prominent role in most large-scale RL solutions (Sutton
1996), we focus on incorporating contingency awareness
within a function approximation architecture. We restrict
our attention to linear function approximation, a commonly
used scheme in practice.

Our method relies on two mild assumptions: (1) the
player controls an avatar that exists at some location and
generates contingencies; (2) the player’s avatar moves
smoothly across the screen. Our method works by first track-
ing the centroid of the avatar using a standard Bayes filter
(Russell and Norvig 2010). We implement this by using
a truncated Gaussian motion model and a Gaussian obser-
vation model for which the probability of observing con-
tingency decreases with distance from the player location.
At the start of a game or when the game is reset, the prior
over the player location is set to be uniform over D. Since
we never observe contingency directly, we instead provide
the observation model with the distribution output by the
learned contingency predictor.

We extract the maximum a posteriori location of the
player avatar from the Bayes’ filter to enhance an exist-
ing RL feature map Υ : H → Rm×1. First, the esti-
mated player location is mapped into a particular cell of
an i by j discretization of D. The extended feature map
Ψ : H → Rmij×1 is then constructed by taking the Carte-
sian product of the set of tiled locations and the features used
by Υ. In effect, the resulting extended feature map repre-
sents each discretized player location using m independent
features.

6 Evaluation

Sections 4 and 5 propose a framework for incorporating a
notion of contingency awareness into a reinforcement learn-
ing agent. We now experimentally evaluate the ability of
this framework to both predict the contingent regions and
to generate an improved set of features for value function
approximation.

6.1 Environment Description
We used our publicly available Arcade Learning Environ-
ment (2012) to map games into reinforcement learning en-
vironments. Each environment generates observations that
consist of 160 × 210 pixels, with each pixel taking on one
of 27 colors; a single observation does not usually contain
all of the Atari state information. The action space consists
of 18 distinct actions, which reflect the different possible
x/y locations of the joystick and whether the fire button is
pressed or not. In all games, the reward is given by the dif-
ference in score from one time step to the next. The range
of rewards is not known in advance and varies from game to
game. Each environment is episodic, terminating when the
game is over (e.g., when the player is out of lives). A single
reinforcement learning step consists of five frames of emu-
lation, during which the agent’s chosen action is repeated.
Since the Atari simulator runs at 60 frames per second, to
run in real-time an agent needs to transmit an action at the
relatively fast rate of 12 times per second. All of our agents
run in real-time or faster.

To carry out our evaluation, we used a total of 51 Atari
games1. Of these games, five were selected as a training set.
The training set was used to design and test our algorithms,
including parameter optimization. The remaining 46 games
constitute the test set. Games in the test set were solely used
for evaluation purposes. During the testing phase, each al-
gorithm uses a fixed set of parameters across all games.

6.2 Learning the Contingent Regions
We first studied how well our models could learn to predict
the contingent regions across all games, using both the of-
fline and online techniques described in Section 4.2. In the
offline setting we constructed the training set described in
Equation 1 using the emulator’s load/save state functions. In
the online setting we first learn a pixel-level change model
(Section 4.3), then generate the training set using a KL di-
vergence test (Section 4.2).

In both settings, training data was generated by sampling
game situations that occurred near a human-provided tra-
jectory. For each game we collected one human trajectory
lasting at least two minutes. These human trajectories do not
need to involve expert policies, but rather help provide repre-
sentative coverage of the histories. Hybrid trajectories were
then constructed by following the human-provided trajec-
tory for a variable number of steps and then taking 300 addi-
tional, uniformly random actions. Pixel-level change models
were learned from 2,000,000 samples drawn at five-frame
intervals. Predictors for both settings were then trained on
200,000 samples. The contingent region predictor’s input
Φl(h) consisted of the color of pixels in a 21x21 neighbor-
hood around pixel location l, for both the current and last
time step. The divergence threshold parameter in Equation
2 was set to δ = 4.0.

Table 1 reports relevant statistics for our learned mod-
els. The offline learning procedure yielded a highly accu-
rate model. In practice, we found that for all games with
avatars, the contingent regions predictor correctly identified

1See http://arcadelearningenvironment.org for a complete list.

867



Accuracy Precision Recall
Offline Online Offline Online Offline Online

Mean 0.969 0.919 0.396 0.217 0.573 0.356
Min. 0.800 0.365 0.016 0.000 0.000 0.000
Max. 1.000 0.998 0.769 0.836 0.985 0.985

Table 1: Prediction statistics for the learned contingent re-
gion models. Each model was learned once; minimum and
maximum reflect prediction accuracy across the 51 games.

its surrounding contingent region. The low precision and
recall values can be explained by our use of the block de-
composition (Section 4.3). As illustrated in Figure 2, block
decomposition yields accurate results for tracking purposes
but cannot precisely capture the boundaries of the contin-
gent regions. The accuracy of the online learning procedure
varied widely across games. While the pixel change mod-
els were generally accurate, no single value of δ provided a
good approximation of the contingent regions (Equation 2)
for all games: Space Invaders worked best with δ = 0.1,
while Beam Rider required δ = 10.0. The online results of
Table 1 reflect our choice of δ = 4.0 as a compromise.

6.3 Feature Generation Methods
We now describe two Atari-specific feature generation tech-
niques and their subsequent contingency-aware extensions.

The Basic method, derived from BASS (Naddaf 2010),
encodes the presence of colors on the Atari screen. The
background is first removed using a histogram method, de-
scribed in Naddaf’s work (2010). Each game background
is precomputed offline, using a sample trajectory contain-
ing 18,000 observations collected from a uniformly random
policy. The screen is then divided into 16 × 14 tiles. Basic
generates one binary feature for each of the 128 colors and
each of the tiles, giving a total of 28,672 features.

MaxCol also divides the screen into tiles but encodes only
its two most frequent colors. Unlike the Basic method,
MaxCol does not rely on background detection, which can
prove problematic in games where the background scrolls or
changes color. In many cases, one of encoded colors is part
of the background and the other indicates relevant state in-
formation. We used a 32× 30 grid and the full 128-color set
for a total of 122,880 features.

The Extended method first generates the Basic features,
and then applies the technique described in Section 5. The
avatar location, estimated from the output of our contingent
regions predictor, is discretized into a 10 × 10 grid. The
Extended feature set is then generated by jointly tiling the
Basic features with each particular grid cell, yielding a total
of 2,867,200 features. The Extended MaxCol method works
similarly, except that it jointly tiles the avatar location with
the MaxCol features, giving a total of 12,288,000 features.

6.4 Reinforcement Learning Setup
We trained agents using the well-known SARSA(λ) rein-
forcement learning algorithm. We approximate the value
function using linear approximation with one of the four fea-
ture sets described in Section 6.3. An ε-greedy policy (Sut-
ton and Barto 1998) is used, which takes exploratory actions

Figure 3: Average score over the last 500 episodes for each
of the training games. Each result is an average over 30
trials; error bars show 99% confidence intervals.

with probability ε, and otherwise chooses the action esti-
mated to have highest value. Exploratory actions are chosen
uniformly at random from A.

We set the discount factor γ = 0.999, the eligibility trace
parameter λ = 0.9 and the exploration rate ε = 0.05. The
learning rate α was tuned for each specific feature gener-
ation method by using parameter sweeps over the training
games. The best values were 0.2, 0.1, 0.5, 0.5 for Ba-
sic, MaxCol, Extended and Extended MaxCol respectively.
Note that these values are not directly comparable since the
learning rates are normalized with respect to the number of
active features (Sutton 1996).

6.5 Training Evaluation
We first evaluated our methods on the training games. Each
feature set was tested using 30 independent trials per game.
Each trial consisted in training the agent on a particular
game for 10,000 episodes. The performance within a trial
was obtained by taking the average score obtained during
the last 500 episodes of training. The overall performance
estimate we report is the average performance across all 30
trials.

The results we obtained on the training games are shown
in Figure 3. Extended performs statistically better than Basic
on 4/5 games, while Extended MaxCol performs better than
MaxCol on 3/5 games and worse on Asterix. These results
illustrate the advantage of using contingency awareness. We
also observed (not shown here) that the performance of Ba-
sic agents reached a plateau within 10,000 episodes. In con-
trast, for Asterix, Beam Rider and Space Invaders, agents
using Extended were still learning at the end of the trial. In
Asterix we believe the lower performance of Extended Max-
Col was a result of the agent controlling the appearance of
the remaining lives icons; as such, the player avatar is only
approximately tracked as long as the agent has more than
one life remaining, resulting in a deteriorated feature set for
a portion of the game. Despite this issue, Extended outper-

868



Figure 4: Score distribution for the testing games. Each line
indicates the fraction of testing games that achieve a score at
least the value on the x axis.

forms Basic in Asterix. All learning agents perform better
than the random policy.

6.6 Testing Evaluation
We now evaluate the feature generation methods across the
46 previously unseen games in the test set. We used the same
experimental setup as for the training games; the results of
this section are based on a total of 30 × 46 × 4 = 5, 520
trials.

Normalized Scores. Comparing different methods over a
large and diverse set of Atari games poses a challenge: each
game uses its own scale for scores (human-level scores range
from single digits to many thousands), and different game
dynamics make some games harder to learn than others. We
solve this problem by normalizing the scores for each game.
We examine two different normalized scores: the baseline
score and the inter-algorithm score. Both scores are com-
puted using a score range [rg,min, rg,max]. Given the aver-
age score sg,i for game g and method i, we compute the
normalized score zg,i := (sg,i − rg,min)/(rg,max − rg,min).
Once we have normalized scores we display the results in
the form of a score distribution: a graph showing the frac-
tion of testing games for which a method achieves a certain
normalized score or better. The graph can be thought of as
the cumulative distribution function of the normalized score.
If one curve is above another on a score distribution then that
method generally has higher normalized scores.

Baseline Score Distribution. The first scoring metric we
use normalizes with a set of 19 baseline policies: 18 single-
action policies and the uniform random policy. Each single-
action policy selects a fixed action with probability 0.95 and
otherwise acts uniformly randomly. We obtained the average
score bg,i achieved by each baseline policy i in game g. The
baseline score range was computed as rg,min := mini{bg,i}

Figure 5: Inter-algorithm score distribution for the testing
games.

and rg,max := maxi{bg,i}. Under this metric, a baseline
score greater than 1.0 indicates that a method performs bet-
ter than all baseline policies, and less than 0.0 indicates per-
formance worse than all baseline policies. Figure 4 shows
the score distribution of the baseline scores for all four fea-
ture sets. The graph demonstrates that learning takes place
across all methods in the majority of the games, as most
games have scores at least as large as 1.0. Furthermore, for
games where learning occurred, incorporating contingency
information generally gave an improvement.

Inter-algorithm Score Distribution. An alternate way to
compute the performance is to normalize using the scores
achieved by the algorithms themselves. Given a set of
scores {sg,i}, we define the inter-algorithm score range as
rg,min = mini{sg,i} and rg,max = maxi{sg,i}. By con-
struction, each inter-algorithm score lies within the [0, 1] in-
terval. Figure 5 shows the inter-algorithm score distribution
over the testing games for our four algorithms. The differ-
ences observed in Figure 4 are clearer: Extended performs
better than Basic, and Extended MaxCol performs better
than MaxCol. In particular, Extended achieves the highest
score on nearly half of the games.

We also computed the proportion of games for which
the extended methods provide a statistically significant (i.e.
non-overlapping 99% confidence intervals) advantage. Ex-
tended did better than Basic in 17 games and worse in 7,
while Extended MaxCol did better than MaxCol in 22 games
and worse in 6. These results highlight the benefits of using
contingency information for feature construction.

6.7 Online Contingency Learning
We now evaluate contingency-based feature generation us-
ing the online contingent regions method of Section 4.2.
Figure 6 shows the resulting score distributions (normalized
using the baseline policies) for MaxCol, Extended Max-
Col and Online Extended MaxCol. Across the 46 testing

869



Figure 6: Score distribution comparing the offline and online
methods on the testing games.

games, the online method showed significant improvements
over MaxCol. Unsurprisingly, the offline method performed
better than its online counterpart. We omit the compari-
son between Basic and Online Extended as our results did
not exhibit a statistically significant change in performance.
As discussed in Section 6.2, our single choice of divergence
threshold led in many cases to a loss of accuracy in the con-
tingent regions predictor, which made it difficult to track the
player avatar. We feel this explains the lack of improvement
using the Extended feature set in the online setting, though
further investigation is needed.

We also evaluated the performance of our online method
using inter-algorithm scores. Figure 7 shows the score distri-
bution for MaxCol, Extended MaxCol and Online Extended
MaxCol. The score range was computed using all six al-
gorithms to facilitate comparisons with Figure 5. Figure 7
shows that Online Extended MaxCol outperforms MaxCol,
but does not achieve the performance level of the offline
method.

7 Limitations
There are three main sources of error that can affect the
performance of our contingency-aware agents. The first is
due to learning the contingent regions model. As with any
feature-based learning technique, the chosen set of features
can have a significant influence on the final performance.
The second source of error is related to the avatar tracking
procedure. Here we rely on the assumption that the location
of the largest contingent region provides useful information.
This assumption does not always hold in side-scrolling and
first-person games, in which large portions of the screen are
always under the agent’s control. Where the assumption
fails, the contingency aware features provide no useful in-
formation; this seems however to have only a minor negative
effect, as Extended performed significantly worse than Basic
in only one of the 15 side-scrolling and first-person games.
Finally, online contingency learning suffers from additional

Figure 7: Inter-algorithm score distribution comparing the
offline and online methods on the testing games.

error introduced by using the learned pixel transition model.

8 Discussion
Although this paper has focused on exploiting contingency
awareness within Atari 2600 games, we feel the idea has rel-
evance to other settings. For example, our notion of contin-
gency awareness naturally extends to domains in which the
observation space is large and factored (Degris, Sigaud, and
Wuillemin 2006). It also seems plausible that contingency
awareness could be useful for option discovery (McGovern
2002), for example by restricting option policies to only use
contingent regions as state information.

The Atari 2600 domain holds many challenges not ad-
dressed in this work. In particular, side-scrolling games (15
out of our 51 total games) rarely benefit from the extended
feature sets; we are currently investigating alternate ways of
tracking the player avatar. In some games, the screen con-
tains multiple important contingent regions. Here, avatar
tracking only exploits part of the information contained in
the contingent regions model. Finally, six of the games in-
vestigated were simply too difficult for any of our meth-
ods. Solving these harder games may require more elabo-
rate reinforcement learning techniques, such as smarter ex-
ploration (Brafman and Tennenholtz 2003), temporally ex-
tended actions (Sutton, Precup, and Singh 1999) or Monte-
Carlo Tree Search (Kocsis and Szepesvári 2006). We feel
the Atari platform is an ideal testbed for empirically eval-
uating the general applicability of both present and future
reinforcement learning algorithms.

9 Conclusion
We have investigated a notion of contingency awareness us-
ing the Atari 2600 domain. We laid out a general mathe-
matical framework for learning contingent regions in Atari,
and subsequently described a way to exploit these notions
in value function approximation for reinforcement learning.
We evaluated our techniques by dividing a set of 51 Atari

870



games into a training and a test set, which allowed us to ac-
curately measure the performance of our techniques on a di-
verse range of previously unseen games. We found that con-
tingency awareness in combination with a Bayes filter led to
a robust solution for tracking the player avatar in a domain-
independent manner. Furthermore, our results show that
contingency awareness can significantly improve the perfor-
mance of existing feature construction methods by adding
contingency-specific features.

Acknowledgments We would like to thank Yavar Naddaf,
Adam White, and Anna Koop for helpful discussions. This
research was supported by the Alberta Innovates Technol-
ogy Futures and the Alberta Innovates Centre for Machine
Learning at the University of Alberta. Invaluable compu-
tational resources were provided by Westgrid, the Réseau
Québécois de Calcul de Haute Performance and Compute
Canada.

References
Brafman, R. I., and Tennenholtz, M. 2003. R-max — a
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3:213–231.
Cobo, L. C.; Zang, P.; Isbell, C. L.; and Thomaz, A. L.
2011. Automatic state abstraction from demonstration. In
Proceedings of the 22nd Second International Joint Confer-
ence on Articial Intelligence (IJCAI).
Degris, T.; Sigaud, O.; and Wuillemin, P. 2006. Learning
the structure of factored markov decision processes in rein-
forcement learning problems. In Proceedings of the 23rd
International Conference on Machine learning. ACM.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th International Conference on Ma-
chine learning (ICML), 240–247.
Finkelstein, N. W., and Ramey, C. T. 1977. Learning
to control the environment in infancy. Child Development
48(3):806–819.
Kocsis, L., and Szepesvári, Cs. 2006. Bandit based Monte-
Carlo planning. In Proceedings of 17th European Confer-
ence on Machine Learning (ECML).
Konidaris, G. D.; Osentoski, S.; and Thomas, P. S. 2011.
Value function approximation in reinforcement learning us-
ing the fourier basis. In Proceedings of the 25th Conference
on Artificial Intelligence (AAAI).
McGovern, A. E. 2002. Autonomous discovery of temporal
abstractions from interaction with an environment. Ph.D.
Dissertation, University of Massachusetts.
Naddaf, Y. 2010. Game-Independent AI Agents for Playing
Atari 2600 Console Games. Master’s thesis, University of
Alberta.
Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M.
2007. Analyzing feature generation for value-function ap-
proximation. In Proceedings of the 24th International Con-
ference on Machine learning.

The Arcade Learning Environment: A Platform for AI Re-
search. 2012. http://arcadelearningenvironment.org.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach (3rd internat. ed.). Pearson Education.
Schweitzer, P. J., and Seidmann, A. 1985. General-
ized polynomial approximations in Markovian decision pro-
cesses. Journal of Mathematical Analysis and Applications
110(2):568–582.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In Ad-
vances in Neural Information Processing Systems 8 (NIPS).
Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. Communications of the ACM 38(3).
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8:279–292.
Watson, J. S., and Ramey, C. T. 1972. Reactions to
response-contingent stimulation in early infancy. Merrill-
Palmer Quarterly: Journal of Developmental Psychology
18(3):219–227.
White, R. W. 1959. Motivation reconsidered: The concept
of competence. Psychological Review 66(5):297–333.
Wintermute, S. 2010. Using imagery to simplify perceptual
abstraction in reinforcement learning agents. In Proceedings
of the the 24th Conference on Artificial Intelligence (AAAI).

871




