
HyperPlay: A Solution to General
Game Playing with Imperfect Information

Michael Schofield and Timothy Cerexhe and Michael Thielscher
School of Computer Science and Engineering

The University of New South Wales
{mschofield,timothyc,mit}@cse.unsw.edu.au

Abstract

General Game Playing is the design of AI systems able to
understand the rules of new games and to use such descrip-
tions to play those games effectively. Games with imperfect
information have recently been added as a new challenge for
existing general game-playing systems. The HyperPlay tech-
nique presents a solution to this challenge by maintaining a
collection of models of the true game as a foundation for rea-
soning, and move selection. The technique provides existing
game players with a bolt-on solution to convert from perfect-
information games to imperfect-information games. In this
paper we describe the HyperPlay technique, show how it was
adapted for use with a Monte Carlo decision making process
and give experimental results for its performance.

Introduction
General Game Playing (GGP) is concerned with the design
of AI systems able to understand the rules of new games
and to use such descriptions to play those games effectively.
GGP with perfect information has made advances, thanks
largely to the standardisation of the Game Description Lan-
guage (Love et al. 2006) and its widespread adoption, par-
ticularly in the AAAI GGP Competition (Genesereth, Love,
and Pell 2005). Successful players typically employ either
automatically generated evaluation functions (Clune 2007;
Schiffel and Thielscher 2007) or some form of Monte Carlo
technique such as the modern UCT (Björnsson and Finns-
son 2009). The relative ease of Monte Carlo parallelisa-
tion has also rewarded distributed and cluster-based hard-
ware in this domain (Méhat and Cazenave 2011). Games
with imperfect information have recently been added as
a new challenge for existing general game-playing sys-
tems (Thielscher 2010). However little progress has been
made on these types of games beyond a specification of what
their rules should look like (Quenault and Cazenave 2007;
Thielscher 2011).

Frank and Basin (2001) have investigated imperfect-
information games with a focus on Bridge, presenting a
‘game-general’ tree search algorithm that exploits a number
of imperfect-information heuristics. This may effectively
complement existing work applying theorem-proving tech-
niques (Schiffel and Thielscher 2009). The Alberta Com-
puter Poker Research Group has developed systems at the
forefront of computer Poker players (Billings et al. 2006)—

a challenging domain combining incomplete and misleading
information, opponent modelling, and a large state space.
While not explicitly interested in GGP, they do describe sev-
eral techniques that could generalise to this field, includ-
ing miximix, fast opponent modelling, and Nash equilib-
rium solutions over an abstracted state space. Meanwhile,
our work is motivated by set sampling (Richards and Amir
2009) and by particle system techniques (Silver and Ve-
ness 2010). Similar special-case applications of sampling
to reduce imperfect- to perfect-information can be found
in (Ginsberg 2011; Kupferschmid and Helmert 2007).

Despite these advances, we are unaware of any explicit
attempts to model and play general imperfect-information
games. In this paper we introduce the HyperPlay technique,
which presents a solution to this challenge by maintaining
a collection of models of the true game as a foundation for
reasoning and move selection. The technique provides ex-
isting game players with a bolt-on solution to convert from
perfect- to imperfect-information games. We demonstrate
this by integrating the technique with a Monte Carlo deci-
sion making process and providing experimental results of
its performance in standard benchmark games.

The remainder of the paper is organised as follows. In
the next section, we recapitulate syntax and operational se-
mantics of the Game Description Language GDL-II, which
provides the formal basis for General Game Playing (Gene-
sereth, Love, and Pell 2005; Thielscher 2010). In the sec-
tion that follows, we describe the general HyperPlay tech-
nique. Thereafter, we report on experiments with a player
that uses the HyperPlay technique in conjunction with a
standard Monte Carlo decision making process. We con-
clude with a short discussion.

Background: Game Description Language
The science of General Game Playing requires a formal lan-
guage that allows an arbitrary game to be specified by a
complete set of rules. The declarative Game Description
Language (GDL) serves this purpose (Genesereth, Love, and
Pell 2005). It uses a logic programming-like syntax and is
characterised by the special keywords listed in Table 1.

Originally designed for games with complete informa-
tion (Genesereth, Love, and Pell 2005), GDL has recently
been extended to GDL-II (for: GDL with incomplete/imper-
fect information) by the last two keywords (sees, random)

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1606

1 role(candidate). role(random).

2

3 init(closed(1)). init(closed(2)). init(closed(3)).

4 init(step(1)).

5

6 legal(random,hide_car(?d)) <= true(step(1)),

7 true(closed(?d)).

8 legal(random,open_door(?d)) <= true(step(2)),

9 true(closed(?d)),

10 not true(car(?d)),

11 not true(chosen(?d)).

12 legal(random,noop) <= true(step(3)).

13 legal(candidate,choose(?d)) <= true(step(1)),

14 true(closed(?d)).

15 legal(candidate,noop) <= true(step(2)).

16 legal(candidate,noop) <= true(step(3)).

17 legal(candidate,switch) <= true(step(3)).

18

19 sees(candidate,?d) <= does(random,open_door(?d)).

20 sees(candidate,?d) <= true(step(3)), true(car(?d)).

21 next(car(?d)) <= does(random,hide_car(?d)).

22 next(car(?d)) <= true(car(?d)).

23 next(closed(?d)) <= true(closed(?d)),

24 not does(random,open_door(?d)).

25 next(chosen(?d)) <= does(candidate,choose(?d)).

26 next(chosen(?d)) <= true(chosen(?d)),

27 not does(candidate,switch).

28 next(chosen(?d)) <= does(candidate,switch),

29 true(closed(?d)),

30 not true(chosen(?d)).

31

32 next(step(2)) <= true(step(1)).

33 next(step(3)) <= true(step(2)).

34 next(step(4)) <= true(step(3)).

35

36 terminal <= true(step(4)).

37

38 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).

39 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).

40 goal(random,0).

Figure 1: A GDL-II description of the Monty Hall game (Rosenhouse 2009) adapted from (Thielscher 2011).

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position
legal(?r,?m) ?r can do ?m in the current position
does(?r,?m) player ?r does move ?m
next(?f) ?f holds in the next position
terminal the current position is terminal
goal(?r,?v) ?r gets payoff ?v

sees(?r,?p) ?r perceives ?p in the next position
random the random player (aka. Nature)

Table 1: GDL-II keywords

to describe arbitrary (finite) games with randomised moves
and imperfect information (Thielscher 2010).
Example 1 (Monty Hall). The GDL-II rules in Fig. 1 for-
malise a simple but famous game where a car prize is hid-
den behind one of three doors, a goat behind the others, and
where a candidate is given two chances to pick a door. The
intuition behind the rules is as follows.1 Line 1 introduces
the players’ names (the game host is modelled by random).
Lines 3–4 define the four features that comprise the initial
game state. The possible moves are specified by the rules for
legal: in step 1, the random player must decide where
to place the car (lines 6–7) and, simultaneously, the can-
didate chooses a door (lines 13–14);2 in step 2, random
opens one of the other doors (lines 8–11) to reveal a goat;
finally, the candidate can either stick to their earlier choice
(noop) or switch to the other, yet unopened door (lines 16,
17). The candidate’s only percepts are: the door opened by
the host (line 19) and the location of the car at the end of the
game (line 20). The remaining rules specify the state update

1A word on the syntax: We use infix notation for GDL-II rules
as we find this more readable than the usual prefix notation.

2The precondition true(closed(?d)) for the two moves
hide car(?d) and choose(?d) serves to restrict the domain
of the variable argument ?d in both cases.

(rules for next), the conditions for the game to end (rule
for terminal), and the payoff for the player depending on
whether they got the door right in the end (rules for goal).

GDL-II comes with some syntactic restrictions—for de-
tails we must refer to (Love et al. 2006; Thielscher 2010)
due to lack of space—that ensure that every valid game de-
scription has a unique interpretation as a state transition sys-
tem as follows. The players in a game are determined by
the derivable instances of role(?r). The initial state
is the set of derivable instances of init(?f). For any
state S, the legal moves of a player ?r are determined
by the instances of legal(?r,?m) that follow from the
game rules augmented by an encoding of the facts in S us-
ing the keyword true. Since game play is synchronous in
the Game Description Language,3 states are updated by joint
moves (containing one move by each player). The next po-
sition after joint move ~m is taken in state S is determined
by the instances of next(?f) that follow from the game
rules augmented by an encoding of ~m and S using the key-
words does and true, respectively. The percepts (aka. in-
formation) a player ?r gets as a result of joint move ~m be-
ing taken in state S is likewise determined by the derivable
instances of sees(?r,?p) after encoding ~m and S us-
ing true and does. Finally, the rules for terminal and
goal determine whether a given state is terminal and what
the players’ goal values are in this case. In the remainder of
the paper, we will use the following mathematical notation
for some core elements of the semantics of a given (syntac-
tically valid) GDL-II description.

• L(r, S) is the set of legal moves for player r in state S;

• u(~m, S) is the updated state for a joint move ~m in state S;

• I(r, ~m, S) is the set of percepts of player r after joint
move ~m is taken in state S.
3Synchronous means that all players move simultaneously.

Turn-taking games are modelled by allowing players only one legal
move without effect (such as noop) if it is not their turn.

1607

This definition provides the basis for the operational seman-
tics of GDL-II according to the following execution model:

1. Starting with the initial state, which is completely known
to all players, in each state S each player r selects one of
their legal moves from L(r, S). By definition random
must choose a legal move with uniform probability.

2. The update function (synchronously) applies the joint
move ~m to the current position, resulting in the new po-
sition S′ ← u(~m, S). Furthermore, each role r receives
their individual information I(r, ~m, S).

3. This continues until a terminal state is reached, and then
the goal relation determines the result for all players.

The HyperPlay Technique
The HyperPlay technique provides a general approach that
can be used by any general game player to convert from
perfect-information games to imperfect-information games.
The intuition is to translate imperfect-information games
into a format suitable for simpler, perfect-information play-
ers. This translation is achieved by sampling the state
space of an imperfect-information game, playing individ-
ual rounds in each of these perfect-information samples, and
collating the separate results back together. This HyperPlay
algorithm is summarised in Fig. 2 and will be explained in
detail next, starting with the following points and notation:

• the state space (at a given step k) is sampled by models
of the form M = 〈B1, ~m1, . . . , Bk−1, ~mk−1, Bk〉, which
are sequences of joint moves interleaved with ‘bad’ moves
(joint moves known to lead to an inconsistent model);

• the HyperPlay technique maintains a bag of these models
(a.k.a. “HyperGames”): H = {|M1, . . . ,Mp|};
• the percepts when taking a given joint move ~m in (the last

state of) a given model M are denoted by I(~m,M) (as
determined by the game rules);4

• similarly, we denote the legal joint moves in (the last state
of) modelM byL(M) (as determined by the game rules);

• our move in a joint move ~m is indexed by ~m|r;

• the extension of a model M by joint next move ~mk:

M ⊕ ~mk = 〈B1, ~m1, . . . , Bk−1, ~mk−1, Bk, ~mk, ∅〉

(that is, bad move sets are initialised to the empty set);

• choose φ ∈ Φ with Θ is a pseudocode construct that at-
tempts to choose a φ from the set Φ that satisfies addi-
tional constraints Θ; it returns true (and binds φ as a side-
effect) if a suitable φ is found;

• global variables are:

– the bagH of HyperGames;
– our moves a1, a2, a3, . . .; and
– our collected percepts I1, I2, I3, . . .
4We abuse notation here to make the pseudocode clearer.

I(~m,M) is really shorthand for I(r, ~m, state(M)), where we
are role r, and state(M) represents the resulting state from the
sequence of joint moves in M .

1 procedure main()
2 begin
3 H := {|〈∅〉, . . . , 〈∅〉|}
4 n := 1
5 r ep ea t
6 an := select move(H)
7 In := submit move(an)
8 f o r a l l M ∈ H do
9 forward(M,n+ 1)

10 n := n+ 1
11 u n t i l end of game
12 end
13

14 procedure forward(M=〈B1, ~m1, . . . , Bk−1, ~mk−1, Bk〉, n)
15 begin
16 i f k < n then
17 i f choose ~m ∈ L(M) \Bk

18 with ~m|r = ak && I(~m,M) = Ik then
19 M := M ⊕ ~m
20 forward(M,n)
21 e l s e
22 backtrack(M,n)
23 end
24

25 procedure backtrack(〈B1, ~m1, . . . , Bk−1, ~mk−1, Bk〉, n)
26 begin
27 Bk−1 := Bk−1 ∪ {~mk−1}
28 forward(〈B1, ~m1, . . . , Bk−1〉, n)
29 end

Figure 2: Hyperplay

More explicitly, we maintain a bag H of HyperGames—
random samples or ‘guesses’ of the current true game state.
Each of these samples is in fact a model M—a hypothetical
game history consistent with all percepts seen so far, along
with sets of ‘bad’ moves in each round that were found to be
inconsistent. Thus our samples are always drawn from the
game’s information set (Rasmusen 2007). In each round n,
a perfect-information player can select a next move an suit-
able for each of these isolated models; see line 6. This move
selection is arbitrary from the perspective of our algorithm
provided the selection is a legal move for the player with re-
spect to the perfect-information model (further discussion is
provided in the following subsection). Our move selection is
then submitted to the game controller and a new set of per-
cepts In for this round is received (line 7). Each modelM in
our bag of samplesH is then propagated forward (line 9) to
reflect the deeper game tree. This process randomly chooses
a joint move ~m for each player from the set of non-bad, joint
legal moves in that state (line 17) with the additional con-
straints that our move is the one we submitted and that the
expected percepts I(~m,M) are identical to the set of per-
cepts In that we actually received (line 18). Notice that if
we select a path that the last percepts reveal to be impos-
sible, then we reach a state where no consistent joint move
can be found. In this case (line 22) we backtrack by adding
the guilty move vector to a set of bad moves for that state
(line 27), then calling forward on this earlier game node, ef-
fectively undoing the move and attempting to push forward
again. This process repeats until a consistent model is found
for the current round (k < n fails, on line 16).

1608

Move Selection
The HyperPlay algorithm is agnostic of the move selection
process, which should be designed with the following con-
siderations in mind:
• the expected value of a move in a HyperGame;
• the probability that the HyperGame is the true game.
Each HyperGame represents a path of move choices made
from the initial game state. These move choices are
recorded, along with all of the possible choices for each step
along the path. From this information we are able to deter-
mine the likelihood that a HyperGame is the true game, rel-
ative to the other HyperGames in the bag. We begin with the
conditional probability that a particular HyperGame HGi is
the true game, given the Percepts it has collected:

P (HGi|Percepts) =
P (Percepts|HGi) · P (HGi)

P (Percepts)

Because the percepts are fully determined by the game rules,
P (Percepts|HGi) equals 1 in the case that the game is con-
sistent with the percepts, and 0 otherwise. P (Percepts) is
a normalising factor across all HyperGames, so the above
equation simplifies to:

P (HGi|Percepts) ∼ P (HGi)

The probability of a HyperGame being the true game,
P (HGi), will in general depend on the preferences of (bi-
ased) opponents. A detailed discussion of opponent mod-
elling in this context goes beyond the scope of this paper,
which is why we only consider the approximation of, as far
as our player knows, a uniform distribution over all possible
moves by the other players.

To this end, let the choice factor of a HyperGameHGi be
the product of the number of choices at each node along the
path from the initial state to the current state:

ChoiceFactori =
∏

j Choicesi,j

Where Choicesi,j is the number of choices at the jth node in
the path of the HyperGame HGi.

Then the probability of a HyperGame being the true
game, relative to the other HyperGames in the bag and as-
suming uniform distribution over the move choices, is:

P (HGi) =
1/ChoiceFactori∑
n 1/ChoiceFactorn

where the sum of all the relative probabilities is unity.
The expected payoff for a move can then be expressed as:

E(Movej) =
∑

iE(Movei,j) · P (HGi)

where E(Movei,j) refers to the expected value (as de-
termined by the embedded perfect-information player) of
Movej in HyperGame HGi.

The HyperPlayer then submits the move with the greatest
expected payoff to the game server.5

5The reader will note that this approach does not prevent the
HyperPlayer from making a move that is illegal in the true game
state, but does minimise such an event if the expected value is set
to zero in all HGi in which the move is illegal.

Example 2 (Monty Hall). The effectiveness of the move
selection calculations detailed above can be seen by an ex-
amination of the Monty Hall game. Note that this game has
low computational complexity, yet the validation of the ex-
pected payoff calculation is far from trivial.

If the HyperPlayer gives equal weighting to each Hyper-
Game then it will switch doors 50% of the time and hence
only win the car 50% of the time. However using the choice
factor to calculate the relative probability of each Hyper-
Game, the expected payoff for switching is correctly iden-
tified and the car is won 67% of the time.

An inspection of the following game tree illuminates the
impact of the choice factor on the decision making process.

Figure 3: Sample game tree (where moves have been seri-
alised, for the sake of clarity)

At the last round there are only two possible states for a
model of the game (Node A and Node B); reflected by equal
numbers of HyperGames in the bag. However one of these
models is twice as likely to be the true game:

Node A: ChoiceFactor = 3 · 3 · 2 = 18

Node B: ChoiceFactor = 3 · 3 · 1 = 9

P (HGA) =
1/18

1/18 + 1/9
= 33%

P (HGB) =
1/9

1/18 + 1/9
= 67%

The simulation results will give an average payoff of 50%
for each of the remaining doors in each HyperGame, but the
relative probabilities of the HyperGames will result in an
expected payoff of 67% if the HyperPlayer switches from
Door 2 to Door 3. This is verified in the experimental results
in the following section.

1609

Experiments
To validate our claim that HyperPlay provides a solution to
GGP with imperfect information, we implemented a version
of the HyperPlayer designed to facilitate high throughput
computing. We modelled the game server and both play-
ers in a single thread so it could be parallelised across many
CPUs. The computing array consisted of (approx) 200 dual
core Intel PCs situated throughout the School of Computer
Science and Engineering. The experiments were broken up
into small batch runs and scheduled across all of the PCs
simultaneously. The HyperPlayer was given sufficient re-
sources to complete each move in less than 15 seconds.
Moves were played as soon as the HyperPlayer had com-
pleted its calculations in order to compress the required play
time.

Each data point plotted in the charts below is supported by
1000 games. Blind Breakthrough played on a 7x7 board is
complex enough to require 432 hours of CPU time. Testing
larger boards would have been prohibitive.

We utilised simple, standard Monte Carlo simulations
where the expected value of a move in a HyperGame is given
by the average payoff from simulations, then computed the
expected payoff using the technique detailed above. Sev-
eral games were selected for these experiments: Monty Hall,
Krieg-TicTacToe, and Blind Breakthrough, all taken from
the standard source for benchmark games.6

Monty Hall In addition to the rules already presented, we
varied the number of initial doors between three, four, and
five doors. The host always opens all but two doors.

Krieg-TicTacToe A variant of traditional TicTacToe
where the opponent’s pieces are hidden. Players move si-
multaneously and the winning length was fixed at four in
a row. We varied the board size between 4x4, 5x5, and
6x6 squares. Players are given feedback via percepts as to
whether their move, and their opponent’s move, was suc-
cessful (they placed a new mark) or not (due to collision or
selecting a square that had already been marked).

Blind Breakthrough A variant of chess where each player
starts with two rows of pawns on their side of the board.
Players take turns, trying to ‘break through’ their opponent’s
ranks to reach the other side first. Opponent’s pieces are
hidden, as with Krieg-TicTacToe. Pawn moves are as per
normal chess, including taking moves, with the exception of
en passant and opening double-square moves, which were
removed. The board size was varied between 5x5, 6x6, and
7x7 squares and players were given equal opportunities to go
first. In each round, each player has one chance to make a
true move; if they fail then the game server makes a random
legal move on their behalf. Players are given feedback via
percepts on the actual move made in the game and about the
capturing moves available to them.

6http://ggpserver.general-game-playing.de

Standardised Opponent
In each of the two player games the HyperPlayer opposed
a Cheat—a HyperPlayer with access to the true game, who
maintains HyperGames that were the true game (instead of
models of the true game). The Cheat was fully resourced so
that it made the best move choices within the limitations of
the move selection process, where the key resources are the
number of HyperGames maintained and the number of sim-
ulations performed in each HyperGame. The method for cal-
culating the Cheat’s resources was to play one Cheat against
another Cheat with different resources. The following figure
shows the results for a game of Krieg-TicTacToe played on
a 5x5 board with a win length of 4. This method served two

Figure 4: Calculating the resources for the Cheat

purposes; it validated the software implementation by giving
an expected result, and it identified the minimum resources
needed for the Cheat to be considered fully resourced. In
this case the Fully Resourced Cheat was initially given one
HyperGame (the true game) and ran 1024 simulations for
each next move. The results showed that this could be re-
duced to one HyperGame and 256 simulations without any
degradation in the Cheat’s performance. This was then used
as the standardised opponent for 5x5 Krieg-TicTacToe.

Confidence Level
Each game variant and HyperPlayer configuration was
played one thousand times and the average results (payoff)
reported. For the two player games a result of zero indicated
that the Cheat scored the maximum payoff in every game,
and a result of 100 indicated that the HyperPlayer scored the
maximum payoff in every game.

In order to prove our claim, the data should show that
the results tend towards a limiting value for fully resourced
players. That is, some large number of models of the true
game can be substituted for perfect information about the
true game.

1610

A confidence level of 99% was used in a two-tailed cal-
culation using the standard deviation for a binomial distri-
bution. That is to say that we were 99% confident that the
HyperPlayer would score within the range reported.

Resource Limitation
To show a trend towards a limiting value, experiments were
conducted with varying resources—the HyperPlayer was
limited in the number of HyperGames and the simulations
per next move. These limitations were combined into a sin-
gle factor for our graphs:

Resources = NoOfHyperGames · NoOfSimsPerNextMove

Results
Monty Hall The results for the Monty Hall experiments
validated the use of the choice factor in making the move se-
lection. As expected the adequately resourced HyperPlayer
was able to achieve a performance of:

AveragePayoff = (NoOfDoors− 1)/NoOfDoors

while the inadequately resourced HyperPlayer achieved an
average payoff of 50%.

Figure 5: Monty Hall results

Krieg-TicTacToe These experiments showed steady im-
provement in performance as HyperPlayer resources in-
creased. The limiting values appear to be well short of the
50% mark, especially on the larger board. This is due to the
reduced number of percepts relative to the game duration—
the Cheat often wins before the HyperPlayer can establish
an accurate model.

Blind Breakthrough The results of the Blind Break-
through experiments show clear improvement in perfor-
mance as resources increase; approaching a limiting value.

As the number of HyperGames increases and the number
of simulations per next move increases the HyperPlayer is
able to match the Cheat.

Figure 6: Krieg-TicTacToe results

Special note should be paid to the 5x5 results where the
percepts were sufficient for the HyperPlayer to maintain
models that were very close to the true game. This allowed
the HyperPlayer to perform as if it had perfect information.

Figure 7: Blind Breakthrough results

GGP Competition
We have also implemented a version of our HyperPlay algo-
rithm that understands the new Game Description Language
GDL-II using an extension of the reasoning module that un-
derlies FluxPlayer (Schiffel and Thielscher 2007). To test
this player in the absence of competitors we appealed to the
same test framework as above—we played against a cheat,
for which we chose CadiaPlayer, a former champion of the
complete-information track (Björnsson and Finnsson 2009).

The setup gives CadiaPlayer a huge advantage—it can see
the true game state but we have to guess at it. Naturally this

1611

takes the fun out of some games. However the imperfect
information found in simultaneous play is often enough for
us to approach or even outperform our challenger. Space
limitations dictate only a short qualitative summary of these
results, see Table 2.7

Game Results

Monty
Hall

Our move selection identifies the optimal
‘always switch’ strategy. CadiaPlayer sees
the host’s placement.

Krieg-
TicTacToe

Our HyperPlayer needs only a few samples
to identify highly accurate models. We fre-
quently beat CadiaPlayer due to the com-
plexity of simultaneous play.

Blind
Break-
through

The huge state space makes synchronisa-
tion expensive for the HyperPlayer. This
restricts the number of simulations possi-
ble in the short time limits tested, giving
CadiaPlayer an easy lead.

Table 2: GGP-compatible tests against CadiaPlayer

Discussion
The experimental results show a successful implementa-
tion of the HyperPlay technique for playing imperfect-
information games. The collection of models (HyperGames)
can be very accurate, and is a credible substitute for per-
fect information about the true game, especially in games
with more percepts (compare Blind Breakthrough to Krieg-
TicTacToe)—we can be competitive even against a Cheat.

Our choice factor for each model is adequate in calculat-
ing the relative probability for the game within the informa-
tion set, assuming uniform distribution, and hence is able to
correctly identify choices influenced by conditional proba-
bility.

We intend to explore additional factors, e.g. with a view
towards more cautious/aggressive play and for opponent
modelling. HyperPlay also has application as a reasoning
engine in conditions of uncertainty, and we will be exploring
its use in artificially intelligent systems using abductive rea-
soning to identify and implement goal-oriented behaviour.

Our HyperPlayer implementation only uses Monte Carlo
simulation for move selection, yet the case is demonstrated
for the use of the HyperPlay technique as a bolt-on solution
for all types of perfect-information game players. That is,
it should work for knowledge-based players too. Our im-
mediate future work is to demonstrate this by facilitating an
easy-integration interface and testing with previous champi-
ons. However the advantages of this flexibility come with a
price—backtracking can become a bottleneck in very large
search spaces. We are developing strategies to overcome this
problem and hope to bring these to light in future works.

7For completeness: play and start clocks were varied between
15 and 60 seconds. Both players and the game controller were run
on a single 2.4 GHz dual-core iMac8,1.

Acknowledgements. We thank the anonymous reviewers
for their constructive comments on an earlier version of the
paper. This research was supported under Australian Re-
search Council’s (ARC) Discovery Projects funding scheme
(project DP 120102023). Michael Thielscher is the recipient
of an ARC Future Fellowship (project FT 0991348). He is
also affiliated with the University of Western Sydney.

References
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2006.
Game-tree search with adaptation in stochastic imperfect-
information games. In Proc. Computers and Games, 21–34.
Björnsson, Y., and Finnsson, H. 2009. CadiaPlayer: A
simulation-based general game player. IEEE Transactions
on Computational Intelligence and AI in Games 1(1):4–15.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Proc. AAAI, 1134–1139.
Frank, I., and Basin, D. 2001. A theoretical and empiri-
cal investigation of search in imperfect information games.
Theoretical Computer Science 252(1-2):217–256.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Ginsberg, M. 2011. GIB: Imperfect information in a com-
putationally challenging game. CoRR.
Kupferschmid, S., and Helmert, M. 2007. A Skat player
based on Monte-Carlo simulation. In Proc. Computers and
Games, 135–147.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General game playing: Game descrip-
tion language specification. Technical Report LG–2006–01,
Stanford Logic Group.
Méhat, J., and Cazenave, T. 2011. A parallel general game
player. KI Journal 25(1):43–47.
Quenault, M., and Cazenave, T. 2007. Extended general
gaming model. In Computer Games Workshop, 195–204.
Rasmusen, E. 2007. Games and Information: an Introduc-
tion to Game Theory. Blackwell Publishing, fourth edition.
Richards, M., and Amir, E. 2009. Information set sampling
for general imperfect information positional games. In Proc.
IJCAI-09 Workshop on GGP (GIGA’09), 59–66.
Rosenhouse, J. 2009. The Monty Hall Problem. Oxford
University Press.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proc. AAAI, 1191–1196.
Schiffel, S., and Thielscher, M. 2009. Automated theorem
proving for general game playing. In Proc. IJCAI, 911–916.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Proc. NIPS, 2164–2172.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proc. AAAI, 994–999.
Thielscher, M. 2011. The general game playing description
language is universal. In Proc. IJCAI, 1107–1112.

1612

