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Abstract

This paper addresses the problem of automated advice pro-
vision in settings that involve repeated interactions between
people and computer agents. This problem arises in many
real world applications such as route selection systems and
office assistants. To succeed in such settings agents must rea-
son about how their actions in the present influence people’s
future actions. This work models such settings as a family
of repeated bilateral games of incomplete information called
“choice selection processes”, in which players may share cer-
tain goals, but are essentially self-interested. The paper de-
scribes several possible models of human behavior that were
inspired by behavioral economic theories of people’s play in
repeated interactions. These models were incorporated into
several agent designs to repeatedly generate offers to people
playing the game. These agents were evaluated in extensive
empirical investigations including hundreds of subjects that
interacted with computers in different choice selections pro-
cesses. The results revealed that an agent that combined a
hyperbolic discounting model of human behavior with a so-
cial utility function was able to outperform alternative agent
designs, including an agent that approximated the optimal
strategy using continuous MDPs and an agent using epsilon-
greedy strategies to describe people’s behavior. We show that
this approach was able to generalize to new people as well
as choice selection processes that were not used for train-
ing. Our results demonstrate that combining computational
approaches with behavioral economics models of people in
repeated interactions facilitates the design of advice provision
strategies for a large class of real-world settings.

Introduction
As computers become ubiquitous, settings in which they
make decisions with people over time are becoming in-
creasingly prevalent. Many of these settings require com-
puter agents to generate advice to their human users about
which decisions to take in a way that guides their behav-
ior. Such settings arise in a variety of application domains
such as hospital care-delivery systems, negotiation training
or route-navigation systems. Although computers and peo-
ple in these domains share some goals, such as completing
the user’s tasks, their goals may also conflict. For example,
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consider an environmentally-conscious route-selection sys-
tem that advises drivers about commuting routes daily. The
system possesses information about traffic jams and road
conditions that is not available to the driver who makes the
decision which route to take. Both system and driver wish
to reach the destination safely. However, the driver may pre-
fer quicker routes, while the system cares about reducing
the driver’s impact on the environment. Another example
involves a decision-support system for doctors for the pur-
pose of recommending medical treatments to patients. The
system may have knowledge of a new highly effective an-
tibiotic, but will suggest a more traditional treatment for the
patient in order to alleviate drug resistance in the population.

This paper addresses problems central to the design of ad-
vice provision strategies for computer agents that interact
with people in repeated settings. We model these interac-
tions as a family of repeated games of incomplete informa-
tion called choice selection processes comprising a human
and computer player. Both of the participants in a choice se-
lection process are self-interested. The computer possesses
private information regarding the states of the world which
influences both participants’ outcome; this information is
not known to the person. At each round, the computer sug-
gests one of several choices to the person, and the person
then selects his or her choice, which may or may not corre-
spond to the computer’s suggestion. This choice affects the
outcome for both the person and the computer agent.

For an agent to be successful in such interactions, it needs
to generate advice that is likely to be accepted by people,
while still fulfilling the agent’s goals. The design of such
advice provision strategies is computationally challenging
for several reasons. First, the agent needs to reason about
the potential effect of the proposed action on its future in-
teractions with people. For instance, suggesting routes that
are significantly more beneficial to the agent may cause the
person to ignore its future recommendations. Second, peo-
ple’s decision-making deviates from rational choice theory
and is affected by a variety of social and psychological fac-
tors (Camerer 2003). For instance, some people may prefer
certain routes due to their past experience and may be reluc-
tant to adopt new, possibly preferable alternatives. Lastly,
people have been shown to discount the advice they receive
from experts (Bonaccio and Dalal 2006).

To address these challenges, we designed several models

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1522



of human behavior in choice selection processes that incor-
porated quantal response, exponential smoothing, and hy-
perbolic discounting theories from behavioral economics.
The parameters of these models were estimated using maxi-
mum likelihood, and their predictive power was measured
on a sampled set of human play using ten-fold cross-
validation. The best model—a combination of hyperbolic
discounting and quantal response—was incorporated into an
agent that was evaluated in an extensive study involving hun-
dreds of people. The study consisted of a repeated setting
that is analogous to choice selection processes, in which a
person is asked to choose a route to work from a set of possi-
ble candidates. The travel time and the fuel consumption of
each road varies due to traffic, and is known to the computer
(but not the person). At each round, the computer suggests
one of the routes to the person. The person’s goal is to min-
imize travel time while the agent’s goal is to minimize fuel
consumption.

To propose routes, the agent used a social utility approach
which considered the costs for both agent and person when
making suggestions. This agent was compared to several al-
ternative strategies for advice generation, including an agent
that approximated the optimal strategy using a continuous
Markov Decision Process. Each round in the evaluation
varied the road and fuel conditions using models from the
transportation engineering literature of real-world road con-
ditions. The agents were evaluated in simulations using
thousands of rounds as well as in studies comprising actual
people. Results show that the social utility agent was consis-
tently able to outperform all other agent strategies using two
different models of human behavior. This work is the first
to design a computer agent for generating advice to people
in repeated settings, and demonstrates the efficacy of using
behavioral economic models when generating advice.

Related Work
Past work on advice provision spans the computational and
social sciences. Game theory researchers have studied per-
suasion games (Milgrom and Roberts 1986; Crawford and
Sobel 1982), in which a Sender player needs to decide
how much information to disclose to a Receiver player
to influence the Receiver’s strategy in a way that benefits
the Sender. The majority of works on persuasion games
study one-shot interactions (Sher 2011; Glazer and Rubin-
stein 2006). A notable exception is the work by Renault et
al. (2011) who considered repeated interactions that follow a
Markov chain observed solely by the Sender. The Receiver
cannot observe its utility until the end of the multi-period
interactions. All of these works make the strong assumption
that people follow equilibrium strategies. However, agents
using equilibrium approaches to interact with people are
not successful in repeated settings (Hoz-Weiss et al. 2008;
Peled, Gal, and Kraus 2011).

Models for predicting users’ ratings have been proposed
that are used by recommendation systems to advise their
users (See Ricci et al. (2011) for a recent review). Most
works in this realm have only considered the utility of the
system and have not modeled the user’s reactions to its ac-
tions over time. One exception is the work by Shani et

al. (2005), which uses a discrete-state MDP model to max-
imize the system utility function taking into account the
future interactions with their users. This approach is not
applicable to our domain, which incorporates a continuous
state space and histories of arbitrary length. In addition, the
model they use does not consider the possible effects of the
recommendations on user’s future behavior. Viappiani and
Boutilier (2009) propose an approach to recommender sys-
tems that incorporates explicit utility models into the recom-
mendation process. They assume that the utility for the user
and the system are the same, while in our work the systems
utility may be unrelated to that of the user.

Another method which diverts from standard recom-
mender system is the work presented by (Sarne et al. 2011).
They attempt to facilitate people’s decision making process
by modifying the presentation of the problem. However,
once again they assume the utility of the user and the sys-
tem are identical.

In previous work (Azaria et al. 2011) we allowed the sys-
tem to reveal partial information in order to encourage the
user to take a certain action, rather than explicitly recom-
mending an action (as in current work).

Lastly, we mention recent work in AI (Azaria et al. 2012)
that proposed an advice provision strategy for a one-shot
interaction in which both participants had complete infor-
mation about the state of the world. Our work extends this
approach to the more challenging, yet realistic setting of re-
peated interactions under incomplete information.

Choice Selection Processes
A choice selection process is a repeated game of incomplete
information played by two players, a Receiver and a Sender.
The Receiver chooses an action a out of a possible set A. To
illustrate, in the route-selection example the set of actions
comprises the possible roads that the Receiver can choose.
The state of the world v = (v1, . . . , v|A|) is a multivariate
continuous random variable. Each element vi of v represents
information about the world that affects players’ outcomes
given that the Receiver chooses action ai. For example, an
element vi can incorporate the expected time and fuel con-
sumption for using road i and v incorporates the time and
fuel consumption for all possible roads. At each round t,
the Sender observes the state of the world v and can sug-
gest to the Receiver to take one of the actions in A before
the Receiver makes its selection. The Receiver does not ob-
serve v nor does it know its underlying distribution. The cost
cs(v, a) to the Sender and the cost cr(v, a) to the Receiver
correspond to the fuel consumption and time in our example,
are determined by the state of the world and the Receiver’s
action. Their interactions continue repeating with a constant
probability γ (i.e., the discount factor).

Modeling Human Receivers
Because the human does not know the distribution over the
states of the world, its decision problem can be analogously
described as a Multi Armed Bandit Problem (MAB) (Auer
et al. 1995), in which there are |A| + 1 arms (one for each
action, and one for following the advice of the Sender). We
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present several candidate models for describing human Re-
ceiver behavior that combine heuristics from the MAB liter-
ature with theories from the behavioral economics literature.

We begin with the following notation. The behavior in a
selection process at a round t is represented by a tuple ht =
(at, ct, dt) where at is the Receiver’s action at round t, ct =
(ctr, c

t
s) is the cost to the Receiver and Sender at t, and dt is

the advice provided by the Sender at t (prior to the Receiver
choosing at). Since the human player does not know the
actual state of the world, and in particular the costs of all
actions in each round, we use the notion of subjective cost to
model its reasoning when considering which action to take.
Given behavior ht at time t, we define the subjective cost to
the Receiver for taking action a at time t, denoted scr(a, t |
ht), to equal the cost ctr when a = at (i.e., the Receiver
chose action at at time t); otherwise it equals some default
value K, as the human does not know what cost would have
been incurred by taking action a for rounds that it was not
chosen. For example, suppose that the Receiver chose to use
route 66 on day 1 and incurred a 45 minute commute. The
subjective cost to the Receiver for using route 66 on day 1
equals 45 minutes, while the subjective cost for using any
other route equals the default value. Similarly, we define the
subjective cost to the Receiver for taking advice d at time
t, denoted scr(d, t | ht), to equal the cost ctr when at = d
(i.e., the Receiver followed the Sender’s advice), or a default
value.

We now generalize the notion of subjective cost to include
behavior over multiple rounds. Let z(a, t | h1,t−1) denote
the aggregate subjective cost to the Receiver at rounds 1
through t − 1 for taking action a. The models we describe
below differ in how they aggregate the Receiver’s subjec-
tive costs over time. We begin with two models in which
receivers discount their past costs higher than their present
costs. In the hyperbolic discounting model (Chabris, Laib-
son, and Schuldt 2006; Deaton and Paxson 1993), the dis-
count factor δ falls very rapidly for short delay periods, but
falls slowly for longer delay periods. For example, consider
a driver that took a new route to work on Monday which hap-
pened to take an hour longer than the route on Friday. Ac-
cording to hyperbolic theory, the relative difference between
the commute times will be perceived to be largest during the
first few days following Monday. However, as time goes by,
the perceived difference between the commute times will di-
minish.

z(a, t | h1,t−1) =
∑
t′<t

scr(a | ht
′
)

δ · (t− t′)
(1)

In the Exponential Smoothing model (Gans, Knox, and Cro-
son 2007), the discount factor δ is constant over time, mean-
ing the perceived difference between the commute times will
stay the same over time. The subjective cost for the Receiver
is defined as follows. If at−1 = a (the Receiver took action
a at time t− 1) then we have

z(a, t | h1,t−1) =δ · scr(a | ht−1)+
(1− δ) · z(a, t− 1 | h1,t−2)

(2)

If at−1 6= a, the Receiver does not update its aggregate sub-

jective cost for action a, and we have

z(a, t | h1,t−1) = z(a, t− 1 | h1,t−2) (3)

If t = 1 then z(a, t | h1,t−1) equals a default value L for
any a.

In the Short Term Memory model, the Receiver’s valua-
tion is limited to 7 past rounds, (the “magic number” com-
monly associated with human short term memory (Miller
1956; Lisman and Idiart 1995)). The subjective cost for the
Receiver is defined as follows:

z(a, t | h1,t−1) =
∑

t−7≤t′<t

scr(a, t
′ | h1,t

′−1) · 1
7

(4)

If t < 7, then the summation only spans rounds 1, . . . , t, and
the denominator is replaced by t.

Lastly, we also considered a baseline Soft Max model in
which the aggregate subjective cost of the Receiver for any
action is the average cost of taking this action in past rounds,
with no discount factor.

To model the Receiver’s action at time t, we adopted the
quantal response theory from behavioral economics (Haile,
Hortasu, and Kosenok 2008) that assigns a probability of
choosing an action a that is inversely proportional to the ag-
gregate subjective cost of that action given the history (i.e.
z(a, t | ht−1)). The Receiver is modeled to prefer actions
associated with lower subjective costs. However, with some
probability, the Receiver may still choose actions that are
more costly. The probability of the action a also depends on
the term z(dt, t | ht−1), which is the aggregate subjective
cost to the Receiver from following the advice of the Sender
at rounds 1, . . . , t− 1. Formally, the probability distribution
that the Receiver takes action at at round t given behavior at
past rounds h1,t−1 is

P (a, t |h1,t−1, dt) =

e−λ·z(a
t,t|h1,t−1) + S

e−λ·z(dt,t|h1,t−1) +
∑
a∈A e

−λ·z(a,t|h1,t−1)

(5)

Where S is set to equal e−λ·z(d
t,t|h1,t−1) when a = dt, and

zero otherwise; λ is a smoothing parameter.

Generating Strategies for the Sender
In this section we formally define the problem of finding the
optimal strategy for the Sender, and present several approxi-
mate solutions to the problem. Both the formal optimal pol-
icy and its approximations treat the model of the Receiver’s
behavior as a parameter.

To formally define an optimal strategy of a Sender, we
first represent the Sender’s decision making process as a
continuous MDP. To represent the selection process from
the Sender’s point of view as an MDP, we define the set
of world states for the MDP as follows.1 For any time t,
there is a corresponding world state for any state vt ∈ V
and history sequence h1,t ∈ H1,t. The set of all such
world states is denoted as St = {(vt, h1,t−1, t) | vt ∈

1We use the term “world state” to disambiguate the states of an
MDP from those of a selection process.
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V, h1,t ∈ H1,t}. The set of possible world states is de-
fined as S = ∪t=1,...,∞S

t ∪ {sterma | a ∈ A}. The ter-
mination states sterma represent the end of a selection pro-
cess after the Receiver executed action a, and will allow
a coherent definition of the MDP cost. The set of actions
for the Sender is the set |A| of actions in the selection pro-
cess. Let st = (vt, h1,t−1, t) and st+1 = (vt+1, h1,t, t+ 1),
where h1,t = h1,t−1 ◦〈at, (cr(vt, at), cs(vt, at), dt〉, be two
world states. Then the cost function for the MDP, denoted
cMDP , is defined as cMDP (sterma | st, dt) = cMDP (st+1 |
st, dt) = cs(v

t, at) and zero in all other cases. Notice that
the cost depends on the Receiver’s action that is encoded in
the target state, specifically ht in st+1 and the action index
in case of sterma .

The transition function of the MDP describes the progress
of the selection process. In the case that the selection pro-
cess terminates with probability 1 − γ, we set P (sterma |
st, dt) = (1 − γ)P (at | h1,t−1, dt, t), where st as above
and P (at | h1,t−1, dt, t) is the probability that the Receiver
chooses action at at time t given the history h1,t−1 and that
the Sender offers dt. In the case that the selection process
continues with probability γ, we set P (st+1 | st, dt) =
γ · P (at | h1,t−1, dt, t) · P (vt+1), where st+1 as above and
P (vt+1) is the probability that the selection process state
vt+1 will occur. To complete the transition function we also
set P (sterma | sterma′ , dt) = 1 if a = a′ and zero other-
wise. Finally, the initial state of the MDP is sampled from
the world states subset {(v, ∅, 1) | v ∈ V } according to
P (v), and the optimality criterion is set to be the minimiza-
tion of the expected accumulated cost.

Solving the continuous MDP described above yields an
optimal policy for the Sender given a model of the Receiver,
P (at | h1,t−1, dt, t). However, the world states of the MDP
incorporate the continuous state of the selection process and
discrete histories of arbitrary length, which makes the MDP
structure too complex to be solved exactly. In addition, we
cannot use existing approximation algorithm, which assume
a finite state space (Marecki, Koenig, and Tambe 2007), par-
tition the state space (Feng et al. 2004), or use kernel-based
methods (Ormoneit and Sen 2002), due to the mixture of the
continuous component (selection process state) and an arbi-
trarily large discrete component (action and advice history)
of the world state.

We therefore devise two approximate solutions by a-
priory limiting the space of possible strategies available to
the Sender and then, within the limited sub-set of strategies,
find the optimal one. The first approximation approach al-
lows only for an optimal strategy with respect to a single-
step policy iteration step. Specifically, we calculate

d∗,t = arg min
dt∈A

∫
st+1∈S

(
cMDP (st+1|st, dt) + V (st+1)

)
·

P (st+1|st, dt)dst+1 (6)

where V (st+1) is the expected accumulated cost of the ran-
dom strategy, i.e. where the Sender offers any d ∈ A with
probability 1/|A|. We estimated V (·) using Markov Chain
Monte Carlo sampling in a manner similar to that of (Lanc-
tot et al. 2009).

The second approximation approach allows the Sender to
generate advice by minimizing the weighted normalized cost
to both the Sender and the Receiver at each round. This ap-
proach is inspired by social preferences models that have
been shown to be effective for repeated human-computer
decision-making (Gal et al. 2012). Given a state v, the offer
chosen by the Sender is defined as follows

d∗,t = arg min
dt∈A

(1−w) · 1

Nr
· (cr(dt, vt))+

w · 1

NS
· (cs(dt, vt))

(7)

where w is a constant weight, and Nr and NS are nor-
malizing factors for the costs to the Receiver and Sender.
For a given world state v and history ht, we can define the
Sender’s expected cost ECs(v, ht) for action d∗,t as

ECS(v, h
t) =

∑
a∈A

P (at | h1,t−1, d∗,t, t)cs(a, v) (8)

The weightw is chosen to minimize the Sender’s costs when
summing over all world states and histories, as defined be-
low.

arg min
w′∈[0,1]

∫
v

∞∑
t=1

∑
ht

γ · P (v) · ECS(v, ht)dv (9)

The social weight approach explicitly reasons about the
trade-offs between the costs to both participants in the se-
lection process.

Empirical Methodology
Our empirical methodology comprises a family of selection
processes that are analogous to a route-selection task be-
tween a driver (a human Receiver) and a navigation sys-
tem (an agent Sender). At each round of the interaction,
the driver needs to choose one of 4 possible routes to get
to work. The system can advise the driver to take one of the
routes before the driver makes a choice. The road conditions
(i.e., travel time and fuel consumption) constitute the state
of the world, and vary due to traffic and maintenance. They
are unknown to the driver when it makes its decision. The
driver’s goal is to minimize the travel time over all rounds,
and the system’s goal is to reduce fuel consumption over
all rounds. After the driver chooses a route, both partici-
pants incur a cost which depends on the road conditions for
the chosen route. At this point the interaction continues to
the next round with probability 0.96. The conditions for the
roads at each round are sampled from a joint distribution that
is known to the agent, but not to the driver.

We modeled the fuel consumption and travel time using a
multivariate log-normal distribution. We used two different
settings in the study. In the first, we generated road con-
ditions using a model from the transportation engineering
literature (Ahn et al. 2002) which formalized a dependency
between time and fuel consumption as a function of the ex-
pected car accelerations in the road. In the second condition,
the time and fuel consumption were independent from each
other. Table 1 shows the mean fuel consumptions (in liters)
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Table 1: Road Condition Statistics for Independent and De-
pendent Settings

environment mean fuel consumption mean travel time
(liters) (minutes)

ind. 4.06 70
dep. 7.05 80.24

and commuting time (in minutes) for all 9375 rounds used in
the study. As shown by the table, the road conditions gener-
ated for the dependent setting were considerably more costly
than those generated for the independent setting.

We enlisted 375 subjects using Amazon Mechanical Turk,
all of which were provided with a description of the route se-
lection task. Subjects were told that the probability of a new
round was 0.96. However, to standardize comparison of re-
sults, each subject actually played 25 rounds. This number is
the expected number of rounds given that the discount factor
was 0.96, and also, the average number of commuting days
in one month. The actual number of rounds was not revealed
to subjects (nor the computer agents).2 Subjects were paid
a bonus proportional to the average travel time (the lower
the travel time the higher the bonus). All subjects were pro-
vided with an explanation of the game and its details, which
we described in the beginning of this section.

Model Selection and Agent Design
To choose between the various models of the Receiver, we
collected 2250 rounds from 90 subjects to train and evaluate
the short-term memory (ST), hyperbolic discounting (Hy-
per), SoftMax (SM), and Exponential Smoothing (ES) mod-
els that were described earlier. For each of these models,
we estimated the maximum-likelihood (ML) value of the pa-
rameters using sampling, and computed the fit-to-data of the
test set using the ML values. All results reported throughout
the section were confirmed to be statistically significant us-
ing single factored analysis of variance tests (ANOVA) for
p < 0.05. Table 2 presents the fitness of the models employ-
ing ten-fold-cross-validation (lower values indicate a better
fit of the model). As shown by the table, the Hyper model,
which modeled the Receiver using hyperbolic discounting
theory (Equations 1 and 5) exhibited a higher fit-for-data
than all other models of human Receivers.3

We hypothesized that the use of the social utility approach
will lead to best performance for the agent Sender, mea-
sured in terms of fuel consumption. To evaluate this hypoth-
esis, we used different agent designs for generating offers
to people which incorporate the decision-making strategies
that were described in the previous section. Specifically, we
used an agent that incorporated the social utility approach
to make offers, termed Social agent for Advice Provision
(SAP), and an agent using the MDP model to make offers,

2All of the study procedures were authorized by the ethics re-
view board of the corresponding institutions.

3For all models, we set the default value K to equal the mean
travel time of the road associated with the highest commuting time,
representing an upper bound for the cost to the Receiver.

Table 2: Fit-to-data of Different Receiver Models (lower is
better)

model d.f. Log-Like.
SoftMax 1 178.5

ES 2 172.2
hyper 2 169.4

short memory 1 186.9

Table 3: Simulation results comparing agent strategies
human model agent strategy fuel time

(liters) (minutes)
Random 6.120 64.40

hyper Silent 6.297 63.04
MDP 5.792 65.92
SAP 5.520 64.54

Random 7.046 58.08
ε−greedy Silent 7.104 57.68

MDP 6.812 59.26
SAP 6.432 55.84

termed MDP. We also employed two baseline agents, Ran-
dom which offered roads with uniform probability and Silent
which didn’t provide any advice.

We evaluated these agent designs in simulation as well as
in experiments involving new people. The simulation stud-
ies consisted of sampling 10,000 road instances according
to the distribution over the fuel consumption and travel time
for independent settings. As an alternative to the hyperbolic
discounting model, we also considered an approach using
an ε−greedy strategy to describe Receiver behavior. This
strategy is commonly used to solve Multi Armed Bandit
problems (Vermorel and Mohri 2005), which describes the
choice selection problem from the point of view of the Re-
ceiver. This strategy provides a rational baseline that seeks
to minimize travel time for Receivers over time. Table 3
presents results of the simulation. We compared the fuel
consumption costs incurred by the different Sender agents
for each model used to describe human behavior. As shown
in Table 3, the cost accumulated by the SAP agent using
the hyperbolic discounting model was 5.52 liters (shown in
bold), which was significantly lower than the cost to all other
agents using the hyper models to describe human behavior.
Similarly, the cost accumulated by the SAP agent using the
ε−greedy model were significantly lower than the cost to all
other agents using ε−greedy models.

Evaluation with People
Given the demonstrated efficacy of the SAP agent in the sim-
ulation described above, we set out to evaluate the ability of
the SAP agent to generalize to new types of settings and
new people. We hypothesized that a SAP agent using the
hyperbolic discounting model to describe Receiver behavior
would be able to improve its performance when compared
to the SAP agent using the ε−greedy model. We randomly
divided subjects into one of several treatment groups. Sub-
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Table 4: Performance Results against People
method selfishness fuel time acceptance
Silent – 6.20 64 –

Receiver 0 6.44 56.6 63.6%
Sender 1 5.88 64.32 31.0%
SAP-ε 0.29 5.76 56.6 70.8%

SAP-hyper 0.58 5.08 64.8 52.6%

Table 5: Generalizing to new people and new road condi-
tions
time & fuel agent-strategy selfishness fuel time acceptance

settings
ind. SAP-ε 0.33 4.048 49.98 67.0%
ind. SAP-hyper 0.66 3.858 55.48 41.9%
dep. SAP-ε 0.26 7.423 70.96 63.0%
dep. SAP-hyper 0.68 7.236 73.58 37.3%

jects in the Silent group received no advice at all. Subjects in
the SAP-hyper group were advised by the SAP agent using a
hyperbolic model to describe Receiver behavior. Subjects in
the SAP-ε group were advised by the SAP agent that used an
ε−greedy strategy to describe Receiver behavior. Subjects
in the Receiver group were consistently advised to choose
the road that was most beneficial to them, (i.e., associated
with the lowest travel time). Lastly, subjects in the Sender
group were consistently advised to choose the road which
was best for the Sender (i.e., associated with the lowest fuel
consumption).

Table 4 shows results for evaluating the models with new
people on the same instances used to train the models. All of
these instances included independent road conditions. The
performance for agents and for people is measured in terms
of overall fuel consumption and commuting time, respec-
tively. The “selfishness” column measures the degree to
which the agent was self-interested (the weight w in Equa-
tion 7). As shown by table 4, the SAP-hyper agent sig-
nificantly outperformed all other agent-designs, accumulat-
ing a cost of 5.08 liters (shown in bold). The best perfor-
mance for people (travel time of 56.6 minutes) was obtained
when using an agent that only considered people’s costs (Re-
ceiver) as well as the ε−greedy agent. The acceptance rates
for the SAP-hyper were lower than those for SAP-ε, which
we attribute to the higher degree of selfishness for the SAP-
hyper agent. Surprisingly, the acceptance rate for SAP-εwas
higher than that of the Receiver agent, whose degree of self-
ishness was 0, and consistently recommended the route that
was best for people. We hypothesize that this may be caused
by an unintended “too-good-to-be-true” signaling effect that
is perceived by people.

Table 5 reports results when comparing between SAP-ε
and SAP-hyper agents on new games and new people when
sampling road conditions from both independent and de-
pendent distributions. As shown by the table, the SAP-
hyper agent was also able to outperform the SAP-ε agent
when generalizing to new settings, although the differences
in performance were smaller. Figure 1 normalizes the per-

Figure 1: Normalized performance results for SAP agents

formance of both SAP agents across the independent and
dependent settings by dividing the costs incurred in the in-
dependent and dependent settings by the average costs over
all possible actions. As shown by the Figure, the costs in-
curred by both SAP agents on the dependent settings were
higher than the independent setting, which we attribute to
the realistic and more challenging characteristics of these
instances.

One may be bothered by the relatively low user accep-
tance rate or by the relatively poor user performance for
SAP-hyper. This may raise a concern that SAP might not
perform as well when longer interactions are expected. Re-
call that the agent’s goal was only to minimize its own cost.
Although the agent did consider the user’s cost and thus its
satisfaction, it was considered a means to an end in order
to minimize the agent’s overall cost. If the system expects
a longer period of interaction with the user (i.e. greater γ),
the user’s satisfaction will be more important to the agent,
and therefore the social weight will be balanced towards the
users benefit (causing an increase in user acceptance rate and
performance). Furthermore, if user satisfaction is important
to the agent on its own, it can be explicitly added to the
agent’s utility. However, we chose a more confrontational
setting to demonstrate the methods efficacy.

We conclude this section with two illustrative examples
of the reasoning in use by the SAP-hyper agent. In the
first example, one of the roads incurs very low cost to the
agent (3 liters), but has an extremely high cost for the person
(43 minutes). In this example, the SAP-hyper agent recom-
mended the road that was associated with the highest cost
to the agent (4.19 liters), but a very low cost to the person
(18 minutes). By combining the social utility function with
hyperbolic model, the SAP-hyper agent reasoned that this
action could decrease its expected future costs. The person
accepted this advice and chose the recommended route. In
the next round, the agent advised the person to take a road
with relatively high cost to the person (31 minutes) and very
low cost to the agent (1.6 liters). This offer was again ac-
cepted, confirming the agent’s reasoning.

Conclusions and Future Work
In this paper we consider a two player game, in which an
agent repeatedly supplies advice to a human user followed
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by an action taken by the user which influences both the
agent’s and the user’s costs. We present the Social agent
for Advice Provision (SAP) which models human behavior
combining principles known from behavioral science with
machine learning techniques. We test different approaches
for many of the SAP’s assumptions, and show that the SAP
agent outperforms all other alternatives. A further advan-
tage of using the SAP-hyper agent, in addition to its demon-
strated performance, is that its strategy does not depend on
the history of interaction with current Receiver to generate
an offer for the Sender. This makes it possible to deploy
them in situations that are common to many route selection
applications, where there is no knowledge of the number of
times that users have used the system in the past.

In future work we intend to study scenarios where the user
has other agents providing advice which have different cost
functions than our agent. We will allow future users to re-
ceive partial information from other sources (analogous to a
personal GPS or radio traffic reports) and allow them to turn
on or off the advice received from our agent.
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