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Abstract

We propose computer-assisted techniques for helping
with pedagogy in Algebra. In particular, given a proof
problem p (of the form Left-hand-side-term = Right-
hand-side-term), we show how to automatically gener-
ate problems that are similar to p. We believe that such
a tool can be used by teachers in making examinations
where they need to test students on problems similar to
what they taught in class, and by students in generating
practice problems tailored to their specific needs. Our
first insight is that we can generalize p syntactically to
a query Q that implicitly represents a set of problems
[[Q]] (which includes p). Our second insight is that we
can explore the space of problems [[Q]] automatically,
use classical results from polynomial identity testing to
generate only those problems in [[Q]] that are correct,
and then use pruning techniques to generate only unique
and interesting problems. Our third insight is that with
a small amount of manual tuning on the query Q, the
user can interactively guide the computer to generate
problems of interest to her. We present the technical de-
tails of the above mentioned steps, and also describe
a tool where these steps have been implemented. We
also present an empirical evaluation on a wide variety
of problems from various sub-fields of algebra includ-
ing polynomials, trigonometry, calculus, determinants
etc. Our tool is able to generate a rich corpus of similar
problems from each given problem; while some of these
similar problems were already present in the textbook,
several were new!

1 Introduction

Algebra is a subject where students learn by solving prob-
lems. Teachers give homeworks and exams, and ensure that
students get enough practice. However, generating fresh
problems that involve using the same set of concepts and
have the same difficulty level as the problems discussed in
the class, is a tedious task for the teacher. Even motivated
students want to have access to such fresh similar problems,
when they fail to solve a given problem and had to look at the
solution. Online learning sites such as Khan Academy (Khan
) have started providing practice exercises online. However,
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providing a fixed set of exercises does not provide sufficient
personalization for a student who is trying to learn a particu-
lar concept. We desire to automatically generate fresh prob-
lems that are “similar” to a given problem, where the user
interactively works with the system to fine-tune the notion
of “similarity”.

There have been two approaches to generating similar
problems. In one approach, flexibility is provided for instan-
tiating parameters of a problem with random constants (Ju-
rkovic 2001). However, this flexibility is given only for con-
stants. In another approach, certain features of the problem
domain are provided as hard-coded options and users are
able to choose among these options and generate problems.
For instance, in the domain of quadratic equations, some in-
teresting features could be whether the equation is “simple
factorable”, “difficult factorable, where the leading coeffi-
cient is not 1”, or “requires use of general quadratic for-
mula”. Another interesting feature can be whether or not it
has imaginary solutions. Several math worksheet generator
websites are based on this approach. The Microsoft Math-
Worksheet Generator goes a step ahead and automatically
infers such features from a problem instance (Microsoft b).
This approach is limited to simpler algebraic domains such
as counting, or linear and quadratic equation solving. Also,
each domain has its own set of features that needs to be pro-
grammed separately.

In this paper, we present a methodology that works for a
general class of proof problems (hereby, simply referred to
as “problems” for brevity) that involve establishing the va-
lidity of a given algebraic identity. Our methodology offers
two key benefits over above-mentioned existing approaches.
First, our methodology is fairly general and is applicable to
several sub-fields of Algebra such as Multivariate Polynomi-
als, Trigonometry, Summations over Series, applications of
Binomial theorem, Calculus (Limits, Integration and Differ-
entiation), Matrices and Determinants, etc. Second, we are
able to involve the user and interactively fine-tune the no-
tion of “similarity” according to the tastes and needs of the
user.

Our methodology works in 3 steps:
1. Query Generation: Given a problem p, abstract p to a

query Q. The query Q implicitly specifies a set of prob-
lems denoted by [[Q]] where p 2 [[Q]] by default.

2. Query Execution: Automatically executing a query Q to
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BinaryOp ::= ⇤ |+ |� | / | exp
UnaryOp ::= � | square | ln | sqrt |Trig | InvTrig
Trig ::= sin | cos | tan | cot | sec | cosec
InvTrig ::= sin

�1 | cos�1 | . . . | cosec�1

Constant ::= 1 |⇡ | e | 0 | 1 | 2 | . . .
Variable ::= string
Term ::= const(Constant) | var(Variable)

| uop(UnaryOp,Term)
| bop(BinaryOp,Term)
| diff(Variable,Term) // Differentiation
| indefint(Variable,Term) // Integration
| defint(Variable,Term,Term,Term)
| summation(Variable,Term,Term,Term)
| limit(Variable,Term,Term) // Limit
| ncr(Term,Term) // “n” choose “r”
| matrix((Term, int , int) list) // Sparse Matrix
| det(Term) // Determinant of a Matrix

VarDomain ::= TINT(Variable, int , int)
| TREAL(Variable,Constant,Constant)

Problem ::= (Term,Term,VarDomain list)

Figure 1: Syntax of Algebra Proof Problems.

generate the subset of valid problems from [[Q]]. Since
Q is a syntactic generalization of the original problem
p, only a subset of problems in [[Q]] are valid problems.
Query execution rules out generation of invalid problems,
trivial problems, and problems that are equivalent to each
other (maintaining one representative), and makes use
of elegant results from (generalized) polynomial identity
testing (Schwartz 1980), combined with several algorith-
mic techniques to improve efficiency.

3. Query Tuning: Allow the user to change query Q to Q0 if
the set of generated problems in Step 2 is not satisfactory
followed by re-execution.
We completely automate the query generation and execu-

tion steps, while query tuning is done interactively and man-
ually. We evaluate our technique on several problems from
algebra textbooks and measure its effectiveness.

This paper makes the following contributions.
• We present a query language for representing a set of

problems that are similar to a given problem (§2).
• We describe an efficient query execution engine that can

generate valid problems from the set of problems repre-
sented by a given query (§3).

• We propose an interactive methodology wherein queries
can be automatically generated from a given problem, and
depending on the returned results, be possibly refined by
the teacher (§5).

• We present experimental results that illustrate the efficacy
of our methodology for problem generation (§6).

2 Query Language

The design of the query language is central to our technique,
and embodies several trade-offs we have made. Before we
describe the query language, we first describe our term lan-
guage used to specify problems. A problem (see Figure 1) is

QUnaryOp ::= UnaryOp |ChoiceU(Id,UnaryOp set)
QBinaryOp ::= BinaryOp |ChoiceB(Id,BinaryOp set)
QTerm ::= Rules similar to Term

|ChoiceT(Id,Term set)
QProblem ::= (QTerm,QTerm,VarDomain list)
QConstraint ::= � (Id list) | Id :=  (Id list)
Query ::= (QProblem,QConstraint list)

Figure 2: Syntax of Query Language.

a triple (t1, t2, l) comprising of two terms and a list of do-
main constraints on the free variables appearing in t1 and
t2. Here, t1 is the “left-hand-side” (LHS) term and t2 is
the “right-hand-side” (RHS) term. Each domain constraint
of the form TINT | TREAL(x, a, b) specifies the range [a, b]
and type of values (int or real) for the variable x. The goal
of the problem is to prove equality between the two sides for
all values of the free variables under the domain constraints.
(We consider only equalities in the paper, and leave gener-
alizations to deal with inequalities for future work). Terms
are recursively defined trees with unary, binary and other
operators (e.g., differential, definite and indefinite integrals,
sums, limits, matrices, determinants) in the internal nodes of
the tree, and with constants and variables as the leaves of the
tree. Note that we distinguish between BinaryOp and other
operators like diff because the two have different evalua-
tion strategies.

A query generalizes a problem to a set of problems. Syn-
tactically, a query (see Figure 2) comprises of a QProblem
(which is a pair of QTerms (for “query terms”) and a list
of variable domain constraints) and a list of QConstraints
(for “query constraints”). The tree structure of QTerms is
exactly the same as that for Terms except in two ways: (i)
Every UnaryOp, BinaryOp and Term nodes are replaced by
QUnaryOp, QBinaryOp and QTerm nodes respectively. (ii)
QUnaryOp, QBinaryOp and QTerm have special internal
nodes (called “choice nodes”) identified by an Id and rep-
resent a set of unary operators, binary operators and Terms
provided as their second argument respectively .

Replacing each choice node in a query Q with an arbitrary
element from the set represented by the choice node gives a
concrete problem p. The set of all such problems that can
be generated from a query Q is denoted by [[Q]]. Our aim
is to obtain a subset of [[Q]] comprising only of problems
that are correct for all values of free variables in the range
provided by variable domain constraints and that satisfy the
query constraints.

Query constraints are used to specify dependencies be-
tween the choices made at various choice nodes in a Query
Q. We identify two classes of query constraints:

1. Relational Constraint: Comprises of a Boolean function
� : (Id list) 7! bool over choice nodes’ Ids, ensuring
a relationship among the choices made at those choice
nodes.

2. Functional Constraint: Comprises of an Id (say c
i

) and
a function  : (Id list) 7! TypeOf(c

i

) over choice
nodes’ Ids that are different from c

i

. This constraint en-
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sures that the choice node c
i

will always choose the value
obtained from the function  .
Note that relational constraints are general enough to cap-

ture functional constraints but the latter can be used to im-
prove efficiency. Instead of enumerating instantiations and
then pruning the instantiations that violate relational con-
straint, it is more efficient to specify the desired constraint
as a functional constraint, and only generate the instantia-
tions desired. Also note that we do not give any syntax for
specifying the functional or relational constraints. Any con-
straint that we can execute (or check) during query instan-
tiation suffices as a function constraint (or relational con-
straint). The constraints are in terms of the Id’s as well as
free variables of the problem we are generalizing from. All
free variables of the problem that occur in the constraint are
assumed to be universally quantified.

We now give various examples to illustrate how we use
the query language. Each example first gives the problem
we start with, and then shows the query we use to general-
ize the problem (including the constraints that form part of
the query) and then presents the problems we were able to
obtain by running our engine on the query. We note that our
execution engine uses some results from polynomial iden-
tity testing (Schwartz 1980) to generate valid problems, and
other techniques (also described later) to generate only dis-
tinct problems. The examples motivate not only the design
of our query language, but also the optimization techniques
presented in the rest of the paper.

Example 1 (Limits/Series)

PROBLEM:

lim

n!1

nX

i=0

2i2 + i+ 1

5

i

=

5

2

Note that there are no variable domain constraints as there
are no free variables. This problem is a generalization of the
famous arithmetico-geometric series usually found in high
school textbooks.

QUERY: A natural generalization for this problem is ob-
tained by replacing some constant integer coefficients by a
choice node that can take values from a bounded set of inte-
gers.

Query Problem:

lim

n!1

nX

i=0

C0i
2
+ C1i+ C2

(C3)
i

=

C4

C5

where C
j

⌘ ChoiceT(c
j

, {0, 1, 2, . . . , k}) for each j and
a bounded k.

Query Constraints:

• The constraint (c5 6= 0 ^ c4 6= 0 ^ gcd(c4, c5) = 1) en-
sures that c4 and c5 do not share a common non-trivial
factor.

• The constraint (gcd(c0, c1, c2) = 1) ensures that the co-
efficients of the LHS do not share a common factor.

• The constraint (c0 6= 0) ensures that the difficulty level of
the problem is similar to that of the original one (because
highest degree monomial term in i is preserved).

• The functional constraint (c4 := c3) fixes the same term
for c4 as chosen for c3 (as was the case in the original
problem). Note that we specify this as a functional con-
straint to achieve efficient instantiation.

RESULTS: Our engine generated 21 similar problems with
k = 7, some of which are mentioned below:

lim

n!1

nX

i=0

3i2 + 2i+ 1

7

i

=

7

3

lim

n!1

nX

i=0

3i2 + 3i+ 1

4

i

= 4

lim

n!1

nX

i=0

i2

3

i

=

3

2

lim

n!1

nX

i=0

5i2 + 3i+ 3

6

i

= 6

Example 2 (Trigonometry)

PROBLEM:

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA

From (Loney ).
QUERY:
Query Problem:

T0(A)

C1 ±9 T2(A)

±8
C3 ±10 T4(A)

T5(A)

= C6T7(A)

where ±

u

⌘ ChoiceB(c
u

, {+,�}), T
i

(A) ⌘

ChoiceT(t
i

, {sinA, cosA, . . .}) comprises of all
6 trigonometric function applications on A, and
C

j

⌘ ChoiceT(c
j

, {0, 1, . . . , k}) for a bounded integer k
(here u 2 {8, 9, 10}, i 2 {0, 2, 4, 5} and j 2 {1, 3, 6}).

Query Constraints: We use the functional constraints
c3 := c1, t4 := t2 and t5 := t0.

RESULTS: Our engine generated 8 similar problems, of
which 2 are present in the same textbook, and the remaining
6 are new problems, and it turns out that they all have similar
proof strategies. We list some of the them below:

cosA

1� sinA
+

1� sinA

cosA
= 2 tanA

cosA

1 + sinA
+

1 + sinA

cosA
= 2 secA

cotA

1 + cscA
+

1 + cscA

cotA
= 2 secA

tanA

1 + secA
+

1 + secA

tanA
= 2 cscA
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Example 3 (Determinants)

PROBLEM:
������

(x+ y)2 zx zy
zx (y + z)2 xy
yz xy (z + x)2

������
= 2xyz(x+ y + z)3

From (Khanna ).
QUERY:
Query Problem:

�����

F0(x, y, z) F1(x, y, z) F2(x, y, z)
F3(x, y, z) F4(x, y, z) F5(x, y, z)
F6(x, y, z) F7(x, y, z) F8(x, y, z)

����� = C10F9(x, y, z)

where F
i

(0  i  8) is a ChoiceT term with Id = c
i

and
represents a set of homogeneous second degree polynomials
{(x+ y)2, (y+ z)2,±xy, (s� x)2,±(s� x)(s� y), (x2

±

yz), (x2
± xy), . . .} where s =

x+y+z

2 . We considered all
such polynomials and their cyclic rearrangements that were
already being used in some problems in the textbooks. C10 is
a constant choice block (as in the previous examples). The
choice node F9 represents a degree six homogeneous and
symmetric polynomial comprising of 3 second degree fac-
tors ({x2

+y2+z2, xy+yz+zx}) or 2 third degree factors
({xyz, (x+ y+ z)3, x3

+ y3 + z3, x2y+ y2z+ z2x, y2x+

z2y + x2z}).
Query Constraints: Let c

i

be the Id associated with choice
term F

i

. We add functional constraints to establish cyclic-
ity of the expressions inside the determinant along all the
diagonals c

i

:= c
j

[x ! y, y ! z, z ! x] for the pairs
(i, j) 2 {(4, 0), (8, 4), (5, 1), (6, 5), (3, 2), (7, 3)}. We also
add a relational constraint to avoid generating a new prob-
lem if the set of expressions used in the determinant and the
RHS are exactly the same as those for some other previously
generated problem.

RESULTS: Our engine generated 6 similar problems, of
which 3 are already present in the same textbook and the
remaining 3 are new. Some of the generated problems are
given below:
������

x2
(s� x)2 (s� x)2

(s� y)2 y2 (s� y)2

(s� z)2 (s� z)2 z2

������
= 2s3(s�x)(s�y)(s�z)

������

y2 x2
(y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

������
= 2(xy + yz + zx)3

������

�xy yz + y2 yz + y2

zx+ z2 �yz zx+ z2

xy + x2 xy + x2
�zx

������
= xyz(x+ y + z)3

������

yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

������
= 4x2y2z2

Example 4 (Integration)

PROBLEM:
Z
(cscx) (cscx� cotx) dx = cscx� cotx

From (Wiki c).
QUERY:
Query Problem:
Z

T0(x) (T1(x)±3 T2(x)) dx = T4(x)±6 T5(x)

where T
i

(x) ⌘ ChoiceT(c
i

, {sinx, cosx, . . .}) comprises
of all 6 trigonometric function applications on x.

Query Constraints: We add the relational constraints
(c6 = “�” ) ) (c4 6= c5) and (c3 = “�” ) ) (c1 6= c2) to
ensure non-zero LHS and RHS.

RESULTS: Our engine generated 8 problems, of which 4

are present in the tutorial and the remaining 4 are new prob-
lems. We list some of the new problems below:

Z
(tanx) (cosx+ secx) dx = secx� cosx

Z
(secx) (tanx+ secx) dx = secx+ cosx

Z
(cotx) (sinx+ cscx) dx = sinx� cscx

3 Query Execution

Given a query Q, the set [[Q]] can be obtained by systemat-
ically enumerating and instantiating all possible resolutions
of choice nodes in Q. If there are n types of choice nodes
in Q with different identifiers (say c1 to c

n

), and the choice
node with identifier c

i

can be resolved in m
i

ways, then the
cardinality of the set [[Q]] is given by m1⇥m2⇥· · ·⇥mn

, as-
suming there are no constraints specified as part of the query.
If there are relational constraints, then instantiations that vi-
olate relational constraints are discarded. Functional con-
straints are used to constrain the instantiations that the enu-
meration engine generates in the first place, and are hence
more efficient than relational constraints.

Several problems in [[Q]] may be incorrect (that is, LHS
may not equal RHS on all values of the free variables). We
check for this using generalized polynomial identity testing
(Schwartz 1980). Let t be a term with free variables X . Let
t[X  v] denote the term obtained by substituting for the
variables in X with the value v. Let t + denote the evaluation
of a term t with no free variables using standard semantics
for all nodes in t.

Theorem 1 ((Gulwani, Korthikanti, and Tiwari 2011))

Let p = (t1, t2) be a problem with free variables X . Let
V
X

denote the space of values for the free variables. Then,
suppose we pick a value v at random from V

X

and suppose
that (t1[X  v] +) = (t2[X  v] +). Then, we have
that the problem p is correct with high probability over the
choice of the random value v.

The theorem follows from a corresponding theorem in
(Gulwani, Korthikanti, and Tiwari 2011) for analytic func-
tions. Our problem grammar (excepting the case of bino-
mial coefficients) maintains differentiability of any order at a
point as long as the terms can be evaluated at that point. This
makes these functions real analytic. We extend the technique
to Binomial coefficients as well by picking random integer
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values for free integer variables. For all our experiments we
use 4-6 “random evaluations” (evaluations on randomly gen-
erated values for each free variable) before announcing a
problem as being correct.

For several queries Q, we find that the size of the gen-
erated problem set [[Q]] is quite large. Thus, we perform
the following optimizations to improve the scalability of our
evaluation procedure.
Backtracking. The algorithm constructs a set of choice
node Ids for each sub-term location in LHS and RHS of the
problem p that are responsible for the evaluation of the sub-
term. As long as the selection for those choice nodes remains
the same, we do not need to evaluate this sub-term more than
once. These values are stored in a map, and at any later stage
the algorithm can backtrack the value of this sub-term to
avoid re-evaluation. Also, the values of simple function ap-
plications (like sin, det etc) are stored so as to avoid calling
a library function for the same computation with the iden-
tical numerical arguments. In many cases where the search
space is quite large, the backtracking based algorithm out-
performs the naive algorithm and reduces the running time
to around a minute from 10-20 minutes.
Approximate computation with thresholds. We desire to
efficiently evaluate a term t with free variables X for a
randomly generated value v assigned to the free variables.
Unlike polynomial identity testing (Schwartz 1980), where
evaluation can be done by performing modular arithmetic
(modulo a randomly chosen prime), we have general alge-
braic terms with trigonometric functions, square roots, inte-
grals, derivatives etc. Thus, we use floating point arithmetic
with a threshold ✏1 for comparing two floating point num-
bers for equality. We use approximate numerical methods
for each specific computation. For evaluating definite inte-
grals we use adaptive quadrature based algorithm with abso-
lute error threshold ✏2 (Wiki a). For approximating deriva-
tives, we use 8-point finite difference method (Wiki b) in
small intervals (length of each interval being equal to a pa-
rameter ✏3). To check correctness of indefinite integral prob-
lems like

R
f(x)dx = g(x), we use two random values v1

and v2 for the bounded variable x and check equality (within
threshold) of

R
v2

v1
f(x)dx = g(v1) � g(v2) under a ran-

dom assignment to other free variables. For evaluating limits
tending to finite values, we use sequences approaching the
value from both sides and stop when the difference of two
values on both sides becomes smaller than a threshold value
✏4. To evaluate infinite limits, we use a sequence of values
tending to1 and stop when two consecutive evaluations are
close enough within threshold ✏5. Determinants are evalu-
ated using Dense LU decomposition of the matrix (Wiki d).

4 Query Generation

In this section, we describe how to automatically abstract
a given problem into a query that is likely to yield similar
problems desired by the user. This involves generalization
of the problem to get a query problem and also generation
of query constraints.

Problem Generalization A problem p can be gener-
alized to a QProblem Qp by systematically replacing pat-

terns of sub-terms with choice operators in both the LHS
and RHS. The algorithm generalizes the expression tree at
the leaves (constants) and the intermediate nodes represent-
ing most unary and binary operations using the following
rules:
1. Every occurrence of a unary trigonometric (inverse-

trigonometric) operator in p is replaced by a choice node
which generalizes it so as to allow any trigonometric
(inverse-trigonometric) unary operator.

2. Every occurrence of a constant is replaced with a choice
node allowing a list of constants between a lower and an
upper bound (parameters controlled by the user).

3. Every add or subtract (binary) operator is replaced by a
choice node allowing both operations (i.e. ±).

4. Every occurrence of a homogeneous polynomial in 2 or
3 variables (say inside a determinant) is replaced by a
choice node representing a set of homogeneous poly-
nomials in the same variables (For our experiments, we
fixed this set by looking at some problems from text-
books).

5. Every occurrence of a particular free variable is replaced
by a choice node representing a set of its powers (both
negative and positive ones, bounded in the value of the
exponent).

6. For summations, multiply by a choice node in front with
values 1 or (�1)

i where i is the variable on which the
summation is being computed.

7. For summations, replace every occurrence of the iterated
variable i by a choice node representing values i, 2i, 2i+1

(along with reducing the upper bound by making it half
for the two new cases using functional constraints). This
allows considering alternate terms of a summation.

8. In presence of radicals, replace every constant by choice
node representing bounded integers and all constant radi-
cals (such as

p

2) appearing in the original problem.
All problems in Examples 1, 2, 3 and 4 in section §2 can

be generalized by using rules (2),(1, 2, 3),(4) and (1, 3) re-
spectively. The query execution engine provides the user op-
tions to control how much generalization should be done.
The size of the search space and the number of problems
generated is proportional to the degree of generalization se-
lected by the user.

Query Constraint Generation We generate the follow-
ing constraints automatically during query generation. The
engine provides the user options to remove any of these con-
straints or to add new constraints.
1. For every occurrence of the same constant or unary func-

tion with the same parameter, we add a functional con-
straint assigning the multiple occurrences to the same
constant or parameter to the first one.

2. In case of division of two choice nodes representing in-
teger constants, we add a relational constraint using gcd

(as in Ex. 1) to ensure that they are relatively prime.
3. If the input problem has a matrix with cyclicity property,

we add a functional constraint to ensure cyclicity during
query instantiation as well.

4. We add two relational constraints saying that the RHS
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and LHS are not identically equal to 0.
5. Discard “trivial” or “simpler” problems (obtained by as-

signing the choice nodes with respective choices) that can
be syntactically simplified by canceling/accumulating
terms in the case when there are multiple sub-terms being
added or multiplied.

6. Ensure that LHS of current problem is not a multiple or
inverse of LHS of some previously processed problem.

Note that the first three constraints above are easily checked
during query instantiation. The fourth constraint is univer-
sally quantified over the free variables of the problem, and
is enforced by checking for equality on randomly generated
values of the free variables. The fifth and sixth constraints
are implemented using some simple symbolic reasoning,
and our implementation of the the sixth constraint searches a
database of previously generated problems. However, since
our query language allows us flexibility to use any function
as long as it can be executed, such sophisticated constraints
are easily incorporated.

5 Query Tuning

Even though we have provided some strategies for automatic
query generation in §4, reaching a satisfactory set of gener-
ated problems is quite subjective and automatic generation
may not capture insights of the user. The user can reduce the
number of problems being generated by adding more con-
straints to the query. For instance, in Example 1 (§2) the
constraint c0 6= 0 is added to ensure that the degree of the
polynomial in the numerator remains 2. If the user wants
to see some more problems than the ones generated by the
engine, the user can remove some automatically generated
constraints or improve the generalization by adding more
choices in existing choice nodes or new choice nodes to the
query. For instance, in Example 2 (§2), the user may want
to generate problems that do not satisfy the automatically
generated functional constraint for equal trigonometric op-
erators. In our experience this interactive process of query
tuning and execution proceeds for at most a couple of it-
erations before the engine generates a set of “interesting”
problems for the user.

6 Empirical Results

We have implemented our algorithm using the F# lan-
guage. The implementation uses XML representations for
Terms, Queries and Constraints to interact with the user. The
user can provide a problem in an XML file, and our engine
generates an intermediate Query as an XML file output. The
user can either choose this automatically generated query or
modify it before passing it on for execution. Query execution
generates new problems based on the query. The user can
view the generated problems, and fine-tune the query if the
new problems are not interesting enough. The user can also
add or remove default constraints using command-line flags
and set various parameters like number of random tests to be
done, threshold values etc. These I/O XML representations
can also be converted to MathML syntax which can poten-
tially enable a web-based GUI for Query tuning. For compu-
tation of determinants, derivatives & integrals, we used F#

PowerPack (Microsoft a) and MathNet.Numerics (MathNet
) libraries.

We chose our benchmarks from 5 algebra domains (8-
13 from each domain). We present our experimental eval-
uation based on these benchmarks in Table 1. The first
column describes type of the query (T -Trigonometry, L-
Limits, I-Integral Calculus, B-Binomial Theorem, and
D-Determinants). The table contains size of the search
space(|[Q]|), number of Tuning iterations done (n

T

), Num-
ber of non-trivial correct problems evaluated(n

C

), Num-
ber of non-trivial and non-equivalent problems generated
(n

Gen

) and Time taken (t in seconds) for Query evaluation.
Note that for each row n

Gen

is the number of problems that
were left after the set of correct problems n

C

is pruned by
the engine using query constraints from Section 4 (so that
the user is presented with distinct problems, without repeti-
tions). Our collection of benchmark examples comprises of
problems from S.L. Loney’s Trigonometry Textbook (Loney
), NCERT Math textbook (NCERT ), M.L. Khanna’s Al-
gebra textbook (Khanna ) and internet based tutorials like
(Wiki c). We note that, for each of the benchmark exam-
ples, we were able to generate similar problems using our
approach. In some cases, we had to fine-tune the query, and
in all such cases, we did at most one iteration of fine-tuning
(see column n

T

) to generate interesting problems. We have
manually validated every generated problem to ensure that
they are indeed correct and interesting problems. All bench-
mark examples are described in a full version of this paper
(Singh, Gulwani, and Rajamani 2012).

7 Related Work

The ever increasing class sizes, thanks to recent online edu-
cational initiatives (Khan ; mit ), has reinforced the need for
use of technology in education. Technology has been used
to help both students and teachers with various structured
and repetitive tasks in education including solution gener-
ation (Gulwani, Korthikanti, and Tiwari 2011) and grad-
ing (Singh, Gulwani, and Solar-Lezama 2012). In this pa-
per, we show how yet another aspect of education, namely
problem generation, can be automated.

There has been substantial work on query languages for
a variety of domains including documents with numerical
data (Agrawal and Srikant 2003), structured web data (Sper-
tus and Stein 2000; Mendelzon, Mihaila, and Milo 1996),
web-based question answering (Cafarella and Etzioni 2005),
or for defining text regions in a document (Miller and My-
ers 1999). We present a query language for a new domain,
namely algebra problem generation. Past work on query ex-
ecution has been mainly built around appropriate indexing
schemes, while our work relies on exhaustive search made
efficient by using generalized polynomial identity testing,
and various optimizations.

Programming by example (Lieberman 2001; Cypher
1993; Gulwani 2012) is a very popular paradigm for au-
tomating end-user programming tasks and has been used
in a wide variety of domains including text-editing pro-
grams (Lau, Domingos, and Weld 2000), spreadsheet data
manipulation (Gulwani, Harris, and Singh 2012; Gulwani
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Q nT |[Q]| nC nGen t (seconds)
T1 0 21600 6 6 4
T2 0 1866240 12 2 167
T3 1 7776000 76 4 16
T4 0 129600 8 3 50
T5 0 259200 6 2 9
T6 1 972000 4 2 2
T7 0 2592 8 3 1
T8 1 373248 96 9 16
T9 0 12960 8 3 1
T10 0 25920 8 2 2
T11 0 10368 6 4 3
T12 0 5184 6 3 1
T13 0 233280 8 2 95
L1 1 179159040 709 139 422
L2 0 18750 34 34 1
L3 1 6048 6 6 1
L4 0 531441 29 29 8
L5 0 13176900 971 38 30
L6 1 497664 38 38 3
L7 1 9216 67 67 2
L8 0 6000 21 21 19
D1 0 46656 12 12 1
D2 1 373248 686 21 12
D3 1 46656 18 18 1
D4 0 1296 8 8 1
D5 0 16384 22 22 1
D6 1 216 2 2 1
D7 1 675000 40 39 2
D8 0 291600 126 3 8
D9 1 9920232 16254 4 261
D10 1 6718464 540 3 291
D11 1 40310784 1701 5 1137
I1 0 629856 86 8 17
I2 1 3024 10 10 3
I3 0 432 10 10 1
I4 0 864 6 6 1
I5 0 62208 474 15 5
I6 1 186624 6 6 4
I7 1 5971968 1160 10 244
I8 0 62500 52 29 2
B1 0 78125 90 32 3
B2 0 3125 5 2 1
B3 1 3750 4 4 1
B4 0 104976 2029 8 5
B5 0 729 17 17 1
B6 0 36 5 5 1
B7 1 390625 29 29 10
B8 1 9765625 5 2 1
B9 0 180000 489 9 2
B10 0 194481 927 20 4

Table 1: Empirical Results for Benchmark Problems

2011; Singh and Gulwani 2012a; 2012b; Harris and Gul-
wani 2011), repetitive robot programs (Pardowitz, Glaser,
and Dillmann 2007), shell scripts (Lau et al. 2004), and im-
perative Python programs (Lau, Domingos, and Weld 2003).
We have applied this by-example paradigm to a novel do-
main, that of algebra problem generation where the teacher

provides an example problem as input and our tool out-
puts similar problems. Unlike previous work, which is based
on version-space algebras (Mitchell 1982; Lau, Domingos,
and Weld 2000), our techniques perform brute-force search
based on non-trivial principles and optimizations.

Template-based verification (Gulwani, Srivastava, and
Venkatesan 2008; Gulwani and Tiwari 2008) and synthe-
sis (Srivastava, Gulwani, and Foster 2010; Taly, Gulwani,
and Tiwari 2009; Solar-Lezama 2008; Solar-Lezama et al.
2005) is an upcoming line of work in the areas of Program-
ming Languages and Hybrid Systems. The programmer
writes down a template (formulas with holes whose values
range over finite or infinite domains) for invariants/program
structures and the verifier/synthesizer finds instantiations for
these holes such that the overall specification is met. Our
work also falls in this category where our queries are like
templates and their free variables range over a finite set of
choices. Unlike previous work, which is based on use of
SAT/SMT solvers to navigate the state space, we use brute-
force search based on non-trivial principles and optimiza-
tions. Furthermore, we also address the challenging issue of
automatically generating an initial query or template.

8 Conclusion and Future Work

There is a resurgence of interest in online learning re-
cently, fueled by popularity of websites such as Khan
Academy (Khan ). In this paper, we show that a very impor-
tant aspect of learning, namely the ability to provide fresh
practice problems related to the concept which a student is
trying to learn, can be automated for the domain of alge-
braic proof problems. Our automated algorithm has the ad-
vantage that it can generate problems that are “similar” in
terms of the structure and difficulty, to problems worked out
by the teacher in class, or to an exercise the student has tried
out, and hence is more relevant to what the student is trying
to learn. We have manually verified that for all our bench-
mark examples, the problems generated by our system are
indeed similar to the original problem in the difficulty level
and the set of concepts required to solve them. We are now
planning to put our system online to also obtain statistical
validation of the similarity level of the problems generated
by our tool with the original problem. We also want to con-
duct user studies to measure the usability and utility of our
system for both teachers and students.
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