
Construction of New Medicines via Game Proof Search

Abraham Heifets and Igor Jurisica
University of Toronto

Toronto, Ontario, Canada M5G 1L7
abe@cs.toronto.edu juris@ai.utoronto.ca

Abstract

The production of any new medicine requires solutions to
many planning problems. The most fundamental of these
is determining the sequence of chemical reactions neces-
sary to physically create the drug. Surprisingly, these organic
syntheses can be modeled as branching paths in a discrete,
fully-observable state space, making the construction of new
medicines an application of heuristic search. We describe a
model of organic chemistry that is amenable to traditional
AI techniques from game tree search, regression, and auto-
matic assembly sequencing. We demonstrate the applicabil-
ity of AND/OR graph search by developing the first chem-
istry solver to use proof-number search. Finally, we construct
a benchmark suite of organic synthesis problems collected
from undergraduate organic chemistry exams, and we analyze
our solvers performance both on this suite and in recreating
the synthetic plan for a multibillion dollar drug.

Introduction
Organic chemistry underlies medicine and materials science
and provides modern conveniences in the forms of drugs,
dyes, fragrances, and pesticides. A core task in organic
chemistry is the planning of organic syntheses, the succes-
sion of chemical reactions that construct desired molecules
from simple commercially-available starting materials. No
medicine used in the developed world today would exist
without solving these planning problems. Yet, despite 40
years of work by chemists on computer-aided organic syn-
thesis (Corey and Wipke 1969; Law et al. 2009), the chem-
ical synthesis planning problem is largely unknown in the
AI community. In this paper, we bridge that gap by model-
ing organic synthesis planning as discrete state-space search
and show that it is amenable to heuristic search techniques.

Specifically, we model the generation of organic syn-
theses as a two-player zero-sum game as follows: the first
player picks a reaction that would synthesize the goal
molecule, if the required reagents were available. Then, the
second player picks one of that reaction’s required reagents,
and demands that the first player choose a reaction that can
synthesize it. The players continue to take turns until the
molecule to be synthesized is found in the library of starting
materials, yielding a win for the first player. Alternatively, if

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Aspirin. Vertices labeled C, H, or O denote car-
bon, hydrogen, and oxygen atoms, respectively. Single lines
edges denote single bonds and double lines represent double
bonds. Traditionally, bonds to hydrogen are not drawn.

no reactions can generate the chosen molecule, the second
player wins. The game is a forced win for the first player
if and only if she can construct all required reagents. Once
all of the required reagents have been constructed, she can
apply the original reaction and produce the goal molecule.
This recursive construction game provides an algorithm to
generate syntheses.

Game proofs, which establish a game-theoretic value for
game positions, closely match the structure we require in
the production of organic synthesis. To demonstrate if a par-
ticular board configuration is a win for one player, a game
tree proof provides, for every opponent move, a response
that forces a win (although the responses can vary depend-
ing on the opponent’s move). Game tree proofs can be com-
puted even for games with complicated search spaces, such
as games with multiple distinct paths to given board po-
sitions or reversible moves. The search space of organic
chemistry forms a directed cyclical graph, with multiple syn-
thetic paths between molecules and reactions pairs that are
inverses of each other (e.g., oxidations and reductions). In
an organic synthesis, as in games of first-player loss (Kishi-
moto and Müller 2004), cycles denote that a molecule is
consumed in its own production and such cyclic plans are
not feasible. Proof number search and its memory-efficient
variants (Allis, van der Meulen, and van den Herik 1994;
Kishimoto 2010) have been used to generate game tree
proofs for large real-world problems such as checkers (Scha-
effer et al. 2007).

This paper provides three contributions. First, we intro-
duce the AI community to organic synthesis planning, a
long-standing problem of medical and economic impor-
tance. Historically, the effort of constructing chemistry-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1564

Figure 2: Esterification reaction of an alcohol active site with
an anhydride active site to produce an ester. Atoms in the
molecular fragments are numbered to help the reader track
bond changes. When atomic labels are omitted, the vertex
is presumed to be a carbon atom with sufficient hydrogens
to total 4 bonds. Reaction conditions have been omitted for
simplicity.

Figure 3: Synthesis of aspirin (right column) from carbon
dioxide, sodium hydroxide, phenol, acetic acid and ketene
starting materials (left column) via the precursor molecules,
salicylic acid (top mid) and acetic anhydride (bottom mid).
The final aspirin-forming step is an application of the ester-
ification reaction depicted in Fig 2.

aware software carried too much overhead for AI re-
searchers; today, however, a number of toolkits that encapsu-
late chemical knowledge can be used as blackboxes. These
include free open source software packages such as Open-
Babel (O’Boyle et al. 2011) and RDKit (Landrum 2006).
Second, we describe the first application of proof number
search to chemical synthesis planning. Third, we offer the
first public synthetic planning benchmark. To encourage fur-
ther development in this essential area, we freely distribute
both our solver and benchmark. We conclude with a discus-
sion of the need for specific new algorithmic developments
to address the challenges of the organic synthesis planning
problem.

An Overview of Organic Synthesis
Organic synthesis presents an interesting and challenging
planning domain due to the complexity of the state descrip-
tion, the cost of checking whether a state satisfies the goal
conditions, and the number of operators and their interac-
tion. Here we provide the AI practitioner with a qualitative
description of these factors. Due to lack of space, we do not
present all of organic chemistry here. For a more compre-
hensive survey of computer-aided organic synthesis in par-
ticular and organic chemistry in general, we refer the reader
to (Todd 2005) and (Clayden et al. 2000), respectively.

Figures 1, 2, and 3 show typical depictions of a molecule,
a reaction, and a multistep synthesis. The “game board state”

of the organic synthesis game is a molecule. Molecules are
represented by graphs where vertices correspond to atoms
(of elements such as carbon, oxygen, hydrogen, etc.) and
edges correspond to bonds of different types (single, dou-
ble, aromatic, etc.). The “game moves” in chemistry are re-
actions, which describe the change in bonds that can be en-
acted on molecules. Reaction specifications include required
activating substructures, which must be present to enable a
reaction, and interfering substructures, which forbid them.
These required and forbidden substructures are similar to
the positive and negative preconditions of planning oper-
ators. Despite eliding many factors of chemical reactions,
such as temperature, solvents, catalysts, and side products,
such transformation-based reaction descriptions capture the
structural modifications that are achievable through a reac-
tion, and are therefore widely-used by chemists (Pirok et al.
2006; Daylight 2008).

It is important to note that the same reaction can be
applied to many different molecules, provided that the
molecules contain the appropriate reactive substructures.
For example, the final step of Figure 3 is an application of
the reaction described in Figure 2, and the alcohol is one
small piece of salicylic acid. This applicability of reactions
to many different molecules is similar to ungrounded opera-
tors from domain-independent planning.

Furthermore, one reaction may produce multiple possi-
ble products. Unlike deterministic games, where the same
move applied to the same state produces a single outcome,
a reaction can match several alternative reactive sites in a
molecule. Consider again the reaction described in Figure 2.
If it is applied to a molecule containing two alcohol groups,
we could imagine 3 distinct product molecules, where the
reaction has occurred at one alcohol, the other, or both.

Finally, one molecule may be produced from many pre-
cursors, even when using the same reaction. Every atom in
the product originates in a reagent but the converse is not
true because these reaction definitions are not assumed to
be balanced or symmetric. While atoms are neither created
nor destroyed in a chemical reaction, chemists typically iso-
late a single product of interest, effectively ‘losing’ atoms in
side-products. In Figure 2, the atoms labelled 6, 7, and 8 are
lost into solution and are not incorporated into the final ester
product. Given this reaction definition, there exist an infi-
nite number of molecules that could produce the ester: any
molecule that contains an anhydride substructure can hang
alternative substituents off of the 7 atom, and would not be
constrained by the specification of the product and the reac-
tion.

A particular challenge for computational chemistry is that
molecules can be considerably larger than the states gen-
erally considered in computer game playing or automatic
reasoning. Chromosome 1 in a typical human cell is a
pair of molecules, each containing approximately 5.5 bil-
lion atoms (S. G. Gregory et al. 2006). Palytoxin, among
the largest nonpolymeric molecules to be artificially syn-
thesized, has 409 atoms (Hudlicky and Reed 2007). Any
combination of constituent elements, graph connectivity,
and 3-dimensional molecular configuration can define dis-
tinct molecules so it is unsurprising that many different

1565

molecules have been characterized in practice. Over 30 mil-
lion molecules have been deposited in the PubChem com-
pound database, of which 14 million come from chemical
vendors (Wang et al. 2009). To determine whether a synthe-
sis can begin from a given molecule because it is commer-
cially available, an organic synthesis planner must efficiently
check the molecule for membership in this set.

Chemical syntheses tend to be relatively short. Because
a single reaction’s yield is never 100%, long syntheses pro-
duce very little product. The average industrial pharmaceu-
tical synthesis uses 8.1 steps, albeit with a heavy tail of syn-
theses with 16 or more reactions (Carey et al. 2006). Com-
plex academic targets or natural products may require more
involved chemistry. For example, synthesis of vitamin B12

required over 100 steps (Nicolaou and Sorensen 1996).
Additionally, the branching factor in the search for a

synthesis can be large. ChemAxon provides a free-for-
academic-use reaction engine containing a library of 145
manually-curated commonly-used reactions (ChemAxon
2011). A statistical analysis of synthesis databases estimated
the existence of 92,781 unique known transformations (Law
et al. 2009). Since the reaction patterns can match multiple
distinct parts of the goal molecule, many distinct sets of pre-
cursor reagents can be proposed for each reaction (Agarwal,
Larsen, and Gelernter 1978). However, the creation of reac-
tion libraries is beyond the scope of this article. Our solver
takes them as an input specified by domain experts.

A Proof Number Search-based Solver
Given a two-player zero-sum game-based formulation of
chemical synthesis planning, it is natural to apply AND/OR
graph search. AND/OR graph search has been applied to the
derivation of winning strategies in two-player games (Scha-
effer et al. 2007; Allis, van der Meulen, and van den Herik
1994; Nagai 1998; 2002) as well as problems such as
MDPs (Bonet and Geffner 2006), assembly plans (Homem
de Mello and Sanderson 1990), and web service composi-
tion (Liang and Su 2005). AND/OR graphs comprise two
types of nodes that may be labeled as solved. An AND node
is solved if all of its children are solved, while an OR node
is solved if any of its children are solved. A solution graph
therefore specifies (at least) one action for each non-goal
node, which connect the initial state to some set of goal
states.

For organic synthesis, an OR node corresponds to a
molecule. The edges from the OR node correspond to the
reactions that could produce the molecule. Each edge points
to an AND node denoting the set of required reagents. The
AND node has edges to the OR nodes that represent each
required reagent molecule. In other words, the OR node rep-
resenting a molecule that could be produced by 5 differ-
ent reactions would have 5 edges pointing to the required
reagents for each reaction. The molecule can be produced
(i.e., solved) if any one of the reactions is executed but each
reaction is executable only if all of its required precursors
are available. Molecules in the set of starting materials are
labeled as solved, requiring that molecules not available as
starting materials are considered solved if and only if they
are produced by some reaction with solved reagents.

Proof number search, or PNS, analyzes two-player zero-
sum games and determines whether a player has a forced
win (Allis, van der Meulen, and van den Herik 1994). As a
side-effect, it returns the strategy that produces the victory.
In the context of PNS, a node is proven if it is a guaranteed
win for player 1 and disproven if player 1 cannot prevent a
loss. PNS maintains a proof number for each node, which
correspond to the number of leaves in the subtree rooted at
the node that would need to be examined to conclude that
the node is proven. Similarly, each node has a disproof num-
ber that tracks the smallest number of leaves needed to be
disproved for the node to be disproved.

Proof numbers are defined as follows:
proof (n) = (1)

0 if n is terminal win
∞ if n is terminal loss
1 if n is unevaluated leaf∑

x∈children(n) proof (x) if n is internal AND node
minx∈children(n) proof (x) if n is internal OR node

Disproof numbers are defined analogously:
disproof (n) = (2)

∞ if n is terminal win
0 if n is terminal loss
1 if n is unevaluated leaf
minx∈children(n) disproof (x) if n is internal AND node∑

x∈children(n) disproof (x) if n is internal OR node

No matter how many additional nodes are evaluated, a won
node cannot be disproved; an AND node is disproven if any
of its children are disproven; and an OR node is disproven
only if all of its children are disproven.

Proof number search begins with an unevaluated start leaf
node. The algorithm selects a leaf node, expands it, and as-
signs it proof and disproof numbers in accordance with Def-
initions 1 and 2. The selected leaf is found by descending
from the root, at each point choosing the child node that
needs the least work to (dis)prove it, until the leaf is found.
The choice at an interior OR node is not governed by its
children’s disproof numbers; since every child needs to be
disproved, the order in which they are examined is irrele-
vant. However, it is possible that a proof will be discovered
for a child during exploration, which will prove the OR node
and terminate exploration of the rest of the OR-node-rooted
subtree. Therefore, the child selected at interior OR nodes
is the one with the minimal proof number. By construction,
this child will have a proof number equal to the OR node.
The case for interior AND nodes is symmetric.

Once the node is expanded, its (dis)proof numbers are
likely to have changed, so the proof numbers of this node
and its ancestors must be updated. PNS walks node parent
pointers, recalculating the proof and disproof numbers on
the way up. This process is repeated until the root node is ei-
ther proven (that is, its proof number equals 0) or disproven
(disproof number = 0).

For organic synthesis, a root OR node is constructed for
the goal molecule. Every reaction in the reaction library is

1566

Figure 4: The benchmark target molecules. Images generated directly from the problem definition using OpenBabel (O’Boyle
et al. 2011).

checked to determine whether it could have produced the
goal molecule. For each reaction that matches the goal, we
generate possibly several sets of precursor molecules that
could react to produce the goal. Each molecule in the set
of precursors is mapped via a transposition table to an OR
node, and then the set of precursor molecules is wrapped in
an AND node. This AND node is connected as a child to
the original goal molecule’s OR node. In the case where a
reaction only requires a single precursor, we perform a sim-
ple memory optimization and use the precursor’s OR node
as a child directly, omitting the usual wrapping AND node.
The proof and disproof numbers of the root node are updated
according to Definitions 1 and 2.

Selection and expansion of leaves occurs as in normal
PNS with several modifications. A leaf node is considered
to be a terminal win if its molecule is found in the start-
ing material library and it is considered to be a terminal
loss if either no reactions would produce the molecule or if
any required precursor set contains an ancestor molecule in
the current synthesis path. ChemAxon’s JChem 5.7.0 toolkit
is used for all reaction applications and starting material
matching (ChemAxon 2011). Where possible, the precursor
molecules are not grounded but are interpreted as minimal
requirements over matching sets of molecules. Although the
subgraph isomorphism necessary for reaction matching is
intractable in the worst case, domain-specific algorithms can
be fast in practice (Cao, Jiang, and Girke 2008).

Usually, in these game proof algorithms, playing a move
is considered to be free. This can lead to very large proof
trees. Using the move-cost modification from dfpn+ (Nagai
2002), we define the cost of each reaction application to be
1, to help focus the search on shallow convergent syntheses.

Definitions 1 and 2 imply that parent AND/OR nodes
contain a child with equal (dis)proof counts. However, this
condition only holds if the search space is a tree. Since the
chemical search space is a graph, the search algorithm will
modify the values of one node and update the values of only
one of its parents. When the search encounters a node with

(dis)proof values that are inconsistent with the values of its
children, the selection or expansion process is skipped and
the node’s values are updated. Often, this updating brings
the node out of consistency with its own parents, so the pro-
cess is repeated until the nodes along the current search path
are locally consistent.

Constructing a Public Chemistry Benchmark
Standardized benchmarks and competitions are impor-
tant tools for direct comparison of a variety of algo-
rithmic techniques (Helmert, Do, and Refanidis 2008;
Genesereth, Love, and Pell 2005). Unfortunately, no stan-
dard public benchmark exists for chemical synthesis plan-
ning. To permit principled comparison of such sys-
tems, we have created the first public chemistry bench-
mark. It is released to the community under a Cre-
ative Commons license and is available for download at
www.cs.toronto.edu/∼aheifets/ChemicalPlanning.

The benchmark contains 20 synthesis problems derived
from undergraduate organic synthesis examinations. With
the exception of the first problem, the benchmark problems
appeared in exams at the Massachusetts Institute of Tech-
nology Course 5.13 “Organic Chemistry II” during 2001-
2006. As such, the benchmark comprises problems captured
from “the wild”, in that the questions were not designed for
computers; rather, the tasks were designed to be challeng-
ing for humans and to test fundamental chemistry concepts.
The original tests and instructor-provided answer keys are
distributed via MIT OpenCourseWare (MIT 2003).

We derived problem 1 from primary literature, rather than
from course exams. The target of problem 1 is atorvastatin,
marketed in North America as Lipitor R©. It is an interesting
molecule, because atorvastatin was the best-selling drug in
history with yearly revenues in excess of USD$12 billion
before its patent expiration in 2011. The benchmark prob-
lem uses the starting materials and reactions reported by the
inventors (Brower et al. 1992; Roth 2002).

Figure 4 shows the target molecules from our benchmark,

1567

Problem
Instructor-provided solution Proof-number search Exhaustive search

operators unique ops depth operators unique ops depth expanded generated seconds expanded generated seconds

1 5 5 4 5 5 4 1353 59522 10166 – – –
2 4 4 4 4 4 4 13 124 7 275 1897 39
3 5 5 4 5 5 4 22 145 8 176 993 26
4 4 4 4 4 4 4 25 702 15 1256 15968 224
5 3 3 2 3 3 2 11 769 31 23 1475 51
6 7 7 7 6 5 5 188 1877 31 474 4103 61
7 10 9 6 13 12 7 378 4301 70 24495 157198 2860
8 5 5 5 5 5 5 78 1810 96 474 7684 372
9 7 7 4 7 7 4 267 4614 94 2902 39256 639

10 3 3 3 3 3 3 168 3532 105 461 8985 247
11 12 12 9 12 12 9 787 15233 228 – – –
12 10 8 6 9 7 5 422 5932 258 9548 74865 2614
13 4 4 2 4 4 4 594 53781 3732 31 2773 121
14 4 4 3 4 4 3 406 64599 5138 149 4715 219
15 10 10 6 11 10 7 499 68335 5085 – – –
16 4 4 4 – – – – – – – – –
17 5 5 3 – – – – – – – – –
18 5 5 5 – – – – – – – – –
19 6 6 6 – – – – – – – – –
20 11 9 7 – – – – – – – – –

Table 1: Chemical benchmark. The instructor-provided solution describes the solutions given in the exam answer keys. Total runtime is given
in seconds and includes initialization and output of solution. Dashes indicate that the problem did not complete in 6 hours.

which are analogous to goal states in automated planning
problems. Each synthesis problem also specifies a set of
starting materials that are permitted (but not required) to be
used in the construction of the target. We manually encoded
these target and starting materials in a standard machine-
readable format (Weininger 1988). Each problem also con-
tains a sample solution, although multiple correct answers
are generally possible. From each solution, we created a
corresponding set of machine-readable reaction files. We fo-
cused on encoding the transformations enacted by the reac-
tions and did not attempt to document reaction conditions,
selectivities, or stereochemical effects. In principle, these
data may be represented and future editions of the bench-
mark could encode these reaction properties.

Table 1 describes the characteristics of the instructor-
provided solutions for each problem. The ‘operators’ col-
umn lists the total reaction applications when the solution
is flattened into a tree. The ‘unique operators’ column lists
the number of reaction applications in the solution. When
there are fewer unique operator applications than the num-
ber of operators, it means that the solution is a directed
acyclic graph rather than a tree and a subproblem was reused
in different parts of the synthesis. This provides an indica-
tion of the occurrence of shared synthetic intermediates that
are used multiple times in the problem answer. ‘Depth’ de-
scribes the maximum number of reactions separating the tar-
get molecule from any starting material. An entirely linear
problem (such as problems #2 and #8) will have the same
number of operators, unique operators, and depth, whereas
a branching solution (e.g., problem #11) will have a depth
that is smaller than the number of operators.

In summary, the benchmark contains 20 problems, a li-
brary of 62 unique starting materials, and 50 reaction defini-

Figure 5: Computer-generated Atorvastatin synthesis match-
ing the synthesis reported in (Brower et al. 1992) and (Roth
2002).

tions. The benchmark is designed to be stand-alone; it is ex-
pressed in standard formats and requires no external reaction
or starting material libraries. The problems cover a range
of difficulty, each requiring between 3 and 12 unique steps.
The canonical instructor answers described solutions that in-
clude directed acyclic graphs, trees, and simple sequences.
The problems were developed to be difficult for undergradu-
ate chemistry students and, we believe, are therefore a useful
testing ground for automated chemistry solvers.

Results and Discussion
Benchmark tests were performed on an IBM CL1350 cluster
with 1,344 cores over 168 Infiniband-connected HS21-XM
BladeServers and a DCS9550 storage system. The cluster
runs the CentOS operating system, version 5.1, uses Open-
JDK Runtime Environment (IcedTea6 1.7.5), and manages
coarse-grained parallelism with the Portable Batch System.

1568

ChemAxon’s JChem 5.7.1 was used for the molecular ma-
nipulations (ChemAxon 2011). Each test received a maxi-
mum of 6 hours CPU time and 8GB of RAM.

The benchmark provides a range of problem difficulties.
Table 1 shows that 5 problems completed in less than one
minute, 6 problems required between 1 minute and 5 min-
utes, 4 problems required between 1 hour and 3 hours, and
5 problems did not terminate within 6 hours. While prob-
lems with deep solutions generally require more time and
search effort than shallow problems, the nature of the target
molecule strongly impacts the search space. When many re-
actions can generate the substructures in a molecule, many
more paths must be explored. This is illustrated in problems
#2 and #4; both are linear syntheses with four steps but prob-
lem #4 generated more than 5 times as many nodes as prob-
lem #2. Furthermore, applying reactions takes a significant
amount of time, which varies depending on the molecules
under consideration.

Today, organic synthesis problems are solved manually;
the standard commercial solver is the human. In this context,
we compare against the gold standard, because the bench-
mark consists of problems taken from university exams in-
tended to challenge human students. Direct comparison of
our solver against other chemical planners, while desirable,
is impossible. The majority of previous synthesis systems
were research projects in the 1970-80s and no longer avail-
able for comparison, since even the underlying operating
systems do not necessarily run on modern hardware (Corey
and Wipke 1969; Agarwal, Larsen, and Gelernter 1978).
The algorithms consisted of exhaustive search moderated by
ad hoc collections of forward pruning rules.

We did compare our algorithm to a reimplementation of
the algorithm used by the only existing commercial soft-
ware (Law et al. 2009), which is exhaustive search to a user-
specified depth. We chose to reimplement the algorithm be-
cause a license costs several tens of thousands of dollars. Our
implementation of IDA∗ takes a user-specified bound so as
to adhere as closely as possible to the published Law et al.
algorithm. We specify the depth bound to be the minimum of
the depths of the benchmark’s provided solution and the so-
lution returned by our proof-number searcher. Furthermore,
we omitted node-construction to minimize algorithmic over-
head and derive the best performance from the exhaustive
algorithm.

On most problems, proof number search outperforms ex-
haustive search in terms of nodes expanded, nodes gener-
ated, and total time spent. For example, on problem #7, ex-
haustive search expanded over 64 times as many nodes as
PNS. In three cases, proof-number search solved problems
on which exhaustive search was terminated after 6 hours. In
problems #13 and #14, PNS performed worse than exhaus-
tive search. In these problems, the solver appears to be led
away from the cheapest solution by the early discovery of a
molecular precursor. As can be seen from Definitions 1 and
2, the proof number search does not optimize for shortest so-
lutions, but rather for minimum remaining proof burden. If a
particular reagent is solved early in the tree, it is considered
‘proved’ and the cost for using it anywhere else in the search
is set to 0. Therefore, by proving early on one molecule from

a complicated precursor set, the search may be driven into
unfruitful areas of the search space. Integration of heuris-
tics such as (Bertz 1981), (Hendrickson, Huang, and Toczko
1987), and (Ertl and Schuffenhauer 2009) would help avoid
such waste and speed the discovery of syntheses. Such in-
tegration would widen the margin between PNS and ex-
haustive search as, by definition, exhaustive search can not
leverage heuristics to focus the search.

We observed that our solver suffers from the problems
of over- and under-counting proof and disproof numbers.
These problems are observed whenever the search space is
a graph rather than a tree (Seo, Iida, and Uiterwijk 2001;
Kishimoto and Müller 2004) When cycles occur or when in-
termediate nodes are shared along different parts of the solu-
tion path, naive solutions will sum the (dis)proof numbers of
leaves multiple times along overlapping paths. This causes
the search to waste time in incorrect portions of the search
space and may lead to infinite looping (Kishimoto 2005;
Kishimoto and Müller 2008). Solutions that avoid both high
computational overhead and inaccurate proof and disproof
counts are an area of active research (Kishimoto and Müller
2003; Kishimoto 2005; 2010).

Conclusion and Future Work
This paper introduces an economically- and medically-
critical problem to the AI community. It is clear that our
solver is not yet competitive with a skilled human under-
graduate chemistry student. However, it can already solve a
number of challenging synthesis problems, including the the
expert-derived synthesis of atorvastatin, the best selling drug
in history.

A move from theory and prototype to a realistic system
requires several extensions. Search efficiency could be im-
proved by initializing the AND/OR (dis)proof numbers with
a stronger heuristic. The reaction definitions should be ex-
panded to encompass a broader set of reactions and the
starting materials library should be scaled to a full commer-
cial chemical database. These additional reactions and start-
ing materials would permit the discovery of novel syntheses
without blocking the recognition of the synthesis we report
in Figure 5.

Despite these limitations, our prototype shows the fea-
sibility of applying planning techniques to the chemi-
cal synthesis problem. We described the first application
of proof-number search to chemical synthesis planning
and the first benchmark for comparing synthesis solvers.
We hope chemical synthesis planning will be a fruit-
ful domain for AI research. To that end, we are dis-
tributing our code and benchmark, which are available at
www.cs.toronto.edu/∼aheifets/ChemicalPlanning.

Acknowledgements
We thank Kristen Fortney, Max Kotlyar, and Izhar Wallach
for their valuable comments on earlier drafts. Computational
analysis was supported in part by Canada Foundation for In-
novation [CFI #12301 and CFI #203383] and Ontario Re-
search Fund [GL2-01-030]. IJ is supported in part by the
Canada Research Chair Program. This research was funded

1569

in part by the Ontario Ministry of Health and Long Term
Care. The views expressed do not necessarily reflect those
of the OMOHLTC.

References
Agarwal, K.; Larsen, T.; and Gelernter, H. 1978. Application of
chemical transforms in SYNCHEM2, a computer program for or-
ganic synthesis route discovery. Comp. & Chemistry 2(2):75–84.
Allis, L.; van der Meulen, M.; and van den Herik, H. 1994. Proof-
number search. Artificial Intelligence 66:91–124.
Bertz, S. H. 1981. The first general index of molecular complexity.
J. Am. Chem. Soc. 103:3599–3601.
Bonet, B., and Geffner, H. 2006. Learning depth-first search:
A unified approach to heuristic search in deterministic and non-
deterministic settings, and its application to MDPs. In ICAPS, 142–
151. AAAI.
Brower, P. L.; Butler, D. E.; Deering, C. F.; Le, T. V.; Mil-
lar, A.; Nanninga, T. N.; and Roth, B. D. 1992. The synthe-
sis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-
dioxane-4-acetate, a key intermediate for the preparation of CI-981,
a highly potent, tissue selective inhibitor of HMG-CoA reductase.
Tetrahedron Letters 33(17):2279–2282.
Cao, Y.; Jiang, T.; and Girke, T. 2008. A maximum common
substructure-based algorithm for searching and predicting drug-
like compounds. Bioinformatics 24(13):i366–74.
Carey, J. S.; Laffan, D.; Thomson, C.; and Williams, M. T. 2006.
Analysis of the reactions used for the preparation of drug candidate
molecules. Org. Biomol. Chem. 4:2337–2347.
ChemAxon. 2011. JChem 5.7.1. http://www.chemaxon.com.
Clayden, J.; Greeves, N.; Warren, S.; and Wothers, P. 2000. Or-
ganic Chemistry. Oxford University Press.
Corey, E. J., and Wipke, W. T. 1969. Computer-Assisted Design
of Complex Organic Syntheses. Science 166(3902):178–192.
Daylight. 2008. Daylight Chemical Information Systems, Inc.
http://www.daylight.com/daycgi tutorials/smirks examples.cgi.
Ertl, P., and Schuffenhauer, A. 2009. Estimation of synthetic ac-
cessibility score of drug-like molecules based on molecular com-
plexity and fragment comtributions. Cheminformatics 1(8).
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General game play-
ing: Overview of the AAAI competition. AI Magazine 26(2):62–
72.
Helmert, M.; Do, M.; and Refanidis, I. 2008. International planning
competition. http://ipc.informatik.uni-freiburg.de/Results.
Hendrickson, J. B.; Huang, P.; and Toczko, A. G. 1987.
Molecular complexity: a simplified formula adapted to individual
atoms. Journal of Chemical Information and Computer Sciences
27(2):63–67.
Homem de Mello, L., and Sanderson, A. 1990. AND/OR graph
representation of assembly plans. IEEE Transactions on Robotics
and Automation 6(2):188 –199.
Hudlicky, T., and Reed, J. W. 2007. The Way of Synthesis: Evolu-
tion of Design and Methods for Natural Products. Wiley-VCH.
Kishimoto, A., and Müller, M. 2003. Df-pn in go: An application
to the one-eye problem. In van den Herik, H. J.; Iida, H.; and Heinz,
E. A., eds., ACG, volume 263 of IFIP, 125–142. Kluwer.
Kishimoto, A., and Müller, M. 2004. A general solution to the
graph history interaction problem. AAAI 644–649.
Kishimoto, A., and Müller, M. 2008. About the completeness
of depth-first proof-number search. In van den Herik, H. J.; Xu,

X.; Ma, Z.; and Winands, M. H. M., eds., Computers and Games,
volume 5131 of Lecture Notes in Computer Science, 146–156.
Springer.
Kishimoto, A. 2005. Correct and Efficient Search Algorithms in the
Presence of Repetitions. Ph.D. Dissertation, University of Alberta.
Kishimoto, A. 2010. Dealing with infinite loops, underestimation,
and overestimation of depth-first proof-number search. AAAI.
Landrum, G. 2006. Rdkit: Open-source cheminformatics.
http://www.rdkit.org.
Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.;
Johnson, A. P.; Major, S.; Wade, R. A.; and Ando, H. Y. 2009.
Route designer: A retrosynthetic analysis tool utilizing automated
retrosynthetic rule generation. J. Chem. Inf. Model 49(3):593–602.
Liang, Q. A., and Su, S. Y. W. 2005. AND/OR graph and search
algorithm for discovering composite web services. Int. J. Web Ser-
vice Res. 2(4):48–67.
MIT. 2003. MIT OpenCourseWare. http://ocw.mit.edu.
Nagai, A. 1998. A new AND/OR Tree Search Algorithm Using
Proof Number and Disproof Number. In Frank, I.; Matsubara, H.;
Tajima, M.; Yoshikawa, A.; Grimbergen, R.; and Müller, M., eds.,
Complex Games Lab Workshop, 40–45. Electrotechnical Labora-
tory, Machine Inference Group, Tsukuba, Japan.
Nagai, A. 2002. Df-pn Algorithm for Searching AND/OR Trees
and Its Applications. Ph.D. Dissertation, University of Tokyo.
Nicolaou, K. C., and Sorensen, E. J. 1996. Classics in Total Syn-
thesis: Targets, Strategies, Methods. Wiley-VCH.
O’Boyle, N.; Banck, M.; James, C.; Morley, C.; Vandermeersch, T.;
and Hutchison, G. 2011. Open babel: An open chemical toolbox.
Journal of Cheminformatics 3(1):33.
Pirok, G.; Máté, N.; Varga, J.; Szegezdi, J.; Vargyas, M.; Dóránt,
S.; and Csizmadia, F. 2006. Making “real” molecules in virtual
space. Journal of Chemical Information and Modeling 46(2):563–
568. PMID: 16562984.
Roth, B. D. 2002. The discovery and development of atorvastatin,
a potent novel hypolipidemic agent. In King, F.; Oxford, A.; Re-
itz, A. B.; and Dax, S. L., eds., Progress in Medicinal Chemistry,
volume 40. Elsevier. 1 – 22.
S. G. Gregory et al. 2006. The DNA sequence and biological
annotation of human chromosome 1. Nature 441(7091):315–321.
Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.; Muller, M.;
Lake, R.; Lu, P.; and Sutphen, S. 2007. Checkers is solved. Science
317(5844):1518–1522.

Seo, M.; Iida, H.; and Uiterwijk, J. W. H. M. 2001. The PN*-search
algorithm: Application to tsume-shogi. Artif. Intell. 129(1-2):253–
277.
Todd, M. H. 2005. Computer-aided organic synthesis. Chem. Soc.
Rev. 34:247–266.
Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; and Bryant,
S. H. 2009. PubChem: a public information system for analyzing
bioactivities of small molecules. Nucleic Acids Research 37(suppl
2):W623–W633.
Weininger, D. 1988. SMILES, a chemical language and in-
formation system. 1. introduction to methodology and encoding
rules. Journal of Chemical Information and Computer Sciences
28(1):31–36.

1570

