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Abstract

Coordination in mixed agent-human environments is an
important, yet not a simple, problem. Little attention has
been given to the issues raised in teams that consist of
both computerized agents and people. In such situations
different considerations are in order, as people tend to
make mistakes and they are affected by cognitive, so-
cial and cultural factors. In this paper we present a novel
agent designed to proficiently coordinate with a human
counterpart. The agent uses a neural network model that
is based on a pre-existing knowledge base which allows
it to achieve an efficient modeling of a human’s deci-
sions and predict their behavior. A novel communica-
tion mechanism which takes into account the expected
effect of communication on the other member will al-
low communication costs to be minimized. In extensive
simulations involving more than 200 people we investi-
gated our approach and showed that our agent achieves
better coordination when involved, compared to settings
in which only humans or another state-of-the-art agent
are involved.

Introduction
As agent technology becomes increasingly more prevalent,
agents are deployed in mixed agent-human environments
and are expected to interact efficiently with people. Such set-
tings may include uncertainty and incomplete information.
Communication, which can be costly, might be available for
the parties to assist in obtaining more information in order
to build a good model of the world. Efficient coordination
between agents and people is the key component for turn-
ing their interaction into a successful one, rather than a fu-
tile one. The importance of coordination between agents and
people only increases in real life situations, in which uncer-
tainty and incomplete information exist (Woods et al. 2004).
For example, Bradshaw et al. (2003) report on the problems
and challenges of the collaboration of humans and agents
on-board the international space station. Urban search-and-
rescue tasks pose similar difficulties, revealed, for example,
in the interaction between robots and humans during the
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search and rescue operations conducted at the World Trade
Center on September 11, 2001 (Casper and Murphy 2003).

Teamwork has been the focus of abundant research in
the multi-agent community. However, while research has
focused on decision theoretic framework, communication
strategies and multi-agent policies (e.g., (Roth, Simmons,
and Veloso 2006)), only some focus has been on the issues
raised when people are involved as part of the team (van
Wissen et al. 2012). In such situations different considera-
tions are in order, as people tend to make mistakes and they
are affected by cognitive, social and cultural factors (Lax
and Sebenius 1992). In this paper we focus on teamwork be-
tween an agent and a human counterpart and present a novel
agent that has been shown to be proficient in such settings.

Our work focuses on efficient coordination between
agents and people with communication costs and uncer-
tainty. We model the problem using DEC-POMDPs (De-
centralized Partially Observable Markov Decision Process)
(Bernstein et al. 2002). The problem involves coordination
between a human and an automated agent, having a joint re-
ward (goals), while each has only partial observations of the
state of the world. Thus, even if information exists, it only
provides partial support as to the state of the world, making
it difficult to construct a reliable view of the world without
coordinating with each other.

While there are studies that focus on DEC-POMDPs,
most of them pursue the theoretical aspects of the multi-
agent facet but do not deal with the fact that people can
be part of the team (Doshi and Gmytrasiewicz 2009; Roth,
Simmons, and Veloso 2006). Our novelty lies in introducing
an agent capable of successfully interacting with a human
counterpart in such settings. The agent is adaptable to the
environment and people’s behavior, and is able to decide, in
a sophisticated manner, which information to communicate
to the other team member, based on the communication cost
and the possible effects of this information on its counter-
part’s behavior.

More than 200 people participated in our experiments in
which they were either matched with each other or with au-
tomated agents. Our results demonstrate that a better score
is achieved when our agent is involved, as compared to
when only people or another state-of-the-art agent (Roth,
Simmons, and Veloso 2006) that was designed to coordi-
nate well with multi-agent teams are involved. Our results
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also demonstrate the importance of incorporating a profi-
cient model of the counterpart’s actions into the design of
the agent’s strategy.

Related Work
In recent years several aspects of human-agent cooperation
have been investigated. For example, the KAoS HART is a
widely used platform for regulating and coordinating mixed
human-agent teams, where a team leader assigns tasks to
agents and the agent performs the action autonomously
(Bradshaw et al. 2008). While in KAoS HART the agent is
not performing any actions, Kamar et al. (2009) described
settings in which an agent proactively asks for information
and they tried to estimate the cost of interrupting other hu-
man team members. Rosenthal et al. (2010) described an
agent that receives tasks, and if it expects to fail, it can
ask for information or delegate sub-tasks. Sarne and Grosz
(2007) reason about the value of the information that may be
obtained by interacting with the user. Many of the aforemen-
tioned approaches do not consider how their actions may
conflict with the actions of other team members. In a differ-
ent context, Shah et al. (2011) showed that the coordina-
tion of a mixed human-agent team can improve if an agent
schedules its own actions rather than waiting for orders. Un-
like our approach, their agent does not employ a model to
predict the human behavior, but it can adapt if the human
partner deviates from optimal behavior. In addition, they are
more concerned with timing coordination than with action
coordination.

Zuckerman et al. (2011) improved coordination with hu-
mans using focal points. Breazeal et al. (2008) showed how
mimicking body language can be used by a robot to help hu-
mans predict the robot’s behavior. Broz et al. (2008) stud-
ied the POMDP model of human behavior based on human-
human interaction and used it to predict and adapt to hu-
man behavior in environments without communication. We,
however, focus on the problem of improving coordination
between an agent and people by means of shared obser-
vations. The addition of communication only increases the
challenge, making the adaptation of their model far from
straightforward.

Another related approach is human-aware planning. The
methods of human-aware approach are designed for robot
that are meant to work in background. In these cases it is
assumed that the humans’ agenda (tasks) is independent of
the task of the robot and has a higher priority. Therefore the
robot is not supposed to influence these plans. For exam-
ple, Cirillo et al. (2010; 2012) describe an agent that gen-
erates plans that take into account the expected actions of
humans. Tipaldi et al. (2011) use spatial Poisson process
to predict the probability of encountering humans. While
human-aware approaches adjust to human behavior they do
not consider their ability to effect that behavior. Moreover,
in our settings the robot has private information which is rel-
evant to the success of both it and its human counterpart.

With respect to DEC-POMDPs, over the past decade sev-
eral algorithms have been proposed to solve them. The tra-
ditional DEC-POMDP (Bernstein et al. 2002) models an en-
vironment where team members cannot communicate with

each other. Solving DEC-POMDP is an NEXP inapprox-
imable problem, thus some researchers have suggested dif-
ferent methods for finding optimal solutions (Szer, Charpil-
let, and Zilberstein 2005), while others have tried to arrive
at the solution using value iteration (Pineau, Gordon, and
Thrun 2003; Bernstein, Hansen, and Zilberstein 2005). Sev-
eral other approaches propose using dynamic programming
to find approximated solutions (Szer and Charpillet 2006;
Seuken and Zilberstein 2007).

In recent years, a line of work has been suggested which
incorporates communication between the teammates. For
example, Roth et al. (2006) described a heuristic ap-
proach for minimizing the number of observations sent if the
agent chooses to communicate. They present a DEC-COMM-
SELECTIVE (DCS) strategy which calculates the best joint-
action based on the information known to all team members
(observations communicated by team members and com-
mon knowledge). The agent then follows the assumption
that the other team members will follow the same strategy.
This approach ensures coordination when all team members
use the same strategy. However, in cases where the agent’s
teammates do not follow the same strategy, the actions cho-
sen by them may conflict with the actions which the agent
considers optimal. Our agent takes this into consideration,
and based on a model of its counterpart, tries to coordinate
its actions with the predicted actions of its counterpart.

Problem Description
We consider the problem of efficient coordination with com-
munication costs between people and intelligent computer
agents in DEC-POMDPs. We begin with a description of
the general problem and continue with details of the domain
we used to evaluate our agent.

Coordination with Communication Costs
A DEC-POMDP (Bernstein et al. 2002) models a situation
where a team of agents (not necessarily computerized ones)
has a joint reward (the same goals), and each member of the
team has partial observations of the state of the world. The
model separates the resolution of the problem into time steps
in which the agents choose actions simultaneously. These
actions can have deterministic or non-deterministic effects
on the state. Following these actions, each team member pri-
vately receives an additional observation of the world state.
The state transition and the joint reward function are depen-
dent on the joint actions of all agents. In most cases, the re-
ward function cannot be factorized to independent functions
over the actions of each agent (such as the sum of rewards
for each action). Therefore, the team members must reason
about the actions of other teammates in order to maximize
their joint rewards. Formally, the model can be described as
a tuple 〈α, S, {Ai}, T, {Ωi}, O,R, γ,Σ〉, where α denotes
the team’s size (in our settings α = 2), S denotes the set of
all distinct world states, Ai is the set of all possible actions
that agent i can take during a time step (note that all states
and transitions are independent of time) such that A is the
set of all possible joint actions, that is A1 × · · · × Aα. T is
the transition function T : S × A × S → <, which speci-
fies the probability of reaching a state based on the previous
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state and the joint-action. Ωi denotes the possible observa-
tions that agent i can receive in a single time step, such that
Ω is all possible joint observations Ω1 × · · · × Ωα. O is the
observation function O : S × A × Ω → < which speci-
fies the probability of obtaining a joint observation given the
preceding state and the joint-action. LetR denote the reward
function R : S × A → < based on a joint action in a given
state. Finally, γ is the discount factor applied at every time
step, that is, given, s1, s2 ∈ S, a ∈ A the actual reward at a
given time step t is γt ·R(s1, a, s2).

As we allow communication capabilities, we also define
Σ as the alphabet of the message so that each σ ∈ Σ is a
type of observation and Σ∗ =

⋃
Ωi ∪ {ε}. Since the com-

munication incurs a cost, we also use CΣ to denote the cost
function for sending a message CΣ : Σ∗ → <.

In addition, we use the notion of belief, which represents
the probability of each state being the correct world state ac-
cording to the agent’s belief. Formally, a belief b is a proba-
bility distribution vector such that for each s ∈ S, b(s) is the
probability that s is the correct world state and

∑
s∈S

b(s) = 1.

We focus on POMDPs in which the team consists of two
agents (α = 2) which are able to communicate with each
other (e.g., (Roth, Simmons, and Veloso 2006)). As commu-
nication is costly, we limit the communication messages to
include only self observations. This can also be supported
in real settings where limitations occur to prevent sharing
additional information which can breach the integrity of the
team members (e.g., surrendering their locations). By shar-
ing their observations, the team members can avoid uncoor-
dinated actions caused by contradictory private knowledge,
allowing them to build a coherent and concise view of the
world states faster.

A naı̈ve approach for team communication is sharing all
information among team members. Then, finding the opti-
mal joint action becomes a simple POMDP problem that
each team member can solve in parallel. However this solu-
tion is only optimal if two assumptions hold. First, that there
is no cost associated with communication. Second, that all
team members consider the same joint actions to be optimal
(by using the same POMDP policy). As this is hardly the
case in real settings, existing agents might fail when matched
with people. Our agent’s design takes these considerations
into account in order to achieve proficient interaction with
people.

Serbia/Bosnia Domain
To validate the efficacy of our agent, we chose the Ser-
bia/Bosnia domain, which was first introduced by Roth et
al. (2006)1 and offered as a benchmark for evaluation of
communication heuristics in multi-agent POMDPs. In this
domain, two paratroopers are situated in one of two possible
5 × 5 grid worlds. Each world has a different goal square
– (5, 5) or (2, 4) – which represents their extraction point,
depending on whether they are located in Serbia or Bosnia,
respectively. Each of the team members is aware of the loca-

1We used slightly different titles and parameters in our experi-
ments for the sake of simplicity.

tion of the other member in the grid. Yet they do not know in
which world grid they are located (be it Serbia or Bosnia). In
each time step each member can move either north, south,
east or west. The agent can also choose to stop or send a
signal. If both team members choose to signal in the cor-
rect goal position (that is, the goal square in the world grid
in which they are located) at the same time step, the team is
given a reward of 120 points. If only one team member sends
a signal, both signal while in different grid squares or both
signal in the wrong goal square, they receive a penalty of
−120 points. Regardless of the position, as soon as at least
one team member signals, the game ends.

As the agents move they can observe their surroundings
(which is saved as private information), thus obtaining new
private observations that can help increase their certainty
with respect to the correct world grid in which they are
situated. The information obtained is one of four types of
landscapes: plain, forest, lake and waterfall. Although all
four landscapes exist in both states, Bosnia is characterized
with more water landscapes than Serbia, therefore agents are
more likely to see a lake or a waterfall in Bosnia. In Serbia,
on the other hand, an agent is more likely to see a plain or
a forest. The probability of seeing each landscape depends
only on whether the team is in Serbia or Bosnia, and not
on the current grid position in which the agent is located.
Each team member can share its observations (e.g., “forest”)
with a given communication cost of −2. Sharing informa-
tion can help the team reach a swift conclusion about the
current world. Due to restrictions, applied also in real set-
tings (such as security domains or military operations), the
communication is restricted solely to observations, thereby
prohibiting the exchange of strategy related information or
decisions. Each movement also costs −2. In addition, a dis-
count factor of γ = 0.9 exists, whereby the rewards and
penalties decrease as time progresses. Note that in this do-
main the decision that has the highest immediate effect on
the reward is whether or not to signal.

Agent Design
As we demonstrate later, the current automated state-of-the-
art agent teamed with people achieved poor coordination.
The main reason for this is the inherent behavior of peo-
ple. People tend to make mistakes as they are affected by
cognitive, social and cultural factors, etc. (Lax and Sebenius
1992). Moreover, it has been shown that people do not fol-
low equilibrium strategies (Erev and Roth 1998), nor do they
maximize their expected monetary values. This behavior, if
unaccounted for, might have undesirable effects on the strat-
egy of agents interacting with people.

When coordinating with someone else, it is hard to pre-
dict what the other team member (especially if it is a human
partner) will do. The task is even harder if the agent inter-
acts with someone only once and not repeatedly. Thus, an
efficient agent working with people needs, amongst other
things, to approximate what percentage of the population
will perform each action based on the existing partial obser-
vations. Our agent interacts with the same counterpart only
once and thus its design tries to tackle the challenge by gen-
erating a good model of the population based on an existing
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knowledge base. By doing so, it also considers people’s de-
viation from the policy that maximizes the monetary value.
This allows the agent to maximize the average score for the
entire team. Since the agent builds a good model of the team
and works in decentralized communication settings, we coin
it TMDC (team modeling with decentralized communica-
tion).

Modeling People’s Behavior
We believe that an efficient coordination of agents in mixed
agent-human environment requires a good model of peo-
ple’s behavior. To achieve this we gathered information, us-
ing the Amazon Mechanical Turk framework, about people’s
behavior in the domain wherein our agent is situated. As
our domain requires only a short interaction between team
members our human behavior’s model was developed ac-
cordingly.

First we matched people with automated agents to gather
a set of decisions made by people in different settings of the
domain. After having a substantial amount of data, we used a
machine learning technique. Based on the domain, we chose
which features of the actions and state of the world are rele-
vant for the learning. We used a neural network model to es-
timate the distribution of people’s behavior, whereas the in-
put to the network consisted of the different features and the
output consisted of the different feasible actions. The model
is then used to obtain a probability measure with respect to
the likelihood of the human player to choose a given action
in a given setting of the domain.

We had used a large knowledge base of the decisions
made by more than 445 people who played the game. For
each decision we generated a set of features which included
the position, belief, last communicated observations and last
actions of each team member. These features were used as
the input for the neural network model. We learned a neu-
ral network using a genetic algorithm with 1/MSE as the
fitness function. The output of the model was normalized to
1 and was treated as the probability that the human partner
will take each action. As people make decisions using pri-
vate information that the automated agent is unaware of, our
model’s features try to “estimate” what observations people
actually had and thus what is their belief with respect to the
state of the world.

In order to improve the precision of the model, we sepa-
rated the data samples into three sets based on positions, and
grouped together the outputs of equivalent actions. Then we
used the model to return a probability vector indicating the
likelihood that the human player will choose each of the 6
actions defined in our domain.

The neural network model had 13 inputs, 3 outputs and 8
neurons in its hidden layer. The input features included four
beliefs generated on four sets of observations: (a) all obser-
vations sent by both team members, (b) all observations sent
by the agent, (c) all observations sent by the human player
and (d) all observations known to the agent. Two more fea-
tures encode the last shared observation of each team mem-
ber and another feature is the last observation shared by any
player. Two additional features represent the direction of
each player’s last movement. The last four features encode

position related information – which player is closer to each
goal and whether a player is already in it. The mean square
error of the model was 0.16 with a precision of 63.5%.

Designing the Agent’s Strategy
The general design of the agent’s strategy consists of build-
ing a POMDP using the prediction of the human behavior
described beforehand. Thus, TMDC uses its model, and not
the shared belief, to predict what its counterpart’s behavior
will be. In addition, TMDC chooses its action based on all of
its knowledge (which also includes private knowledge), and
only communicates in order to influence the actions of the
other teammate. Given all previously shared observations,
the agent evaluates an action by considering all possible re-
sults, calculating immediate rewards and using offline esti-
mation of future rewards. This evaluation is then used by a
hill climbing heuristic that finds which observations (taken
from the set of all observations, including shared observa-
tions) can maximize the score of the team and hence should
be shared.

Let A1 ⊆ A be the set of actions available to the agent
and A2 ⊆ A be the counterpart’s possible actions. Let Ht

be all indicators (past actions, communicated observations
and team’s position on the grid) the agent has of its partner’s
behavior at time step t. Let M be the prediction function,
which, based on Ht, specifies the probability of it choosing
a specific action. Let bt be the agent’s belief based on all
shared observations and its private observations, and V be
the estimated value of a given belief and history, described
hereafter. We then formally define the agent’s score of an
action, where the Q function employs a strategy of a 1-step
look ahead:

Q(bt, Ht, a1) = (1)∑
a2∈A2

M(Ht, a2) · (
∑
s∈S

bt(s) ·R(s, (a1, a2))

+γ
∑
ω∈Ω1

Pr(ω|(a1, a2), b
t) · V (bt+1, Ht+1))

The agent calculates the action based on the predicted dis-
tribution of the rest of the team choosing each action, and es-
timates future utility, based on possible future beliefs. These
beliefs are effected by both the actions and the possible next
observations. The history is also updated, adding the new ac-
tions and their effect on the common knowledge (positions
in the grid). The updated belief functions and the probability
of obtaining an observation given an action are calculated as
follows:

bt+1(s′) =

O(s′, (a1, a2), ω)
∑
s∈S

T (s, (a1, a2), s′)bt(s)

Pr(ω|(a1, a2), bt)
(2)

Pr(ω|(a1, a2), b
t) =

∑
s′∈S

O(s′, (a1, a2), ω) · (3)

∑
s∈S

T (s, (a1, a2), s′)bt(s)

Based on the Q function, the agent employs a hill climb-
ing heuristic to search for the optimal message and the op-
timal action for that message. The agent first calculates the
optimal actions, assuming the message will either be empty
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or contain all its observations, denoted anc and ac, respec-
tively. This is somewhat similar to the approach used by
Roth et al. (2006). The agent then searches for the optimal
message for each anc and ac by repeatedly adding observa-
tions to the outgoing communication anc that increases the
expected score of the action. The algorithm will finally send
the message that achieves the highest expected score while
taking communication costs into consideration.

We are now left to define the value of a belief V (bt, Ht).
Perhaps the most time-efficient approach to approximate
future rewards is evaluating the optimal score that can be
achieved by the team in each state if the true state would be
revealed to all players. This approach was also used to solve
POMDPs after a 1-step look ahead, and used in DCS after
two steps. However, it is well documented that this approach
does not give accurate approximations and gives prefer-
ence to delaying actions (Littman, Cassandra, and Kaelbling
2005). Thus a different approach is needed. Another sim-
ple approach is to use value iteration to evaluate the score
of an MDP where every (belief, history) is a state. Unfortu-
nately, such an MDP has an infinite number of states, as both
the belief and possible histories have infinite value ranges.
The agent therefore creates an abstract model with a rea-
sonable number of states, by creating discrete and compact
representations, as described hereafter. The abstract model
is compact and consists of only a subset of fields derived
from the game’s history. The agent also creates discrete res-
olutions for the continuous fields. The model’s states rep-
resent the positions of the team members (since we have a
5 × 5 grid, we have 25 possible position values for each
team member), the last actions taken by each team member
(categorized according to 3 possible values: moving towards
Serbian goal, Bosnian goal or no movement), the private be-
lief of the agent (using 17 discrete values) and the shared
belief derived from the communication history (using 17
discrete values). Thus, this model has 1, 625, 625 possible
states (25× 25× 3× 3× 17× 17). The agent then uses the
following update function for value iteration:

Vn(b
t
, b

t
s, a1,t−1, a2,t−1) = max( max

a1∈A1

∑
a2∈A′

M(H
t
, a2) (4)

·(
∑
s∈S

b
t
(s) · R(s, (a1, a2)) + γ

∑
ω∈Ω1

Pr(ω|(a1, a2), b
t
)

·Vn−1(b
t+1

, b
t
s, a1, a2)), max

b′s∈resolution
Vn−1(b

t
, b
′
s, a1,t−1, a2,t−1)

−CommunicationCost)

where bt+1 is an updated belief previously defined, bts is
the shared belief, ai,t−1 are the previous actions, Ht are the
fields required for the predicted model synthesized from the
available fields and CommunicationCost is a general es-
timated cost to change the shared belief from bts to b′s (fol-
lowing a pessimistic assumption about the weakest observa-
tions).

This value iteration update function converges after ap-
proximately 40 iterations calculated once offline. Thus,
when evaluating an action’s score, the agent uses the approx-
imated value of the abstract state with the nearest discrete
values for the shared and private beliefs.

Figure 1: The game interface used in the experiments.

Experiments
The experiments were conducted on the Bosnia/Serbia do-
main using the Amazon Mechanical Turk service (AMT)2.
This framework allows the publishing of tasks designated
for people all around the world. We prohibited multiple par-
ticipation by the same people. We begin by describing the
experimental methodology and then continue by presenting
the experimental results.

Experimental Methodology
The players were shown a presentation explaining the game
and their tasks before their participation. Although the pre-
sentation is very detailed, we took great care not to give
strategic advice. We then required that each worker pass a
short multiple choice test to verify that they read the man-
ual and understood the game. Each player who completed
the game received a minimal payment of ¢30. To motivate
the players to play seriously and be focused on the game,
each player received a bonus equivalent to the number of
cents based on the team’s score, if it was positive. We set
the starting score of the game to 40 to ensure that the costs
and penalties of the game would have a meaningful effect
on the player even if the team did not gain the reward for a
successful signal.

As for the game’s interface, at every time step the play-
ers were shown the current value of movement and com-
munication and a successful/failed signal. The interface also
displayed to the players the number of observations seen, re-
ceived and sent, as well as the probability of each grid state,
based on Bayes’ rule. A screen-shot of the interface is shown
in Figure 1. We selected four pairs of starting positions at
random, in advance, for the game settings. We created two
scenarios for each of the starting positions, one with Serbia
as the true grid state and the other with Bosnia. An equal
number of games in each scenario were run for each agent.

We provided four belief probability values to the player,
based on different available observations and beliefs. How-
ever, it is up to the human player to take these probabilities
into account. The four beliefs are generated from subsets of
observations available to the player: all observations known
to the player, observations seen by the player herself, obser-
vations shared by the other player and observations shared
by the agent.

2For a comparison between AMT and other recruitment meth-
ods see (Paolacci, Chandler, and Ipeirotis 2010).
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Figure 2: Average scores obtained by each team type.

We experimented and compared our agent with an agent
based on the state-of-the-art DCS strategy (Roth, Simmons,
and Veloso 2006), namely a polynomial version of DEC-
COMM-SELECTIVE (PDCS). This agent finds the joint-
actions anc with a maximal score based on a belief generated
by the shared observations. It then finds the joint-actions ac
based on all its observations. The agent then creates the min-
imal message required to convince the other player, based
on shared belief, that ac is the best joint-actions. The agent
only communicates its observations if the score difference
between ac and anc is greater than the communication costs.
Basically, the PDCS agent expects the team to perform the
optimal plan based on common knowledge. It updates the
common knowledge when it believes changing the plan war-
rants the communication cost.

Experiment Results
We matched 64 human players with each agent (TMDC and
PDCS) and paired 128 human players with each other. This
section analyzes the results obtained by the agents as well as
providing an in-depth analysis of human behavior.

Evaluating Agents’ Strategies Figure 2 summarizes the
scores obtained by each team type. The results demonstrate
that our agent significantly outperforms the PDCS agent
(p < 0.0001) when paired with people. The average score
for TMDC was 52.84, compared to only 17.5 obtained by the
state-of-the-art PDCS agent. The pure human-human teams
achieved an average score of 27.18. While the difference
between the scores of pure human-human teams and the
PDCS-human teams were not significant, the TMDC-human
teams achieved significantly higher results (p = 0.003) from
the human-human teams as well.

We also tested how well the PDCS agent coordinates with
itself. It achieved a score of 65.8 (in 400 games). It is not
surprising that the PDCS-PDCS team outperformed TMDC-
human teams. The PDCS agent can fully predict and coor-
dinate with itself, while a human partner is not fully pre-
dictable and may employ inefficient communication and ac-
tion policies. In fact, as PDCS is a state-of-the-art multi-
agent coordination algorithm, its results are near-optimal. It
is, however, interesting to note that the results of the TMDC-
human teams are closer to the results of a PDCS-PDCS team
than to that of the human-human teams.

The results demonstrate the success of incorporating a
prediction model in the inherent design of the agent domain.
For instance, it allowed our agent to gain advantage and es-
sentially allowed it to wait outside the goal until it believed

Agent Observations Sent Observations Sent
by Agent by People

TMDC 1.25 2.72

PDCS 1.97 2.48

People N/A 2.86

Table 1: Average number of observations shared by each player

signaling was an optimal action. The PDCS agent assumes
that its partners will not signal until the shared information
indicates that signaling is optimal. Therefore, the agent may
enter the goal square immediately, which can result in un-
coordinated signals and a low score for the team. As human
players make different decisions they can also make differ-
ent mistakes. For example, some may choose to wait even if
their observations are very conclusive, while others may try
to reach a goal quickly and signal even if they do not have
sufficient evidence or whether they are even in the presence
of contradicting evidence.

Table 1 summarizes the number of observations sent by
the team members. A human player sends 2.84 observa-
tions on average per game, significantly more than the PDCS
agent, which sends only 1.97 observations. While the PDCS
communication policy considers one observation to be suffi-
cient motivation to more toward a specific goal and two ad-
ditional observations to motivate a signal, the TMDC agent
communicates significantly less than both human players
and the PDCS agent, sending only 1.25 observations on av-
erage each game. The reason for that is the fact that the
PDCS agent sends more observations based on support-
ing or contradictory observations sent by the human player
and based on the observation’s quality (e.g., being forest or
plain). The TMDC agent, on the other hand, takes into ac-
count that sending only a single observation influences only
a subset of the population and not all of it, and that sending
additional observations can increase the proportion of the
population that will be convinced to move in the direction
the agent believes to be the right one. Thus sending addi-
tional observations becomes a tradeoff between the cost of
communication and the score gained by increasing the prob-
ability that the human player will make the correct move.

Conclusions
Settings in which hybrid teams of people and automated
agents need to achieve a common goal are becoming more
common in today’s reality. Communication in such situa-
tions is a key issue for coordinating actions. As communica-
tion is costly and sometimes even limited (e.g., due to secu-
rity issues or range limitations), it becomes of great essence
to devise an efficient strategy to utilize communication. This
paper presented a novel agent design that can proficiently
coordinate with people under uncertainty while taking into
account the cost of communication.

Our agent was specifically designed taking into account
the fact that it interacts with people, and it was actually eval-
uated with people. The success of our agent’s proficiency
with people cannot be overstated. Experiments with more
than 200 people demonstrated that it outperforms a state-
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of-the-art agent and even people. One of the main factors
accounting for the success of our agent is the understanding
that it requires a good model of the counterpart to generate
an efficient strategy.

Though the Serbia/Bosnia domain that we used was quite
a compact one and only included uncertainty on a single is-
sue (the country in which the agents are located), we found
that it was hard for human team members to incorporate this
information into their strategy. We believe that the lack of
correlation between choosing to signal and the probability
of being in the correct goal is partially caused by the proba-
bilistic nature of the information. Our hypothesis is that hu-
man players will pay more attention to observations if the
observations give concrete definitive information. Neverthe-
less, regardless of this non-efficient behavior of people, once
our agent builds the model it can efficiently coordinate with
them and generate higher rewards for the team. Future work
will also situate our agent in domains where observations
would not only change the likelihood of states but will allow
eliminating possible states as well.

This paper is just part of a new and exciting journey. Fu-
ture work warrants careful investigation on improving the
prediction model of people’s behavior. We will also inves-
tigate settings in which even more limited information is
available to the team members. In such situations the chal-
lenge is in understanding the abstract model that is available
and how to utilize communication for efficient coordination
that will allow for the increased accuracy of the model.
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