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Abstract 
We harness the ability of people to perceive and 
interact with visual patterns in order to enhance the 
performance of a machine learning method. We show 
how we can collect evidence about how people 
optimize the parameters of an ensemble classification 
system using a tool that provides a visualization of 
misclassification costs. Then, we use these 
observations about human attempts to minimize cost 
in order to extend the performance of a state-of-the-art 
ensemble classification system. The study highlights 
opportunities for learning from evidence collected 
about human problem solving to refine and extend 
automated learning and inference. 

 Introduction   
The development of machine learning procedures hinges 
on design choices such as selection of optimization 
methods, definition of evidential features, and the setting 
of parameters. Such design decisions rely on expert 
knowledge and can be viewed as a form of search through 
a space of alternate methods and models. We have been 
pursuing opportunities for automating the refinement of 
machine learning. Our work comes in the context of 
growing interest in interactive, human-in-the-loop learning, 
where people iteratively tag, train, and correct 
classifications in a tight interactive loop. Examples of work 
in this space include online learning against adversaries, 
active learning, and contextual bandits. 

We examine the prospect of extending machine learning 
algorithms with methods that learn from people’s attempts 
to optimize the performance of classifiers. Specifically, we 
collect and use evidence about the steps that human 
subjects take to minimize misclassification via the use of a 
tool that provides a visual summary of the performance of 
a weighted combination of a set of classifiers, as well as 
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controls for modifying the parameters of the classification. 
We collect observations of subjects’ attempts to minimize 
the costs of misdiagnosis to train classifiers. Then, we use 
the data autonomously to enhance a machine learning 
procedure. The methods and results highlight the promise 
of learning to learn from people, by leveraging human 
skills at perceiving visual patterns with ease, and codifying 
evidence about strategies that people formulate to refine 
the behavior of a system.   

We focus on analyzing and learning within 
EnsembleMatrix (Talbot et al. 2008), a system that allows 
users to interactively manipulate visualizations of the 
output of a multiclass classifier system in order to design a 
more ideal combination of multiclass classifiers. We 
describe a study we ran to observe human problem solving 
behavior with the system, review insights we garnered 
from this study, and present algorithms that we developed 
with data from human optimization sessions. 

Related Work 
Recent studies have identified situations in which people 
produce better classifiers than automatic techniques. Some 
studies provide users with visualizations about the 
operation of specific machine learning algorithms along 
with controls for modifying parameters of the learning 
procedures and classifications (Ware et al. 2001, Talbot et 
al. 2008). Related studies have explored the use of people 
to provide hints to optimize decision trees (Ankerst et al. 
1999), naïve-Bayes (Becker et al. 2001), SVMs (Caragea 
et al. 2001), and HMMs (Dai and Cheng 2008).  

Our research is also closely aligned with research on 
interactive machine learning. Fails and Olsen (Fails and 
Olsen 2003) assert the potential value of human 
involvement to provide training data and propose an 
interactive system that enables users to train, classify, and 
correct classifications in a real-time iterative loop. In the 
context of unsupervised learning, interactive clustering 
using human input has been also proposed (Bilenko, Basu, 
Mooney 2004, Bekkerman et al. 2007). Beyond label 
elicitation, related research includes interactive feature 
discovery for identifying discriminative features 
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(Raghavan, Madani, Jones 2005) and interactive 
optimization that uses human guidance to maximize human 
preferences about classification (Kapoor et al. 2010). 

The main goal of most of the work mentioned above has 
been to achieve high classification accuracy rather than to 
learn from human actions. We note that the problem of 
reinforcement and imitation learning (Sutton and Barto 
1998, Hsiao and Lozano-Perez 2006) are related to our 
efforts. However, little effort to date has been focused on 
the task of learning to learn from observations about 
human efforts to optimize machine classification. In this 
work, we explore the prospect of developing better 
classification systems by incorporating insights gleaned by 
watching people effectively optimize the performance of 
classifiers in interactive learning scenarios. 

Designing Classifiers with EnsembleMatrix 
We harness a prototype named EnsembleMatrix that was 
created earlier for studies of interactive machine learning 
(Talbot et al. 2008). EnsembleMatrix was designed to 
assist developers with optimizing the behavior of machine 
classification in applications. Specifically, the prototype 
helps developers build an ensemble classifier by 
combining multiple component classifiers (see Figure 1). 
The EnsembleMatrix interface consists of three basic 
sections: the Component Classifier view on the lower right, 
which contains an entry for each classifier that the user has 
imported, the Linear Combination widget on the upper 
right, and the main Ensemble Classifier view on the left. 

EnsembleMatrix represents each classifier using a 
graphical heat map of its confusion matrix. Confusion 
matrices allow human observers to use their perceptual 
capabilities to identify patterns of misclassification. The 
ordering of any matrix can greatly influence the patterns 
visible. EnsembleMatrix reorders the main confusion 
matrix at interactive rates to highlight sets of frequently 
confused classes (Cuthill and McKee 1969). The prototype 

provides two basic mechanisms for exploration: (1) a 
partitioning operation, which divides the class space into 
multiple partitions, and (2) a linear combination operation 
that lets the user select weights for each classifier within 
each partition. Partitioning the class space separates the 
data instances into two subsets, allowing the user to 
develop predictors specialized for each subset. The two 
subset classifiers are restricted to only predicting classes 
within their partition. The second interaction mechanism 
allows the user to quickly manipulate a subspace of the 
linear combination of component classifiers using a simple 
two-dimensional interpolation control. Partitioning and 
linear combination operations can be done recursively an 
arbitrary number of times and in any order, leading to a 
large number of possible refinement strategies. 

Talbot et al. (Talbot et al. 2008) observed that when 
asked to find configurations of partitions and weight 
parameters users could find reasonable solutions fairly 
quickly. We note that the task of finding good parameters 
is non-trivial due to the size of the search space. However, 
the efficiency with which humans perform this task raises 
two questions. First, what are the key properties of the 
strategies employed by humans? Second, can we train 
machine learning systems to learn aspects of human 
strategies in order to build better predictors? We explore 
these questions in depth in the rest of the paper. 

 

Studies of Human Optimization Strategies 
In the first stage of this research, we conducted an 
experiment to explore the different strategies that people 
use with EnsembleMatrix to build models. 
Datasets and Individual Classifiers: To cover a wide 
range of problems in terms of the different types of 
datasets, we considered three different multiclass 
classification problems. We studied people working with 
(1) Newsgroup (3000 examples, 20 classes), (2) Multipie 
(Gross et al. 2008) (3000 examples, 150 classes), and (3) 
Caltech-101 (Fei-Fei, Fergus, Perona 2006) (3030 
examples, 101 classes) datasets. The goal for the 
Newsgroup dataset is to categorize documents into 20 
different topic classes. The task for the Multipie collection 
of face images is to recognize the identities of the faces. 
The task for Caltech-101 challenge is to classify images 
into 101 categories. For each classification task, we 
consider four base-level classifiers that were trained using 
different sets of features. In particular, we generate four 
different kernels to induce four classifiers. For the 
Newsgroup dataset, we consider three polynomial kernels 
with degrees 1, 2, 3 and an RBF kernel. Similarly, for the 
Multipie data, we first perform PCA to project the images 
onto 300 dimensions, and then induce four different RBF 
kernels using four successive partitions of the PCA 
representation. For the Caltech-101 data, we consider four 
different kernel representations based on gray level 
intensities, color intensities, and horizontal and vertical 
edge orientations. 

 
Figure 1: Snapshot of EnsembleMatrix. Leave one fold out
confusion matrices of component classifiers are shown in thumbnails 
on right and their weights in the linear combination are represented 
by red dot in diamond. Subjects can interact to change weights as 
well as partition the space of classes. Matrix on left shows confusion 
matrix of the current ensemble classifier constructed by the user. 
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For each of the datasets, we perform a 50-50 train and 
test split. We then use Gaussian Process regression models 
(Rasmussen and Williams 2006) to compute 10-fold cross-
validated mean predictions over the training set. These 
cross-validated predictions over the training set are used to 
generate the confusion matrices that are used in the 
EnsembleMatrix studies. We note that cross validation 
ensures that the resulting model will lead to good 
generalization performance on the test set.  
Participants and Apparatus: We recruited 10 participants 
from an industrial research institution. Participants spanned 
a wide spectrum of expertise, ranging from machine-
learning researchers to ones that had little exposure to 
machine learning. We provided participants with basic 
instructions on how to use the EnsembleMatrix system, 
mainly on partitioning and controlling linear combinations 
within each partition. We told the participants that their 
task was to develop a new, more accurate, ensemble 
classifier by exploring and combining four different 
component classifiers. Each participant worked on the 
three datasets which were presented in the same order: the 
Caltech-101, Multipie, and then Newsgroup dataset. For 
each dataset, we asked participants to try the same task 
twice. At the end of each trial, we informed the participants 
of the result accuracy with the test dataset so that they 
could adjust their strategy in the following trials. We 
believed that participants could learn a better strategy not 

only from the previous dataset but also from the first trial. 
Each task ended when the participant assessed that they 
could no longer improve the ensemble classifier. Each 
session (which included six EnsembleMatrix tasks) lasted 
approximately one hour. 
Results and Observations: Table 1 shows the best 
recognition accuracy (out of the two trials) achieved by 
each participant on the different tasks. We observed that 
most of the participants perform this task fairly well 
regardless of their familiarity with machine learning. We 
also note that resulting models were fairly different from 
one another, resulting in a spectrum of accuracies. We 
were interested in seeing if the models designed by people 
could achieve better classification than a standard 
machine-learning baseline. In particular, we compared the 
performance of the models built by people with a non-
hierarchical classifier (denoted as Flat Average) that first 
computes equally weighted linear combination of the 
component classifiers and then performs one-vs-all 
classification. The underlined entries in Table 1 depict 
instances when a human-designed classifier was better than 
a classifier built autonomously using the Flat Average. 

We observed that several participants could generate 
classifiers with performance boosts over the baseline for 
the Caltech-101 (4 participants) and the Newsgroup data (5 
participants). Only one participant achieved better 
performance than the Flat Average on the Multipie data, 

 
Figure 2: Instance from study that illustrates how good (left) and poor (right) interaction decisions can help and hurt in classifying test 
data. Gains on training accuracy over Flat Average models are obtained for both cases. Gains in accuracy for the test set are observed in 
the case where the subject has also tried to minimize deviations from the diagonal, in addition to maximizing the on diagonal elements. 

1573



although the rest of the participants created classifiers with 
a relatively high accuracy. We pursued insights about why 
some participants were able to build better models than 
others. Figure 2 illustrates instances of a good and poor 
model trained by a human. Although both models show 
gains over the Flat Average baseline, per their accuracy on 
the training set, the models behave differently on the test 
set. We noted several key differences between models that 
provide good classifications versus the poor ones. One key 
difference is the way that the partitions are formed. For 
instance, in the classifier portrayed in Figure 2, the 
partitions are of equal size in the poor model whereas the 
partitions in the good models are imbalanced. The 
imbalanced partitions are cleaner (showing less confusion 
among partitions) in the good model. It is straightforward 
to prove that if a partition is clean, then the additional steps 
taken by the user can only increase the accuracy.  

We also observed that, while interacting with  
EnsembleMatrix, study participants continued to make 
trades between structure and accuracy. Sometimes 
participants might choose weights that lead to lower 
overall accuracy but that would show better structure in the 
confusion matrix, and thus lead to cleaner partitions. When 
poor models were constructed, we found that participants 
often chose to optimize for maximum accuracy. While 
such steps might be locally optimal, overall they could lead 
to poorer models in the end.  

Finally, we noted that, instead of continuing to partition 
the space until the very end of a session, participants 
stopped partitioning at some point in the refinement of the 
matrix. Such stopping, based on the state of confusion 
matrix, can have a regularizing effect and prevent models 
from overfitting on training data. As shown as an example 
of a good classifier in Figure 2, adept participants appear to 
be good at judging when to stop. Although there are 
partitions of many different sizes, the participant chooses 
to stop at reasonable points leading to good generalization. 

Our observations indicate that participants who were 
inclined to build good models attempt to balance the 
constraints of (1) finding clean partitions, (2) choosing 
weights that reveal structure, and (3) determining when to 
stop. And at every stage in EnsembleMatrix, people face 
decisions in a space of an exponential number of options. 
We next describe a methodology where we learn how to 
autonomously mimic choices that people who are 
successful with use of EnsembleMatrix make, with the 
goal of developing better hierarchical ensemble classifiers. 
 

Learning by Observing Good Behaviors 
We now describe a methodology to mine the data collected 
in the user study described below. Three key decisions are 
made at each step in the refinement of EnsembleMatrix:  
(1) choice of appropriate partition, (2) choice of weights 
for component classifiers, and (3) decision about halting 
the partitioning. These steps are interdependent, and 
iterative refinements of the misclassification matrix based 
on sequences of transitions among these three actions 
define a massive space of possibilities. We sought to 
encode and embed human expertise to help an automated 
system cut through this large search space of 
interdependent partitioning, weighting, and stopping. 

To acquire the human expertise at guiding the search 
through the large parameter space, we build two decision-
making modules that determine (1) quality of a partition 
(denoted as )) and (2) whether the system should 
stop partitioning (denoted as ). Theoretically, we 
can enumerate all possible combinations of weights and 
partitions of the resulting confusion matrix and apply our 
learned decision modules in order to further split the 
problem or to halt. However, as such exhaustive 
enumeration is infeasible, we formulate a tractable 
approximation. First, since the number of component 
classifiers is fairly small (four), we can sample the whole 
space of weight parameter1. Second, instead of considering 
all possible partitions of a given set of weights, we use an 
existing spectral clustering algorithm (Zelnik-Manor and 
Perona 2004) to produce partitions. 

Algorithm 1 shows the pseudo-code of the procedure. 
We use the methodology described above to generate a 
proposal of partitions for each set of weights. These 
proposals in turn can be ranked by the trained quality 
function ( ). The highest ranked proposal is 
selected by the method and the weights are further tuned 
using an optimization criterion. Also, for the best choice of 
proposal, we further evaluate if the trained stopping 
criterion ( ) returns true. The procedure can either 
repeat recursively or end depending on the result of the 
stopping function. We next describe how we learn the 

 and  criterion. 

                                                 
1 In our work, we sample between [0..1] with the step size of 0.1. 

Table 1: Best test accuracy obtained by the ten participants on 
the three datasets. The bold underlined accuracies indicate 
boost over the baseline Flat Average accuracy (mean 
baselines: 79.39, 79.63, 91.27 for Caltech 101, Newsgroup, 
and Multipie respectively). 

Subject Caltech-101 Newsgroup Multipie 
1 79.14 79.73 90.4 
2 79.47 78.67 91.6 
3 76.77 79.6 91.27 
4 79.08 80.6 90.73 
5 79.74 79.53 90.07 
6 81.78 79.4 90.8 
7 78.88 79.8 89.93 
8 81.3 78.87 91.13 
9 80.46 80.33 91.27 
10 79.93 80.13 90.87 
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Learning to Judge Good Partitions: The  
function is learned as a one-class classifier from the data 
collected during the user study. In particular, we look only 
at the partitions generated by the participants that 
performed better than the baseline models. We extracted an 
eight-dimensional feature vector from each of these 
partitions which characterized structural properties of the 
confusion matrix under such partitioning. The features 
consisted of the proportion of data points that were 
grouped correctly within their corresponding split (one 
feature for each of the two diagonal regions) and data 
points that were grouped incorrectly (one feature for each 
of the two off-diagonal regions). The other four features 
encoded accuracies within each group and the sizes of each 
of the partition.  

As we only had access to examples of partitions 
provided by participants, we trained a one-class classifier 
using a linear Bayes Point Machine (BPM) with probit 
noise model (Minka 2001) trained with expectation 
propagation. The BPM integrates over the parameter space 
of the classifier which in turn makes it capable of handling 
a one-class problem. Given a test vector, the BPM returns 
the probability that the corresponding proposal of partition 
is a good choice. This probability can be used to rank all 
proposals being considered. Note that instead of learning 
the quality function, we can use other heuristics that 
measure various notions of the quality of clusters. For 
example, the self-tuning spectral clustering (Zelnik-Manor 
and Perona 2004) provides a quality measure based on 
spectral properties of the partition. We performed 
comparisons against such heuristic (see Section 5) but 
found learning from humans with the eight features we 
have described to be superior. It is also possible to encode 
these algorithm-specific heuristics as features in the 
proposed framework. 
Learning When to Stop: The function is trained 
as a binary classifier via fusing the data observed in the 
user study. We consider only the data from the participants 
for cases that showed boosts over the baseline classifier. 
We generate training sets by considering all the partitions 
and then featurizing them as described earlier. We trained a 
linear BPM (a linear Gaussian Process classifier) by 
considering all vectors except the terminal partitions 
labeled as -1. Given a test vector, the function 
provides the probability that the corresponding partition is 
a terminal one. 
Optimizing Weights for Separation of Clusters: Once 
the partition is determined, we need to find weights that 
maximize separation between these clusters. To this end, 
we use the softmax function to approximate probabilities 
that a data point is assigned to a cluster. We denote the 
vector comprising of outputs of all component classifier for 
a class as . Then, we define probability that the  
data point is classified into the correct cluster as follows: 

 

We invoke the principal of maximum likelihood to find 
the optimal weights. In particular, we minimize the 
following objective to tune the weights: 

 

  
Algorithm 1 Learning Multilevel Ensemble Model 
function ModelOut = LearnTree(Classes, Data) 
 

ModelOut.wt  {}, ModelOut.left  {}, ModelOut.right {} 
 

if (length(Classes) > 1) 
 

        for all weight settings 
               Compute Confusion Matrix C 
               Partition  SpectralPartition(C)  
               Qpartition  (Partition) 
        end for 
         
        [Classes_left, Classes_right]  argmax Qpartition          

        If false 
             ModelOut.wt  
                 argmaxwt Objective(Classes_left, Classes_right, Data) 
             ModelOut.left  LearnTree(Classes_left, Data) 
             ModelOut.right  LearnTree(Classes_right, Data) 
 

        end if 
end if 
 

Return ModelOut 

Experiments and Results 
We carried out experiments to study if good clustering and 
stopping criteria can be learned from human actions and if 
the resulting classifier would be able to perform well on 
the test data. We also explore how the human-learned 
model compares with reasonable ML attempt; that is, we 
compare the learned scheme (denoted as Human Learned) 
with four methods that rely on existing techniques: 
1) Non hierarchical Average Classifier (Flat Average): 

Sum equally weighted component classifiers to do 
one-vs.-all classification. This is the simplest case and 
serves a baseline. 

2)  Non hierarchical Trained Classifier (Flat Trained): 
Sum of weighted component classifiers to do 1-vs-all 
classification. The weights are trained by maximizing 
the objective in Equation (1) assuming each class is a 
separate cluster. 

3) Hierarchical (Hierarchy Full): Same method as 
described in Algorithm 1 with a learned clustering 
quality criterion (Zelnik-Manor and Perona 2004) and 
without stopping the splitting until the leaf nodes are 
completely separable.   

4) Hierarchical with Stopping (Hierarchy Stop): Same as 
Algorithm 3 with a stopping heuristic that stops 
partitioning if the learned quality criterion is less than 
a threshold (0.99). 
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First, we explore if the proposed scheme performs better 
on the test examples. We note that all of the human 
interaction as well as all of the training steps are limited to 
the train-split of the data and neither the human nor the 
training procedure has seen these test data points. Further, 
in order to train the model for determining cluster quality 
and the stopping criterion, we only use data from the 
individuals that had showed boost over the baseline.  

Figure 3 shows the recognition performance of the 
proposed human-learned scheme as well as the four 
alternatives on the Caltech-101 and Newsgroup datasets. 
We did not perform this test for the Multipie dataset as we 
did not have data from humans that showed gain (we tackle 
Multipie data with transfer learning later in this section).   
We plot the mean accuracy and standard error over 16 
different train and test splits; the human-trained scheme 
consistently outperforms the Flat Average baseline on all 
the datasets and shows considerable gains over the others. 
Furthermore, we observe that Hierarchy Full consistently 
results in worse performance indicating that knowing when 
to stop is important. This hypothesis is further confirmed 
by observing that Hierarchy Stop fairs much better. These 
results suggest that one of the reasons humans do well in 
the task is that they apply expertise about when to stop, 
perhaps with the aid of recognizable visual patterns, versus 
the poor competencies with analogous “sensing” of state 
employed within the learning procedures. 

Next, we examine the patterns of partitioning that the 
different methods generated. Figure 4 indicates different 
instances of resulting training confusion matrices with 
inferred partitioning of the Caltech-101 data by the three 
hierarchical methods (Human Learned, Hierarchy Full, and 
Hierarchy Stop). We note that the partitioning by 

Hierarchy Full suffers from over partitioning of the space, 
resulting in poor test accuracy (79.41%). We can see that 
the human-learned partitioning is similar to the good 
partitioning depicted in Figure 2. Although the Hierarchy 
Stop works reasonable, it still appears to suffer from over 
fitting due to over partitioning. The observed test accuracy 
for this instance was 80.01% and less than the one 
achieved by Human Learned (80.67%). 

Finally, we tackle the Multipie data, where we found 
relatively poor performance by participants, perhaps due to 
high baseline recognition accuracy. We address the 
Multipie challenge in the context of explorations about the 
transferability of learning from humans about the partition 
and stopping criterion across datasets. In particular, we 
train our human-learned model using one dataset but then 
use it on unseen test data. Table 2 depicts results where we 
show average boost in accuracy (from the Flat Average 
baseline) when the human-learned model is trained on 
different datasets. The diagonal is the original case where 
the two sets match. Surprisingly, we still observe a boost in 
the off-diagonal entries, including for the Multipie case.  
Such a boost suggests that common features may exist 
across different learning algorithms that can be learned by 
observing people while they perform classification 
optimization for different tasks. We believe that these 
results may have far reaching implications in that they 
highlight potentially task-independent capabilities derived 
from people that can be harnessed by machine learning 
algorithms to effectively cut through large parameter 
spaces.  

Summary and Future Work 
We pursued opportunities with extending machine learning 
procedures by collecting data and learning about the 
strategies of people seeking to optimize the performance of 
classifiers. In particular, we observed the activities of 
subjects interacting with a visual representation of the 
performance of ensemble classifiers. Data was collected 
about how people define multi-level hierarchies in a 
multiclass classification problem. Our findings suggest that 
people frequently can find good solutions without doing 

 
Figure 3: Average classification accuracy over 16 train tests splits using different methods. Error bars show standard error. 

Table 2: Boost over baseline (Flat Average) when Human 
Learned is trained on one dataset and applied to another. 

Train 
Test 

Caltech Newsgroup Multipie 

Caltech 0.39 0.27 NA  
Newsgroup 0.23 0.23 NA  
Multipie 0.27 0.15 NA  
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exhaustive search. We found evidence that participants’ 
success at this task is linked to the skills they have with 
judging the quality of partitions and with determining 
when to halt partitioning. We presented and evaluated a 
methodology for learning such human competencies by 
collecting data about human optimization activities and 
then using a machine learning algorithm to construct 
classifiers that are used at run time as components of a new 
learning procedure. An evaluation demonstrates that we 
can enhance machine learning with insights gleaned from 
human problem solving. We also showed the potential to 
share the learned competencies across classification tasks. 

Our work is an initial attempt to design a pipeline that 
enables machine-learning systems to learn from humans. 
We aim to identify other forms of interaction, as well as 
rich features for capturing behaviors, with the goal of 
embedding additional human insights into machine-
learning procedures.  
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               (a) Hierarchy Full                                      (c) Hierarchy Stop                                        (a) Human Learned 

Figure 4: Training confusion matrices and resulting partitioning for the Caltech 101 dataset, obtained by applying three hierarchical 
methods. Test accuracy obtained by the human learned method is the best of the three methods. We find that the result for the Human
Learned case is most similar to results obtained when people make good decisions (Figure 2).  
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