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Abstract

Traditional clustering algorithms are designed to search
for a single clustering solution despite the fact that mul-
tiple alternative clustering solutions might exist for a
particular dataset. For example, a set of news articles
might be clustered by topic or by the author’s gender or
age. Similarly, book reviews might be clustered by sen-
timent or comprehensiveness. In this paper, we address
the problem of identifying alternative clustering so-
lutions by developing a Probabilistic Multi-Clustering
(PMC) model that discovers multiple, maximally differ-
ent clusterings of a data sample. Empirical results on six
datasets representative of real-world applications show
that our PMC model exhibits superior performance to
comparable multi-clustering algorithms.

Introduction
Clustering is an established statistical methodology arising
in areas such as unsupervised learning, data compression,
and exploratory data analysis. Traditional work on cluster-
ing has largely focused on generating a single clustering so-
lution of a data sample based upon a particular clustering
objective. However, many real-world datasets can be natu-
rally clustered along multiple dimensions. For example, a
collection of book reviews might be clustered along the di-
mensions of sentiment (e.g., positive or negative) or genre.
Similarly, political blog postings can be clustered by topic,
the author’s stance (e.g., support or oppose), or her polit-
ical affiliation (e.g., Democrat or Republican). Traditional
text clustering algorithms have often focused on producing
a topic-based clustering of a dataset, thus failing to satisfy
the user’s other information needs.

Consequently, researchers started to address the prob-
lem of how a clustering algorithm can produce a clustering
along the user-desired dimension. Common approaches to
this problem include (1) manually identifying the features
relevant to the desired dimension (Liu et al. 2004), or (2)
learning a similarity metric from side information (Xing et
al. 2002) such as user-defined constraints on which pairs of
data items must or must not appear in the same cluster in the
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user-desired clustering (e.g., Wagstaff et al. (2001), Bilenko
et al. (2004)). More recent work has focused on active clus-
tering algorithms, where user feedback is incorporated dur-
ing each clustering iteration, specifically by having the user
(1) incrementally construct a set of features relevant to the
desired dimension in an interactive fashion (e.g., Bekkerman
et al. (2007), Raghavan and Allan (2007)), or (2) correct the
mistakes made by the algorithm via specifying whether two
existing clusters should be merged or split (e.g., Balcan and
Blum (2008)).

While these algorithms can produce a clustering that sat-
isfies a user’s interest, they remain somewhat unsatisfactory
for several reasons. First, they are knowledge intensive, re-
quiring a lot of human feedback or labeled instances prior
to or during the clustering process. Second, they can only
produce a single clustering of a dataset. Hence, if a user
wants to cluster a data sample along multiple dimensions,
she has to apply the clustering algorithm multiple times,
each time requiring new user feedback to produce one of
her desired clusterings. Motivated by these inadequacies, we
pursue a challenging alternative: we aim to design a fully
unsupervised multi-clustering model that can generate a set
of clusterings of a data sample without relying on any hu-
man knowledge for fine-tuning the similarity function or se-
lecting the relevant features, such that each clustering is (1)
qualitatively strong in terms of basic qualitative criteria typ-
ically used to evaluate the structure of a clustering and (2)
dissimilar to other clusterings in the set.

To this end, we introduce in this paper an end-to-end prob-
abilistic multi-clustering framework, which we will refer to
as Probabilistic Multi-Clustering (PMC). Our PMC model
has several appealing characteristics. First, it is developed
within a probabilistic framework. In addition to supporting
Bayesian decision rules (e.g., minimum probability of error
rules) for the assignment of data points to clusters, a proba-
bilistic framework provides an explicit characterization of
the assumed multi-clustering environment, which may be
used for selecting the most appropriate multi-clustering ob-
jective function for a given statistical environment. Second,
it assumes a single feature space, thus obviating the need for
manually identifying relevant features for each dimension of
interest. Third, while we focus on the application of PMC to
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text data in this paper, the underlying framework is general
enough for PMC to be applicable to data in other domains.
Empirical results on six text datasets demonstrate the supe-
riority of PMC to existing multi-clustering algorithms.

The rest of the paper is structured as follows. We dis-
cuss related work, formulate the multi-clustering problem,
describe a standard mixture of Gaussians clustering model,
extend it to create our multi-clustering model, and present
experimental results and our conclusions.

Related Work
To date, there have only been a handful of attempts to tackle
the multi-clustering problem. Broadly, these attempts fall
into two major categories. In semi-supervised approaches,
one of the clusterings is provided (by the human) as input,
and the goal is to produce the other clustering that is distinc-
tively different from the given one. For instance, Gondek and
Hofmann’s (2004) approach learns a non-redundant clus-
tering that maximizes the conditional mutual information
I(C;Y |Z), where C, Y and Z denote the clustering to be
learned, the relevant features and the known clustering, re-
spectively. On the other hand, Davidson and Qi’s (2007) ap-
proach first learns a distance metric DC from the original
clustering C, and then reverses the transformation of DC

using the Moore-Penrose pseudo-inverse to get the new dis-
tance metric D′C , which is used to produce a distinctively
different clustering.

In contrast, our PMC model does not rely on labeled
instances or human feedback. Hence, the second category
of existing multi-clustering algorithms, unsupervised ap-
proaches, is more closely related to our work. One of the
most well-known unsupervised multi-clustering approach is
Caruana et al.’s (2006) meta clustering algorithm, which
produces multiple clusterings of a data sample by running
k-means multiple times, each time with a random selection
of seeds and a random weighting of features. The goal is to
present each local minimum of k-means as a possible clus-
tering. Though conceptually simple, meta clustering fails to
ensure that the resulting clusterings are dissimilar to each
other, a property desirable of a multi-clustering solution. In
fact, k-means tends to produce similar clusterings regardless
of the number of times it is run.

In comparison to meta clustering, Jain, Meka, and
Dhillon’s (2008) approach is more sophisticated, as it tries
to learn two clusterings in a “decorrelated” k-means frame-
work. Specifically, its joint optimization model ensures that
the centroids of the two clusterings are dissimilar while
achieving typical k-means objectives. Note that Jain, Meka,
and Dhillon use this framework to produce only two clus-
terings per dataset, since the complexity of their objective
function grows with the number of clusterings to be pro-
duced.

More recently, Dasgupta and Ng (2010) have shown that
the principal eigenvectors of the graph Laplacian reveal the
important clustering structures of a data sample, and the
eigenvectors, being orthogonal to each other, can be dis-
cretized separately to produce a set of distinct 2-way clus-
terings. Despite its simplicity, their approach is grounded on
a particular form of graph-theoretic objective, and it is not

clear how to extend it to optimize other forms of objectives
or produce multi-way clusterings. In contrast, ours is based
on probabilistic modeling, and extending it to produce soft
clusterings and multi-way clusterings is natural.

Problem Formulation
In this section, we define the multi-clustering problem for-
mally. Let Xn ≡ {x1, . . . ,xn} be a data sample, where
data point xi ∈ <d for i = 1, . . . , n. A multi-clustering so-
lution is a set K ≡ {K(1), . . . ,K(z)} of z clusterings, where
each clustering K(m) consists of a finite set of km clusters
{C(m)

1 , . . . , C
(m)
km
}. In essence, the superscript identifies a

particular clustering in the set K, and the subscript identifies
a particular cluster within a clustering. The number of clus-
terings to be produced, z, and the number of clusters within
each clustering, km, are specified by the user. We begin by
specifying three constraints for a preference relation on the
space of possible multi-clustering solutions.
• Quality: Let K1 and K2 be multi-clustering solutions. Let
Q be a clustering quality preference function which is de-
fined such that: K1 provides a better quality fit to the data
than K2 if and only if Q(K1) ≥ Q(K2). For example, Q
might be a log-likelihood function as in the Expectation-
Maximization (EM) algorithm (Dempster, Laird, and Ru-
bin 1977) or a least square distortion function as in the
K-means algorithm (?).
• Distinctivity: Let K1 and K2 be multi-clustering solu-

tions. Let φK be a clustering similarity preference func-
tion which is defined such that: The clusterings in K1 are
more dissimilar than the clusterings in K2 if and only if
φK(K1) ≤ φK(K2). We will discuss how φK can be
defined shortly.

• Parsimony: Our use of the term “parsimony” is equivalent
to the usage of regularization in the machine learning lit-
erature. Specifically, we define parsimony constraints that
prefer models that are resistant to overfitting.

Diagonal Gaussian Mixture Model
To generate a single clustering of a dataset probabilisti-
cally, the standard approach is to employ a Gaussian mixture
model (GMM). In this section, we will review how a single
clustering of a dataset can be generated using the diagonal
Gaussian mixture model (DGMM) and show how to extend
this model to find a multi-clustering solution of a dataset in
the next section.
Definition. A Gaussian mixture model is a weighted sum
of k component Gaussian densities:

p(x|θ) =
k∑
j=1

p(Cj |γ)p(x|Cj , µj , σj),

where x is a d-dimensional continuous-valued feature vec-
tor; p(Cj |γ), j = 1, . . . , k are the mixture weights; and
p(x|Cj , µj , σj), j = 1, . . . , k are the component Gaussian
densities. Each component density is a Gaussian function of
the form

p(x|Cj , µj , σj)
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=
exp[−(1/2)(x− µj)T [Dσ,j ]

−1(x− µj)]
(2π)d/2|Dσ,j |1/2

,

with mean vector µj and covariance matrix Dσ,j . Since we
employ a DGMM, Dσ,j is a diagonal matrix whose on-
diagonal elements are the elements of the d-dimensional
vector σ2

j . The mixture weights are defined in terms of γ, a
k-dimensional vector encoding the relevance or importance
of each component. Specifically,

p(Cj |γ) =
exp[γj ]∑k
u=1 exp[γu]

.

Given this definition, it should be easy to see that the
DGMM defines a two-stage generative story. First, a clus-
ter Cj is generated with probability p(Cj |γ∗j ) for some
γ∗j . Given Cj , a data point x is generated with probability
p(x|Cj , µ∗j , σ∗j ) for some µ∗j and σ∗j . The DGMM parame-
ters are collectively defined by θ ≡ [θ1, . . . , θk] ∈ <k(2d+1),
where θj ≡ (µj , σj , γj) for j = 1, . . . , k. In other words, θ
is defined by the mean vectors, the covariance matrix, and
the relevance from all component densities.
Parameter estimation. θ can be estimated using maxi-
mum likelihood estimation. Let Xn ≡ [x1, . . . ,xn] be a
data sample in which the n data points are a realization of n
independent and identically distributed real-valued random
vectors. The likelihood of Xn, L(Xn|θ), is given by:

L(Xn|θ) =
n∏
i=1

p(xi|θ).

By definition, a maximum likelihood estimate θ̂ is:

θ̂ ≡ argmax
θ∈Θ

L(Xn|θ).

θ̂ can be computed using EM, Generalized EM (GEM), or
gradient descent.
Clustering. After maximum likelihood estimation, we can
use the resulting fitted probability model to induce a cluster-
ing on a set of data points. Specifically, the probability that a
given data point xi is assigned to the jth cluster, Cj , is given
by:

p(Cj |xi, θ̂j) =
p(xi|Cj , θ̂j)p(Cj |γj)

p(xi)
.

To induce a hard clustering, we assign xi to the cluster Cj
such that the probability p(Cj |θ̂j ,xi) is the largest among
all j = 1, . . . , k.

Multi-Clustering DGMM Theory
We now propose a new theory of multi-clustering using DG-
MMs based on the three multi-clustering criteria described
previously, namely quality, distinctivity, and parsimony.

For convenience, let us first introduce some notation. Let
Xn ≡ [x1, . . . ,xn] be a data sample, as defined above. Re-
call from the previous section that to induce a single cluster-
ing we employ a DGMM. Hence, to induce z clusterings of
Xn we employ z DGMMs. Since each DGMM generates Xn

independently of the other DGMMs, it is convenient to make
z copies of each data point xi, such that its mth copy, x(m)

i ,
is associated with themth clustering (m = 1, . . . , z). We de-
note the set of n points associated with the mth clustering,
namely, x(m)

1 , . . . ,x
(m)
n , as X(m)

n . Moreover, we denote the
likelihood of the observed data X(m)

n given the mth DGMM
as L(X

(m)
n |θ(m)), m = 1, . . . , z.

The likelihood of the observed data X(1)
n , . . . ,X

(m)
n given

all z DGMMs can therefore be computed by the formula:

L(Xn|θ) ≡
z∏

m=1

L(X(m)
n |θ(m)), (1)

where θ ≡ [θ(1), . . . , θ(z)] ∈ Θ ⊆ <k, and k = (2d +
1)
∑z
m=1 km. Θ is called the parameter space, and θ defines

what we call a multi-clustering DGMM (MDGMM).
Finding an MDGMM that maximizes L(Xn|θ) will likely

produce a multi-clustering solution that has a good quality fit
to the given data sample. However, it does not guarantee that
the remaining two multi-clustering criteria are satisfied: it is
not regularized, as is clear from the objective function; and
it does not guarantee distinctivity, because the z clusterings
were generated independently by z DGMMs. Consequently,
we define a prior pθ for the MDGMM that incorporates both
distinctivity constraints, which favor multi-clustering solu-
tions comprising dissimilar clusterings, and parsimony con-
straints, which regularize the parameter space.
Distinctivity constraints. One way to guarantee distinc-
tivity is to ensure that the cluster locations of a pair of clus-
terings in the multi-clustering solution are dissimilar. To im-
plement this idea, we need to perform two steps: (1) we de-
fine a cluster location similarity function for measuring the
similarity of two cluster locations, and (2) we minimize this
function to penalize multi-clustering solutions containing
multiple clusterings with similar cluster location patterns.

Let us begin with step 1. A natural way to define φ(m)
µ,j , the

soft clustering cluster-location similarity preference func-
tion, is as follows:

φ
(m)
µ,j =

(
1

m− 1

)m−1∑
u=1

1

ku

ku∑
q=1

(
µmj · µuq

)2
for m = 2, 3, . . . , z and φ(1)

µ,j = 0. Informally, in φ(m)
µ,j , we

first compute one similarity value between the location of
the jth cluster in the mth clustering and the location of each
cluster in each of the (m−1) clusterings induced so far, and
then take the average of these similarity values. It should not
be difficult to see that larger values of φ(m)

µ,j indicate that the
cluster locations between clusterings are more similar. We
will defer the discussion of step 2 (function minimization)
until after we define the parsimony constraints.
Parsimony constraints. To improve finite-sample gener-
alization performance, we perform L2-regularization on the
parameter space, which can be encoded as soft parsimony
constraints. Since the DGMM that generates the mth clus-
tering has three sets of parameters, µ(m)

j , σ(m)
j , and γ(m),
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for j = 1, . . . , km, we define a regularization function for
each set of parameters. Specifically,

η
(m)
µ,j =‖µ(m)

j ‖
2, η

(m)
σ,j =‖σ(m)

j ‖
2, η(m)

γ =‖γ(m)‖2

Minimizing these functions is equivalent to favoring
sparse multi-clustering solutions.

Combining the constraints. These preference functions
that enable us to incorporate distinctivity and parsimony are
not meant to be minimized independently from each other.
Rather, we want to combine them as a prior, specifically
by defining the soft clustering solution preference function
V (θ) such that:

V (θ) ≡
z∑

m=1

km∑
j=1

V
(m)
j

where

V
(m)
j = λφµφ

(m)
µ,j + ληµη

(m)
µ,j + ληση

(m)
σ,j + ληγη

(m)
γ,j ,

and λφµ , ληµ, λησ and ληγ are non-negative real numbers that
are to be determined based on the user’s prior knowledge
of the importance of each constraint. Define the Bayesian
parameter prior pθ as a monotonically decreasing function
of V (θ) such that:

pθ(θ) ≡
1

Z
exp

(
−V (θ)

2σ2
p

)
,

where σp controls the intensity of the prior. The lower the
value of σp the higher is the effect of the distinctivity and
parsimony constraints. The normalization constant Z exists
provided the parameter space Θ is compact.
Modifying the objective function. Next, we incorporate
the prior pθ into the objective function. The use of pθ enables
us to seek a MAP (maximum a posteriori) estimate, θ̂, rather
than a maximum likelihood estimate. By definition, a MAP
estimate θ̂ is:

θ̂ ≡ argmax
θ∈Θ

p(θ|Xn)

= argmax
θ∈Θ

p(Xn|θ)pθ(θ)

= argmax
θ∈Θ

z∏
m=1

L(Xn|θ(m))pθ(θ).

As usual, we maximize the logarithm of this objective func-
tion, which is

log

z∏
m=1

L(Xn|θ(m)) + log pθ(θ). (2)

MAP estimation strategies. Next, we discuss our strategy
for estimating the model parameters given the aforemen-
tioned MAP objective. We employ the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm for parameter estima-
tion, which has a superlinear convergence rate (Luenberger
1984). Note that parameter estimation is especially chal-
lenging because the MAP objective function tends to be

plagued by multiple local and global maxima as well as sad-
dle points. To address this challenge, we developed a 5-step
multi-stage estimation algorithm, as shown below. The idea
is to generate a series of progressively more complicated es-
timation problems using the results of the previously solved
problem as an initial guess for the next more complicated
problem.

• Step 1: Let m = 0. Define an initial guess θ̂(1) for clus-
tering 1.

• Step 2: Let m = m+ 1.

• Step 3: Use the BFGS algorithm to estimate θ(m) using
θ̂(m−1), . . . , θ̂(1) as an initial guess by seeking a θ̂(m) that
maximizes:

p(θ(m)|Xn, θ̂
(m−1), . . . , θ̂(1)) =

p(Xn|θ(m), θ̂(m−1), . . . , θ̂(1))p(θ(m)|θ̂(m−1), . . . , θ̂(1))

p(Xn)
,

or equivalently, use the objective function in (2) to max-
imize p(Xn|θ(m))p(θ(m), θ̂(m−1), . . . , θ̂(1)) with respect
to θ(m), holding θ̂(m−1), . . . , θ̂(1) constant.

• Step 4: Go to Step 2 until m = z; Else go to Step 5.

• Step 5: Use the BFGS algorithm, initial guess
θ̂(1), . . . , θ̂(z), and the objective function in (2) to maxi-
mize:

p(θ(1), θ(2), . . . , θ(z)|Xn)

with respect to θ(1), .., θ(z).

Evaluation
Experimental Setup
Datasets. We employ six evaluation datasets that cover a
variety of clustering dimensions.

Two Newsgroups (TNG) consists of all the documents
from two sections of 20 Newsgroups, talks.politics
and sci.crypt.

Blitzer, Dredze, and Pereira’s (2007) book (BOOK) and
DVD datasets each contains 1000 positive and 1000 negative
customer reviews of books or movies, and can therefore be
used to evaluate our model’s ability to cluster by sentiment.
Since we desire that each dataset possesses at least two clus-
tering dimensions, we also manually annotate each review
with a subjectivity label that indicates whether it is “mostly
subjective” (where the reviewer mainly expresses her senti-
ment) or “mostly objective” (where the reviewer focuses on
describing the content of the book or the movie). Details of
the annotation process are described later in this subsection.

The MIX dataset is a 4000-document dataset consisting
of the 2000 BOOK reviews and the 2000 DVD reviews, as
described above. We can therefore cluster these reviews by
topic (i.e., book or DVD), sentiment or subjectivity.

Schler et al.’s (2006) MAN dataset contains 19,320 blog
posts. We randomly selected 1000 blog postings, half of
which were written by males and half by females. We can
therefore cluster these blog posts by the author’s gender.
Since the author’s age information is also available in each
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TNG Topic1
BOOK Sentiment, Subjectivity
DVD Sentiment, Subjectivity
MIX Topic2, Sentiment, Subjectivity
MAN Gender, Age
POL Political Affiliation, Policy

Table 1: Clustering dimensions for the six datasets.

blog post, we can also cluster them by age. To do so, we au-
tomatically generate a 2-way partitioning of the documents
by imposing an age threshold of 25. Specifically, the 932
documents written by bloggers aged below 25 are marked as
young, and the remaining 1068 are marked as old.

Our own POL dataset consists of 2000 political articles
written by columnists, 1000 of whom identified themselves
as Republicans and the remaining 1000 identified them-
selves as Democrats.1 Hence, we can cluster these articles
by the author’s political affiliation. We also create a sec-
ond clustering dimension by annotating each article as either
foreign or domestic, depending on the policy that the article
discusses. For example, the policy on the Iraq war is foreign,
whereas the policy on regulating the job market is domestic.

Table 1 shows the dimensions along which the documents
are annotated. Each of the eight distinct dimensions yields
a 2-way partitioning of the documents: (1) Topic1 (sci-
ence/politics); (2) Sentiment (positive/negative); (3) Sub-
jectivity (subjective/objective); (4) Topic2 (book/DVD); (5)
Gender (man/woman); (6) Age (young/old); (7) Political
affiliation (Democrat/Republican); and (8) Policy (domes-
tic/foreign).

Human annotation. As noted above, we need to annotate
the BOOK, DVD, and MIX datasets with respect to Subjec-
tivity and POL with respect to Policy.2 We had two com-
puter science graduate students independently annotate the
documents. For POL, we asked them to use commonsense
knowledge to annotate each document with respect to the
policy that the article discusses. If both foreign and domes-
tic policies are discussed in the text, we asked them to assign
the label based on the one that is discussed more frequently.
On the other hand, given a BOOK or DVD review, we asked
them to first label each of its sentences as subjective or ob-
jective; if a sentence contains both subjective and objective
materials, its label should reflect the type of material that ap-
pears more frequently. The review is then labeled as subjec-
tive (objective) if more than half of its sentences are labeled
as subjective (objective).

Document preprocessing. To preprocess a document, we
follow the standard procedure. We tokenize and downcase it,
remove stopwords, and represent it as a vector of unstemmed
unigrams. Also, following common tradition in high dimen-
sional data clustering (Huber 1985; Dasgupta 1999), we
project the data matrix into a lower dimensional subspace,
specifically by applying Singular Value Decomposition to

1These articles were chosen randomly among those written in
2006 from http://www.commondreams.org/archives.

2Note that the subjectivity labels for MIX can be derived from
BOOK and DVD.

the matrix and employing the top 25 singular vectors as our
projected subspace.
Evaluation metrics. We employ two evaluation metrics.
First, we report results for each dataset in terms of accuracy,
which is the fraction of documents for which the label as-
signed by our system is the same as the gold-standard label.
Second, following Kamvar, Klein, and Manning (2003), we
evaluate the clusters produced by our approach against the
gold-standard clusters using the Adjusted Rand Index (ARI)
(Hubert and Arabie 1985). ARI is the adjusted-for-chance
form of the Rand Index (Rand 1971), which computes the
pairwise accuracy given two partitions. ARI ranges from−1
to 1; better clusterings have higher values.

Performance of Three Baseline Algorithms
As baselines, we employ meta clustering (Caruana et al.
2006), GMM-EM, and Davidson and Qi’s (2007) algo-
rithm.3

Meta clustering produces multiple clusterings of a data
sample by running k-means multiple times, each time with
a random selection of seeds and a random weighting of fea-
tures (Caruana et al. 2006). We ran it 100 times and reported
in row 1 of Tables 2 and 3 the best accuracy and ARI ob-
tained for each dimension of each dataset. Although the best
results are reported, it performs poorly in general. The poor
performance can be attributed in part to the fact that k-means
is generally a weaker clustering algorithm than its more re-
cently developed counterparts.

GMM-EM is somewhat similar in spirit to meta cluster-
ing: we can use it to produce multiple clusterings of a data
sample by running it multiple times, each time with a ran-
dom selection of seeds. We employ EM for parameter es-
timation in GMM. For each dataset, we (1) run the system
z times to produce z different proposal clusterings; (2) find
the one-to-one mapping between the z proposal clusterings
and the gold standard clusterings that yields the highest ac-
curacy; and (3) report the accuracy and ARI of a proposal
clustering against the mapped gold standard clustering. In all
experiments, we set z to 5.4 The accuracy and ARI results,
averaged over three independent runs, are reported in row
2 of Tables 2 and 3. As can be seen, GMM-EM performs
well only along the Subjectivity dimension for all of the sen-
timent datasets (i.e., BOOK, DVD and MIX). Its relatively
poor performance can be attributed to the fact that the clus-
terings it produces for each dataset are similar to each other
despite being supplied with different initializations.

Davidson and Qi’s (2007) algorithm has a somewhat dif-
ferent goal than PMC: it is intended to be used as a semi-
supervised clustering algorithm. As mentioned in Related

3The experimental results for meta clustering and
Davidson and Qi’s system were obtained using the pub-
licly available implementations that we downloaded from
www.cs.cornell.edu/∼nhnguyen/metaclustering.htm and
www.cs.ucdavis.edu/∼davidson/constrained-clustering/CAREER/
CAREER.html respectively.

4This choice of z is motivated by one observation: since each
of our datasets can be clustered along two or three dimensions, we
hypothesize that a good multi-clustering model should be able to
generate most, if not all, of the clusterings when z is set to 5.
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TNG BOOK DVD MIX MAN POL
System Topic Sent. Subj. Sent. Subj. Topic Sent. Subj. Gend. Age Affil. Policy
Meta clustering 76.2 50.8 51.2 53.9 71.0 50.2 50.2 58.6 51.2 53.6 59.4 58.8
GMM-EM 79.1 50.3 67.4 53.3 72.2 50.7 52.1 69.5 51.8 52.8 55.1 57.1
Davidson & Qi — 50.9 55.7 51.2 59.6 50.5 51.2 57.8 50.5 50.9 50.5 51.2
PMC 72.3 59.1 61.5 57.1 61.7 64.8 60.5 63.5 63.0 56.5 64.6 62.2

Table 2: Results in terms of accuracy. The best result for each dimension is boldfaced.

TNG BOOK DVD MIX MAN POL
System Topic Sent. Subj. Sent. Subj. Topic Sent. Subj. Gend. Age Affil. Policy
Meta clustering 0.275 0.001 0.001 0.006 0.155 0.001 0.001 0.021 0.001 0.003 0.035 0.023
GMM-EM 0.304 0.001 0.117 0.004 0.187 0.001 0.002 0.144 0.001 0.001 0.010 0.008
Davidson & Qi — 0.001 0.006 0.001 0.020 0.001 0.001 0.020 0.001 0.001 0.001 0.001
PMC 0.237 0.032 0.050 0.020 0.049 0.087 0.044 0.071 0.067 0.015 0.086 0.058

Table 3: Results in terms of Adjusted Rand Index (ARI). The best result for each dimension is boldfaced.

Work, given a dataset with two clusterings, the algorithm as-
sumes that one of these clusterings is supplied (by a human)
as input and aims to produce the other clustering. Follow-
ing its intended use, for each dataset with clustering dimen-
sions i and j, we feed it with the gold-standard clustering
for dimension i and measure the quality of the clustering it
proposes against the gold-standard clustering for dimension
j. The same experiment is repeated with the roles of i and
j switched. As we can see from row 3 of Tables 2 and 3,
despite its access to gold-standard clusterings, it does not
perform any better than the other baselines.

Performance of the PMC Model
To obtain the results of our PMC model, we follow the same
evaluation procedure as conducted for GMM-EM. In these
investigations, we have chosen to focus on understanding
the role of only a subset of the distinctivity and parsimony
constraints, so we assume that (1) λησ and ληγ are zero, and

(2) λφµ and ληµ are one. We set σ(m)
j to 0.1 and γ(m)

j to 0.5,
keeping them constant during the learning process as the op-
timization is highly sensitive to slight perturbations to these
parameters. Moreover, we set σp to 0.01. As in GMM-EM,
we set z to 5. As BFGS optimization is sensitive to param-
eter initialization, we repeat the experiments three times for
each dataset and report the average results.

Results of PMC are shown in row 4 of Tables 2 and 3.
In comparison to the best baseline for each clustering di-
mension, PMC achieved the best result for 8 of the 12 di-
mensions. More importantly, it achieved stable performance
across different dimensions of a dataset. For example, for
the MIX dataset, PMC achieved accuracies of 64.8%, 60.5%
and 63.5% for the topic, sentiment and subjectivity dimen-
sions respectively, whereas the baselines obtained < 60%
accuracies on all three dimensions. Similar trends can be ob-
served for the ARI results.

As mentioned above, the primary reason why GMM-EM
performed poorly was that the clusterings it produced were
similar to each other. On the other hand, we hypothesize that
our PMC model does not have this problem, owing in part
to the design criterion of distinctivity.

MIX
K(1) K(2) K(3) K(4)

C1 C1 C1 C1

text watched mind relationship
knowledge music novel lives

death bought readers human
national episode uses wonderful

information version reader women
using wanted nature age
case show human view

C2 C2 C2 C2

films readers young disappointed
scene national features caught
reason ask military action
ending facts disc novel
script reader video mystery

absolutely destruction screen isn
comedy christ classic killer
Topic2 Subjectivity Topic2 Sentiment

Table 4: Top features representing the clustering
K(1), ..,K(4) for the MIX dataset. Each clustering
comprises two clusters, i.e., C1 and C2.

To better understand whether PMC indeed produces dis-
tinct clusterings, we show in Table 4 the top words represent-
ing the clusterings generated by PMC for the MIX dataset.
Specifically, PMC discovers four distinct clusterings K(1),
. . ., K(4) of the MIX dataset where each clustering con-
sists of two clusters, C1 and C2. For each clustering, the top
words are selected on the basis of their relative frequency of
occurrence in each cluster. The dimension labels in the last
row are manually determined by inspecting the top words.

Note that the most important words associated with the
clusters of one clustering are quite different from those as-
sociated with the clusters of another clustering. A closer ex-
amination of the results reveals that the same is true for the
remaining datasets with at least two clustering dimensions.
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This observation illustrates the idea that PMC is not biased
towards generating a particular type of clustering but rather
its performance is consistent with the design constraints em-
bedded within PMC. These constraints bias PMC to gener-
ate distinctive clusterings. Moreover, it is possible that the
top words generated for each clustering might be interpreted
as PMC’s “discovery” of new feature spaces, but additional
research is needed to thoroughly explore this idea.

Conclusions
We have presented PMC, a generative probabilistic model
for producing multiple clusterings of a data sample, demon-
strating how to incorporate as soft constraints three proper-
ties highly desired of a multi-clustering solution, namely dis-
tinctivity, quality, and parsimony. A probabilistic approach
to multi-clustering has a number of important advantages,
including (1) Bayesian decision rules for classifying data
points into clusters, (2) explicit specifications of probabilis-
tic modeling assumptions, and (3) the opportunity to exploit
Bayesian model selection criteria for selecting the most ap-
propriate multi-clustering objective function for a particu-
lar statistical environment. We showed that our PMC model
achieved more stable results along different dimensions of
a variety of text datasets in comparison to three existing
multi-clustering algorithms. Considering the fact that multi-
clustering is a challenging problem, we believe that the re-
sults obtained by PMC thus far are very promising. Equally
importantly, we believe that our probabilistic formulation
provides a fresh perspective on the multi-clustering problem
and sets the stage for further investigation.
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