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Abstract

Modeling visual saliency map of an image provides im-
portant information for image semantic understanding
in many applications. Most existing computational vi-
sual saliency models follow a bottom-up framework that
generates independent saliency map in each selected vi-
sual feature space and combines them in a proper way.
Two big challenges to be addressed explicitly in these
methods are (1) which features should be extracted for
all pixels of the input image and (2) how to dynami-
cally determine importance of the saliency map gen-
erated in each feature space. In order to address these
problems, we present a novel saliency map computa-
tional model based on tensor decomposition and recon-
struction. Tensor representation and analysis not only
explicitly represent image’s color values but also im-
ply two important relationships inherent to color image.
One is reflecting spatial correlations between pixels and
the other one is representing interplay between color
channels. Therefore, saliency map generator based on
the proposed model can adaptively find the most suit-
able features and their combinational coefficients for
each pixel. Experiments on a synthetic image set and
a real image set show that our method is superior or
comparable to other prevailing saliency map models.

Introduction
It is well known that primate visual system employs an atten-
tion mechanism that focuses on salient parts based on image
itself or relevant visual tasks. Detecting and extracting these
salient regions is a fundamental problem in computer vision,
because it can help image semantic understanding in many
applications, such as adaptive content delivery and region-
based image retrieval(Itti, Koch, and Niebur 1998), etc.

Implicit issue in this problem is to compute saliency
value for each pixel that represents the departure from its
neighboring in terms of some kinds of low-level features.
Therefore, two essential questions have to be addressed: (1)
finding those features with good discriminating power; and
(2) determining each feature’s importance in combination
(Meur et al. 2006)(Koch and Ullman 1985). Prior researches
often consider several low level color or texture features,
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such as gray intensity, color channel and local shape orien-
tation, separately. They firstly calculate the saliency values
of each pixel in these different feature spaces; then com-
bine them following a prefixed fusion model (Itti, Koch, and
Niebur 1998)(Gopalakrishnan, Hu, and Rajan 2009)(Liu et
al. 2007)(Valenti, Sebe, and Gevers 2009)(Harel, Koch, and
Perona 2006) . These predefined features and combination
strategies may obtain good performances for some images or
certain parts of an image; but cannot always be useful for all
images or pixels in some complex situations. In these cases,
local-feature selection and adaptive-combination for each
pixel can provide significant advantages for saliency map
computation. In addition, just as what Hoang et al (Hoang,
Geusebroek, and Smeulders 2005) and Shi et al (Shi and
Funt 2007) have shown that, for applications on color im-
ages, using color and texture features in combination is bet-
ter than using them separately.

According to the analysis above, we propose a new
saliency map model based on tensor analysis. Tensor pro-
vides an efficient way to represent color and texture in com-
bination. Its decomposition and reconstruction can not only
explicitly represent image’s color values into a unit, rather
than 3 separate channels, but also imply the spatial interac-
tion within each of the three color channels as well as the in-
teraction between different channels. In the proposed model,
the color image is organized as a tensor structure, and the
first several bases from tensor decomposition of neighbor-
ing blocks of each pixel are viewed as the selected features
for its saliency computation. These bases can reveal most
significant information inherent in the surrounding environ-
ments, the projection of the central block on these bases is
viewed as the combination weights of selected features, and
the reconstruction residual error after recovering is set as
the pixel’s saliency value, since it implies whether the pixel
includes the similar important features to its neighbors in
terms of color and local texture.

Therefore, compared with other existing saliency map
computations, our proposed algorithm has two major contri-
butions: (1) The features used for each pixel’s saliency com-
putation are adaptively determined by tensor decomposition;
(2) The combinational coefficients for all selected features
are not predefined, but are gained from tensor reconstruc-
tion dynamically. Experiments on both synthetic image set
and real-world image set show that our method is superior or
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comparable to other prevailing saliency map computations.

Related Work
Visual saliency map analysis can be dated back to the earlier
work by Itti et al (Itti, Koch, and Niebur 1998), in which the
authors give out a saliency map by applying the “Winner-
talk-all” strategy on normalized center-surround difference
of three important local features: colors, intensity and ori-
entation. Then the prefixed-linear fusing strategy is used to
combine values in these three feature spaces to obtain the fi-
nal saliency map. Meur et al (Meur et al. 2006) build up a vi-
sual attention model based on a so-called coherent psychovi-
sual (psychological-visual) space that combines the globally
visual features (intensity, color, orientation, spatial frequen-
cies, etc) of the image. Liu et al (Liu et al. 2007) feed Con-
ditional Random Filed (CRF) technique with a set of multi-
scale contrast, center-surround histogram and color spatial-
distribution features to detect salient objects. Valenti et al
(Valenti, Sebe, and Gevers 2009) combine color edge and
curvature information to infer global information so that the
salient region can be segmented from background. Hasel et
al (Harel, Koch, and Perona 2006) apply graph theory and al-
gorithm into saliency map computation by defining Markov
chain over a variety of image maps extracted from differ-
ent global feature vectors. The region-based visual atten-
tion model proposed by Aziz et al (Aziz and Mertsching
2008) combines five saliency maps on color contrast, rel-
ative size, symmetry, orientation and eccentricity features
through a weighted average to obtain the final saliency map.
More lately, Hae et al (Hae and Milanfar 2009) propose a
bottom-up saliency detection method based on a local self-
resemblance measure. Hou et al (Hou and Zhang 2007) in-
troduce spectral residual and build up salient maps in spa-
tial domain without requiring any prior information of the
objects. Achanta et al(Achanta et al. 2009) point out that
many existing visual saliency algorithms are essentially fre-
quency bandpass filtering operations. They also propose a
frequency-tuned approach (Achanta et al. 2009) in saliency
map computation based on color and luminance features.
Nearly all the aforementioned methods need to predefine
features spaces and fusing strategies.

Tensor and Tensor Decomposition
Before introducing the concept of tensor, we define some
notations used in this paper (Kolda 2006). Tensors of order
three (cubic) or higher are represented by script letters,X .
Matrices (second-order tensors) are denoted by bold capital
letters, A. Vectors (first-order tensors) are denoted by bold
lowercase letters,b. Scalars (zero-order tensors) are repre-
sented by italic letters, i.

Tensor Products
Tensor, a multiple-dimensional array or N -mode matrix, is
an element of the tensor product of N vector spaces, each
of which has its own coordinate system. A tensor with or-
der of N can be denoted as: X ∈ RI1×I2...×IN . There
are several kinds of tensor products. A special case is the
n-mode product of tensor X and a matrix A, denoted as

X×nA. Let X be of size I1 × I2... × IN and let A be of
size J1 × J2. The n-mode multiplication requires In = J2.
The result of X×nA is a tensor with the same order as
X , but with the size In replaced by J1. Suppose that A
is of size J × In, and Y = X×nA, thus Y is of size
I1 × I2 × ... × In−1 × J × ... × IN . The elements of Y
are defined as follows:

(Y)i1...i2jin+1...iN = (X×nA)i1...i2jin+1...iN

=
Tn∑
in=1

(X )i1...iN × (A)jin
. (1)

Given a tensor X ∈ RI1×I2...×IN and the matrix D ∈
RJn×In , E ∈ RKn×In , and G ∈ RJm×Im ,m 6= n . The
n-model product has the following properties:

(X×nD)×mG = (X×mG)×nD = X×nD×mG. (2)

(X×nD)×nE = X×n(E •D). (3)

Tensor Decomposition
Tensor decompositions are higher-order analogues of Singu-
lar Value Decomposition (SVD) of a matrix and have proven
to be powerful tools for data analysis (Vasilescu and Ter-
zopoulos 2002)(Savas and Elden 2007). The Higher-Order
Singular Value Decomposition (HOSVD) (Kolda and Bader
2009) is a generalized form of the conventional matrix sin-
gular value decomposition (SVD). An N -order tensor X is
an N -dimensional matrix composed of N vector spaces.
HOSVD seeks for N orthogonal matrices U1,U2, ...,UN

which span these N spaces, respectively. Consequently, the
tensor X can be decomposed as the following form:

X = Z×1U1×2U2...×NUN , (4)

where Z = X×1U
T
1×2U

T
2 ...×NUT

N , which denotes the
core tensor controlling the interaction among the mode ma-
trices U1,U2, ...,UN . Two popular solutions used in tensor
decomposition are CANDECOMP/PARAFAC (Kolda and
Bader 2009) and Tucker decompositions model (Kolda and
Bader 2009).

Visual Saliency Map from Tensor Analysis
Overview of Proposed Method

In the proposed model, image is represented by tensors. We
divide the image into blocks with w × w pixels and use 3-
order tensor to represent color values in RGB channels of
each block, as B ∈ Rw×w×c, wherew is the row and column
size of each block, and c is the dimension of the color space.
Since we always use RGB space in this paper, so c = 3.
For any pixel with its location p, the block centered on it is
called ‘Center Block’ (CB) and the overlapped and directly
adjacent blocks are named as ‘Neighbor Blocks’(NB). An
example is shown in Figure 1.

Here each block shown in Figure 1, CB or NB, is a 3-
order tensor, and all neighbor blocks can be assembled into
higher-order tensor. The basic idea to find the saliency value
of pixel at location p is as follows: Decomposition of 4-
order tensor packaged from 16 neighbor blocks (NBs) can
be used to obtain most representative features embedded in
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Figure 1: The center block (CB) of pixel p has 16
overlapped neighbor blocks with w/2 overlapping pixels:
NB1, NB2, ..., NB16. The size of each block is w × w.

the surroundings. Then we project the central block (CB)
on these bases and reconstruct the central block using these
bases. The reconstruction residual error, which can indicate
the difference between the center block and its neighbors in
terms of color and texture,is set as its saliency output.

Saliency Map from Tensor Reconstruction
In this section, we detail the algorithm for calculating visual
saliency value of each pixel from an image. The first stage
is to extract the pixel’s neighboring blocks and use a 4-order
tensorM ∈ Rb×w×w×c to represent their color and texture
pattern, where b = 16 is the number of neighboring blocks
here.

The second stage is to apply higher-order Tucker decom-
position(Kolda and Bader 2009)(Kolda 2006) on the 4-order
tensor and decompose it into different subspaces, as

M = Z×1Ublock×2Urow×3Ucolumn×4Ucolor, (5)

where the core tensor Z reflects the interactions among 4
subspaces: Ublock spans the subspace of block parameter,
Urow spans the subspace of each block row’s parameter and
includes correlation between any two rows along all blocks,
so each eigenvector represents different texture basis along
y direction. Similarly, Ucolumn spans the subspace of each
block column’s parameter and includes correlation between
any two columns along all blocks, so each eigenvector repre-
sents different texture basis along x direction. Ucolor spans
the subspace of color parameter and each eigenvector repre-
sents one kind of linear transformation of R,G,B color val-
ues.

Since Ublock only represents the discrimination among all
neighboring blocks, the decomposition output along this or-
der will not be taken into account in the following analysis.
So we keep its dimension to be 16 × 16. For the remain-
ing three orders, we take first dr eigenvectors of Urow and
Ucolumn (respectively denoted as Udr

row and Udr
column) that

contain most important texture energy along y or x direction
separately. We also take first dc most important linear trans-
formations of the Ucolor eigenvectors (denoted as Udc

color)
to emphasize color feature variations. Consequently, the di-
mension of tensorM is actually reduced to b×dr×dr×dc.
An example of this tensor decomposition is given in Figure
2.

Figure 2: An example envision of 4-order Tucker decompo-
sition viewed from 1st order: ‘Block’.

The next step is to represent the center block at location
p as a 3-order tensor as T ∈ Rw×w×c, then project it onto
Udr
row, Udr

column and Udc
color, the coefficient is represented as

a 3-order tensor Q ∈ Rdr×dr×dc; the reconstructed tensor
T R can be calculated as:

T R = Q×1U
dr
row×2U

dr
column

×3U
dc
color

T R = T ×1

(
Udr
row

)T×2

(
Udr

column

)T×3

(
Udc

color

)T
×1U

dr
row×2U

dr
column

×3U
dc
color

T R = T ×1

(
Udr
row

(
Udr
row

)T)×2

(
Udr

column

(
Udr

column

)T)
×3

(
Udc

color

(
Udc

color

)T)
.

(6)
The final step is to calculate the reconstruction residual error
E(p) at pixel p as:

E(p) =

√√√√ w∑
i=1

w∑
j=1

3∑
k=1

(
Ti,j,k − T Ri,j,k

)2
. (7)

The result E(p) is used to be the saliency value of the pro-
cessed pixel.

In this way, we approximate center block’s color and tex-
ture pattern by the reconstruction using the learned patterns
of neighbors. Obviously, if the central block has similar fea-
tures with its neighbors in terms of color and local tex-
tures, the principal tensor components gained from neighbor
blocks can represent major variance of center block so that
the reconstruction error will be small, otherwise the recon-
struction error will be higher and the pixel will have larger
saliency value.

An example is shown in Figure 3. The center block has
a different texture although its color is unchanged. When
we process the center pixel inside the part and calculate its
saliency value, we will firstly extract 16 neighboring blocks
and get the 3 eigenvectors along rows, 3 eigenvectors along
columns and 1 eigenvector along color dimension. All of
these 7 eigenvectors are expressed as 3-order tensor and
viewed as the selected features for the center pixel. Next, we
project the central block’s 3-order tensor and calculate the
corresponding coefficients. The final one is to get the recon-
struction value by back-projection. Now we can find that the
recovery (Figure 3(C)) is far away from original features be-
cause texture bases derived from its neighboring are distinct
from that inherent in center block, so the difference between
them inevitably reflects a large saliency value. This example
only shows the potential of our method; rigorous tests are
presented in the following sections.
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Figure 3: (A) Input Image (B) center block (C) the recon-
struction result (D) saliency map output.

Pyramid Saliency Map Calculation
The pyramid architecture offers a framework for image
saliency map calculation with increased solution quality.
The image pyramid is a multiresolution representation of an
image constructed by successive filtering and sub-sampling.
It allows scale selection appropriate resolution for the task
at hand.

In this paper, we use a pyramid with L different levels,
denoted as I1, I1, ..., IL, for the saliency map calculation
; where I1 is the original image and IL is the lowest res-
olution image. The pyramid level will be doubled at each
step. The value of L is determined to be sure that the im-
age’s width and height of IL cannot be less than 64 pixels.
The normalized saliency map at each level is resized to the
one with same size of original image. And the values of all
saliency maps at different levels are averaged to gain the fi-
nal saliency map, as:

SM(p) =
1

L

∑L

l=1
Êl(p), (8)

where is SM(p) the final saliency value of pixel p; Êl(p)
is the normalized saliency value of pixel p at the lth level
image.

Experiments
We implement the proposed saliency map computation
model in MATLAB 7.7 and compare it with other five
prevailing algorithms, Itti’s method (ITTI) (Itti, Koch, and
Niebur 1998), Hou’s method (HOU)1 (Hou and Zhang
2007), Hae’s method (HAE)2 (Hae and Milanfar 2009),
Graph-based visual saliency algorithm (GBVS)3 (Harel,
Koch, and Perona 2006) and Frequency-tuned Salient Re-
gion Detection algorithm (FS)4 (Achanta et al. 2009), on
both synthetic and real image data sets. The tensor tucker
decomposition code used in the paper can be downloaded
from (http://csmr.ca.sandia.gov/ tgkolda/TensorToolbox/).

Data Set and Error Measures
Firstly, we focus on saliency map computation from the per-
spective of texture analysis using a synthetic image set (re-
ferred to as Synthetic set). This dataset contains 100 syn-
thetically or naturally textual images with manually salient

1http://www.its.caltech.edu/∼xhou/
2http://users.soe.ucsc.edu/∼rokaf/SaliencyDetection.html
3http://www.klab.caltech.edu/∼harel/share/gbvs.php
4http://ivrg.epfl.ch/supplementary material/RK CVPR09/index.html

Figure 4: Example images and corresponding binary bound-
ing box-based ground truth: (A)(B)in Synthetic set, (C)(D)
in MS set.

patch. In order to construct this image set, we collect 100 im-
ages with different types of textures. For each image, we ran-
domly extract out a small patch with size of nearly 40× 40.
Then we change the texture orientation or texture grain size
in the image through rotation or zooming operation. The fi-
nal stage is to paste the patch back in the original image at
a random position. Now the patch is marked as ground truth
region of saliency map. Some examples of synthetic images
are shown in Figure 4(A)(B). The challenge of synthetic im-
ages is that all salient regions are caused only by texture
change without color change.

The second one is from Microsoft Visual Salient image
set (referred to as MS set) (Liu et al. 2007) that contains
5000 high quality images. Each image in MS set is labeled
by 9 users requested to draw a bounding box around the most
salient object (according to their understanding of saliency).
For each image, all users’ annotations are averaged to create
a saliency map at location p, S = {S(p)|S(p) ∈ [0, 1]} as
follows:

S(p) =
1

M

M∑
m=1

amp , (9)

where M is the number of users and amp are the pixels an-
notated by user m. However, Achanta et al (Achanta et al.
2009) point out that the bounding box-based ground truth
is not accurate. They pick out 1000 images from the orig-
inal MS set (referred to as 1000 MS subset) and create an
object-contour based ground truth, the corresponding binary
saliency maps are also given out. An example is shown in
Figure 4(C)(D).

Given a ground truth saliency map S(p) and the estimated
saliency map SM(p) of an image, the Precision (Pre), Re-
call (Rec), and F measure, which are formulated in Equa-
tion (10), are used to evaluate the performance of each algo-
rithm. The same as previous work (Liu et al. 2007)(Valenti,
Sebe, and Gevers 2009), α is set to be 0.5.

Pre =

∑
p
S(p)SM(p)∑
p
SM(p)

, Rec =

∑
p
S(p)SM(p)∑

p
S(p)

,

Fα = (1+α)×Pre×Rec
(α×Pre+Rec) ,

(10)

Parameter Selection
The performance of tensor analysis based saliency map
computation depends on the number of eigenvectors along
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Figure 5: Saliency map examples from synthetic image set.

each order. Here we define the block size asw = 7, and each
block has 16 overlapped neighbor blocks. We let dr be cho-
sen from {1, 3, 5, 7}, and dc to be 1, 2 or 3. To ensure that
the data set used for parameter selection and performance
evaluation are truly independent, we use 4000 images from
MS data set that has no intersection with 1000 MS subset to
find the optimal basis number settings. Every possible val-
ues of dr and dc from candidate settings. For each candidate
setting, we compute a saliency map for each image and the
F measure is used to represent the performance for that can-
didate setting. The setting leading to the best performance is
then chosen as final parameter setting. All of the following
experiments are done based on the chosen parameter setting.
We find experimentally that the best choice is dr = 3 and
dc = 1, meaning that the method relies on the first three ba-
sis of texture characteristics, U3

row and U3
column, and one

special linear combination of color, U1
color.

Experiments on Synthetic Texture Data set

In this experiment, we work on the synthetic texture data
set. We firstly compare our saliency computation method
with others using original saliency maps without any fur-
ther processing. For each saliency map generated by differ-
ent algorithms, we normalize its values to be between [0,
1], represented as SM(p), by min-max linear normalization
method. The precision (Pre), recall (Rec) and F measure
values from each method are calculated and compared in
Figure 6(A). The results show that the proposed algorithm
outperforms all other algorithms in this set.

We then compare all of these algorithms’ outputs based on
binary saliency map. For a given saliency map with saliency
values in the range [0, 1], the simplest way to obtain a binary
mask for the salient object is to threshold the saliency map
at a threshold T within [0, 1]. The saliency value will be set
as 1 if SM(p) ≥ T , will otherwise be set as 0. We follow
a favorite method to decide the value of T adaptively (Hou

and Zhang 2007)(Achanta et al. 2009):

T =
2

W ×H
∑
p

SM(p), (11)

where W , H are the width and height of the image, respec-
tively. The value of T actually is two times the mean saliency
of the image. The precision (Pre), recall(Rec)and F mea-
sure values are evaluated in Figure 6(B). Moreover, a few
saliency maps from different algorithms are given out in Fig-
ure 5.

All the results in Figure 5 and 6 show that our tensor
based algorithm outperforms all other algorithms in textural
salient region detection. It proves that the tensor decompo-
sition can find rich textural information implicitly for detec-
tion task in despite of no obvious textural feature extraction.
The FS algorithm has lowest performance due to the fact
that it nearly takes no textual information into account. The
results in Figure 5 show that other methods have some diffi-
culties in getting correct saliency maps for these images, but
our algorithm obtains good results. Especially for the salient
region caused by textural grain change(Figure 5(E)), nearly
no other algorithm can produce correct results, but saliency
maps generated by our algorithm are very satisfying.

Experiments on 1000 MS Subset
The same as the previous experiment, we initially evalu-
ate all algorithms’ performances through comparing each
method’s output with original saliency map. The comparison
results are shown in Figure 7(A). It tells us that the proposed
algorithm is better than HOU, ITTI, HAE as well as GBVS
and comparable to FS method. Its precision is 42.6%, recall
is 38.1% and F measure is 41.0% respectively. Although
HOU method has higher precision value, it has lower recall
value. By comparison, our algorithm has both high preci-
sion and high recall. This result indicates that our algorithm
not only promotes the salient region, but also restrains those
unsalient regions.
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Figure 6: Comparison with existing visual saliency algo-
rithms on synthetic set: (A)in terms of original saliency map
(B)in terms of binary saliency map

We also create the binary saliency maps and compare
them with ground-truth. From the results in Figure 7(B),
we can find that our method is comparable to other pre-
vailing solutions. In order to intuitively compare saliency
maps generated by different methods, we also give out some
saliency map examples in Figure 8. They tell us that HOU
method pays more attention on edges and fails to extract
salient object’s inner region. The FS algorithm is based on
the difference between an image and its average image. It
inevitably fails if salient object occupies major part of im-
age with same color (Figure 8(C)) or salient object has sim-
ilar color with background (the white cloth in Figure 8(C)).
Obviously, although ITTI, HAE and GBVS can obtain good
saliency maps on Figure 8(A), they give top background part
of the image high saliency values incorrectly. By compari-
son, our method avoids this issue and assigns high saliency
values only to those pixels in the salient region. Generally,
the saliency maps from our algorithm, in contrast, can get
high saliency values on both object’s edges and inner re-
gions.

Finally, the saliency map is also employed in salient ob-
ject segmentation and extraction. The segmentation scheme
used in this paper follows the one used in (Valenti, Sebe, and
Gevers 2009). It firstly uses mean-shift algorithm to divide
original images into many regions.Then an adaptive thresh-
old T that is as two times the mean saliency (Equation 11),
is also used to detect proto-objects. The Regions with aver-
age saliency values greater than T are viewed as salient, and

Figure 7: Comparison with existing visual saliency algo-
rithms on 1000 MS subset: (A)in terms of original saliency
map (B)in terms of binary saliency map

their values in binary saliency object image are set as ‘1’,
while the other parts are set as ‘0’. The results in Figure 8
show that the extracted salient objects based on our saliency
maps are pleasing. In particular, although it is very difficult
to pick out the entire salient objects from Figure 8 (C) and
(D), our algorithm can produce satisfied results.

Conclusion
Most existing computational visual saliency models follow
a bottom-up framework that generates independent saliency
map in each selected visual feature space and combines them
in a predefined way. In this paper, the tensor representation
and analysis of color image is introduced for saliency map
computation. Compare to the existing bottom-up methods,
two major advantages of our proposed algorithm can be ob-
tained: (1) Considering and processing any image’s color
and local texture as a single entity; and (2) Using tensor de-
composition to implicitly find the most important features
for each pixel locally rather than explicitly select and de-
fine low level features used for all pixels. The power of the
proposed method is demonstrated by experimental results in
two challenge image sets.
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