

Learning to Learn:

Algorithmic Inspirations from Human Problem Solving

Ashish Kapoor, Bongshin Lee, Desney Tan and Eric Horvitz
Microsoft Research

{akapoor, bongshin, desney, horvitz}@microsoft.com

Abstract
We harness the ability of people to perceive and
interact with visual patterns in order to enhance the
performance of a machine learning method. We show
how we can collect evidence about how people
optimize the parameters of an ensemble classification
system using a tool that provides a visualization of
misclassification costs. Then, we use these
observations about human attempts to minimize cost
in order to extend the performance of a state-of-the-art
ensemble classification system. The study highlights
opportunities for learning from evidence collected
about human problem solving to refine and extend
automated learning and inference.

 Introduction
The development of machine learning procedures hinges
on design choices such as selection of optimization
methods, definition of evidential features, and the setting
of parameters. Such design decisions rely on expert
knowledge and can be viewed as a form of search through
a space of alternate methods and models. We have been
pursuing opportunities for automating the refinement of
machine learning. Our work comes in the context of
growing interest in interactive, human-in-the-loop learning,
where people iteratively tag, train, and correct
classifications in a tight interactive loop. Examples of work
in this space include online learning against adversaries,
active learning, and contextual bandits.

We examine the prospect of extending machine learning
algorithms with methods that learn from people’s attempts
to optimize the performance of classifiers. Specifically, we
collect and use evidence about the steps that human
subjects take to minimize misclassification via the use of a
tool that provides a visual summary of the performance of
a weighted combination of a set of classifiers, as well as

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

controls for modifying the parameters of the classification.
We collect observations of subjects’ attempts to minimize
the costs of misdiagnosis to train classifiers. Then, we use
the data autonomously to enhance a machine learning
procedure. The methods and results highlight the promise
of learning to learn from people, by leveraging human
skills at perceiving visual patterns with ease, and codifying
evidence about strategies that people formulate to refine
the behavior of a system.

We focus on analyzing and learning within
EnsembleMatrix (Talbot et al. 2008), a system that allows
users to interactively manipulate visualizations of the
output of a multiclass classifier system in order to design a
more ideal combination of multiclass classifiers. We
describe a study we ran to observe human problem solving
behavior with the system, review insights we garnered
from this study, and present algorithms that we developed
with data from human optimization sessions.

Related Work
Recent studies have identified situations in which people
produce better classifiers than automatic techniques. Some
studies provide users with visualizations about the
operation of specific machine learning algorithms along
with controls for modifying parameters of the learning
procedures and classifications (Ware et al. 2001, Talbot et
al. 2008). Related studies have explored the use of people
to provide hints to optimize decision trees (Ankerst et al.
1999), naïve-Bayes (Becker et al. 2001), SVMs (Caragea
et al. 2001), and HMMs (Dai and Cheng 2008).

Our research is also closely aligned with research on
interactive machine learning. Fails and Olsen (Fails and
Olsen 2003) assert the potential value of human
involvement to provide training data and propose an
interactive system that enables users to train, classify, and
correct classifications in a real-time iterative loop. In the
context of unsupervised learning, interactive clustering
using human input has been also proposed (Bilenko, Basu,
Mooney 2004, Bekkerman et al. 2007). Beyond label
elicitation, related research includes interactive feature
discovery for identifying discriminative features

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1571

(Raghavan, Madani, Jones 2005) and interactive
optimization that uses human guidance to maximize human
preferences about classification (Kapoor et al. 2010).

The main goal of most of the work mentioned above has
been to achieve high classification accuracy rather than to
learn from human actions. We note that the problem of
reinforcement and imitation learning (Sutton and Barto
1998, Hsiao and Lozano-Perez 2006) are related to our
efforts. However, little effort to date has been focused on
the task of learning to learn from observations about
human efforts to optimize machine classification. In this
work, we explore the prospect of developing better
classification systems by incorporating insights gleaned by
watching people effectively optimize the performance of
classifiers in interactive learning scenarios.

Designing Classifiers with EnsembleMatrix
We harness a prototype named EnsembleMatrix that was
created earlier for studies of interactive machine learning
(Talbot et al. 2008). EnsembleMatrix was designed to
assist developers with optimizing the behavior of machine
classification in applications. Specifically, the prototype
helps developers build an ensemble classifier by
combining multiple component classifiers (see Figure 1).
The EnsembleMatrix interface consists of three basic
sections: the Component Classifier view on the lower right,
which contains an entry for each classifier that the user has
imported, the Linear Combination widget on the upper
right, and the main Ensemble Classifier view on the left.

EnsembleMatrix represents each classifier using a
graphical heat map of its confusion matrix. Confusion
matrices allow human observers to use their perceptual
capabilities to identify patterns of misclassification. The
ordering of any matrix can greatly influence the patterns
visible. EnsembleMatrix reorders the main confusion
matrix at interactive rates to highlight sets of frequently
confused classes (Cuthill and McKee 1969). The prototype

provides two basic mechanisms for exploration: (1) a
partitioning operation, which divides the class space into
multiple partitions, and (2) a linear combination operation
that lets the user select weights for each classifier within
each partition. Partitioning the class space separates the
data instances into two subsets, allowing the user to
develop predictors specialized for each subset. The two
subset classifiers are restricted to only predicting classes
within their partition. The second interaction mechanism
allows the user to quickly manipulate a subspace of the
linear combination of component classifiers using a simple
two-dimensional interpolation control. Partitioning and
linear combination operations can be done recursively an
arbitrary number of times and in any order, leading to a
large number of possible refinement strategies.

Talbot et al. (Talbot et al. 2008) observed that when
asked to find configurations of partitions and weight
parameters users could find reasonable solutions fairly
quickly. We note that the task of finding good parameters
is non-trivial due to the size of the search space. However,
the efficiency with which humans perform this task raises
two questions. First, what are the key properties of the
strategies employed by humans? Second, can we train
machine learning systems to learn aspects of human
strategies in order to build better predictors? We explore
these questions in depth in the rest of the paper.

Studies of Human Optimization Strategies
In the first stage of this research, we conducted an
experiment to explore the different strategies that people
use with EnsembleMatrix to build models.
Datasets and Individual Classifiers: To cover a wide
range of problems in terms of the different types of
datasets, we considered three different multiclass
classification problems. We studied people working with
(1) Newsgroup (3000 examples, 20 classes), (2) Multipie
(Gross et al. 2008) (3000 examples, 150 classes), and (3)
Caltech-101 (Fei-Fei, Fergus, Perona 2006) (3030
examples, 101 classes) datasets. The goal for the
Newsgroup dataset is to categorize documents into 20
different topic classes. The task for the Multipie collection
of face images is to recognize the identities of the faces.
The task for Caltech-101 challenge is to classify images
into 101 categories. For each classification task, we
consider four base-level classifiers that were trained using
different sets of features. In particular, we generate four
different kernels to induce four classifiers. For the
Newsgroup dataset, we consider three polynomial kernels
with degrees 1, 2, 3 and an RBF kernel. Similarly, for the
Multipie data, we first perform PCA to project the images
onto 300 dimensions, and then induce four different RBF
kernels using four successive partitions of the PCA
representation. For the Caltech-101 data, we consider four
different kernel representations based on gray level
intensities, color intensities, and horizontal and vertical
edge orientations.

Figure 1: Snapshot of EnsembleMatrix. Leave one fold out
confusion matrices of component classifiers are shown in thumbnails
on right and their weights in the linear combination are represented
by red dot in diamond. Subjects can interact to change weights as
well as partition the space of classes. Matrix on left shows confusion
matrix of the current ensemble classifier constructed by the user.

1572

For each of the datasets, we perform a 50-50 train and
test split. We then use Gaussian Process regression models
(Rasmussen and Williams 2006) to compute 10-fold cross-
validated mean predictions over the training set. These
cross-validated predictions over the training set are used to
generate the confusion matrices that are used in the
EnsembleMatrix studies. We note that cross validation
ensures that the resulting model will lead to good
generalization performance on the test set.
Participants and Apparatus: We recruited 10 participants
from an industrial research institution. Participants spanned
a wide spectrum of expertise, ranging from machine-
learning researchers to ones that had little exposure to
machine learning. We provided participants with basic
instructions on how to use the EnsembleMatrix system,
mainly on partitioning and controlling linear combinations
within each partition. We told the participants that their
task was to develop a new, more accurate, ensemble
classifier by exploring and combining four different
component classifiers. Each participant worked on the
three datasets which were presented in the same order: the
Caltech-101, Multipie, and then Newsgroup dataset. For
each dataset, we asked participants to try the same task
twice. At the end of each trial, we informed the participants
of the result accuracy with the test dataset so that they
could adjust their strategy in the following trials. We
believed that participants could learn a better strategy not

only from the previous dataset but also from the first trial.
Each task ended when the participant assessed that they
could no longer improve the ensemble classifier. Each
session (which included six EnsembleMatrix tasks) lasted
approximately one hour.
Results and Observations: Table 1 shows the best
recognition accuracy (out of the two trials) achieved by
each participant on the different tasks. We observed that
most of the participants perform this task fairly well
regardless of their familiarity with machine learning. We
also note that resulting models were fairly different from
one another, resulting in a spectrum of accuracies. We
were interested in seeing if the models designed by people
could achieve better classification than a standard
machine-learning baseline. In particular, we compared the
performance of the models built by people with a non-
hierarchical classifier (denoted as Flat Average) that first
computes equally weighted linear combination of the
component classifiers and then performs one-vs-all
classification. The underlined entries in Table 1 depict
instances when a human-designed classifier was better than
a classifier built autonomously using the Flat Average.

We observed that several participants could generate
classifiers with performance boosts over the baseline for
the Caltech-101 (4 participants) and the Newsgroup data (5
participants). Only one participant achieved better
performance than the Flat Average on the Multipie data,

Figure 2: Instance from study that illustrates how good (left) and poor (right) interaction decisions can help and hurt in classifying test
data. Gains on training accuracy over Flat Average models are obtained for both cases. Gains in accuracy for the test set are observed in
the case where the subject has also tried to minimize deviations from the diagonal, in addition to maximizing the on diagonal elements.

1573

although the rest of the participants created classifiers with
a relatively high accuracy. We pursued insights about why
some participants were able to build better models than
others. Figure 2 illustrates instances of a good and poor
model trained by a human. Although both models show
gains over the Flat Average baseline, per their accuracy on
the training set, the models behave differently on the test
set. We noted several key differences between models that
provide good classifications versus the poor ones. One key
difference is the way that the partitions are formed. For
instance, in the classifier portrayed in Figure 2, the
partitions are of equal size in the poor model whereas the
partitions in the good models are imbalanced. The
imbalanced partitions are cleaner (showing less confusion
among partitions) in the good model. It is straightforward
to prove that if a partition is clean, then the additional steps
taken by the user can only increase the accuracy.

We also observed that, while interacting with
EnsembleMatrix, study participants continued to make
trades between structure and accuracy. Sometimes
participants might choose weights that lead to lower
overall accuracy but that would show better structure in the
confusion matrix, and thus lead to cleaner partitions. When
poor models were constructed, we found that participants
often chose to optimize for maximum accuracy. While
such steps might be locally optimal, overall they could lead
to poorer models in the end.

Finally, we noted that, instead of continuing to partition
the space until the very end of a session, participants
stopped partitioning at some point in the refinement of the
matrix. Such stopping, based on the state of confusion
matrix, can have a regularizing effect and prevent models
from overfitting on training data. As shown as an example
of a good classifier in Figure 2, adept participants appear to
be good at judging when to stop. Although there are
partitions of many different sizes, the participant chooses
to stop at reasonable points leading to good generalization.

Our observations indicate that participants who were
inclined to build good models attempt to balance the
constraints of (1) finding clean partitions, (2) choosing
weights that reveal structure, and (3) determining when to
stop. And at every stage in EnsembleMatrix, people face
decisions in a space of an exponential number of options.
We next describe a methodology where we learn how to
autonomously mimic choices that people who are
successful with use of EnsembleMatrix make, with the
goal of developing better hierarchical ensemble classifiers.

Learning by Observing Good Behaviors
We now describe a methodology to mine the data collected
in the user study described below. Three key decisions are
made at each step in the refinement of EnsembleMatrix:
(1) choice of appropriate partition, (2) choice of weights
for component classifiers, and (3) decision about halting
the partitioning. These steps are interdependent, and
iterative refinements of the misclassification matrix based
on sequences of transitions among these three actions
define a massive space of possibilities. We sought to
encode and embed human expertise to help an automated
system cut through this large search space of
interdependent partitioning, weighting, and stopping.

To acquire the human expertise at guiding the search
through the large parameter space, we build two decision-
making modules that determine (1) quality of a partition
(denoted as)) and (2) whether the system should
stop partitioning (denoted as). Theoretically, we
can enumerate all possible combinations of weights and
partitions of the resulting confusion matrix and apply our
learned decision modules in order to further split the
problem or to halt. However, as such exhaustive
enumeration is infeasible, we formulate a tractable
approximation. First, since the number of component
classifiers is fairly small (four), we can sample the whole
space of weight parameter1. Second, instead of considering
all possible partitions of a given set of weights, we use an
existing spectral clustering algorithm (Zelnik-Manor and
Perona 2004) to produce partitions.

Algorithm 1 shows the pseudo-code of the procedure.
We use the methodology described above to generate a
proposal of partitions for each set of weights. These
proposals in turn can be ranked by the trained quality
function (). The highest ranked proposal is
selected by the method and the weights are further tuned
using an optimization criterion. Also, for the best choice of
proposal, we further evaluate if the trained stopping
criterion () returns true. The procedure can either
repeat recursively or end depending on the result of the
stopping function. We next describe how we learn the

 and criterion.

1 In our work, we sample between [0..1] with the step size of 0.1.

Table 1: Best test accuracy obtained by the ten participants on
the three datasets. The bold underlined accuracies indicate
boost over the baseline Flat Average accuracy (mean
baselines: 79.39, 79.63, 91.27 for Caltech 101, Newsgroup,
and Multipie respectively).

Subject Caltech-101 Newsgroup Multipie
1 79.14 79.73 90.4
2 79.47 78.67 91.6
3 76.77 79.6 91.27
4 79.08 80.6 90.73
5 79.74 79.53 90.07
6 81.78 79.4 90.8
7 78.88 79.8 89.93
8 81.3 78.87 91.13
9 80.46 80.33 91.27
10 79.93 80.13 90.87

1574

Learning to Judge Good Partitions: The
function is learned as a one-class classifier from the data
collected during the user study. In particular, we look only
at the partitions generated by the participants that
performed better than the baseline models. We extracted an
eight-dimensional feature vector from each of these
partitions which characterized structural properties of the
confusion matrix under such partitioning. The features
consisted of the proportion of data points that were
grouped correctly within their corresponding split (one
feature for each of the two diagonal regions) and data
points that were grouped incorrectly (one feature for each
of the two off-diagonal regions). The other four features
encoded accuracies within each group and the sizes of each
of the partition.

As we only had access to examples of partitions
provided by participants, we trained a one-class classifier
using a linear Bayes Point Machine (BPM) with probit
noise model (Minka 2001) trained with expectation
propagation. The BPM integrates over the parameter space
of the classifier which in turn makes it capable of handling
a one-class problem. Given a test vector, the BPM returns
the probability that the corresponding proposal of partition
is a good choice. This probability can be used to rank all
proposals being considered. Note that instead of learning
the quality function, we can use other heuristics that
measure various notions of the quality of clusters. For
example, the self-tuning spectral clustering (Zelnik-Manor
and Perona 2004) provides a quality measure based on
spectral properties of the partition. We performed
comparisons against such heuristic (see Section 5) but
found learning from humans with the eight features we
have described to be superior. It is also possible to encode
these algorithm-specific heuristics as features in the
proposed framework.
Learning When to Stop: The function is trained
as a binary classifier via fusing the data observed in the
user study. We consider only the data from the participants
for cases that showed boosts over the baseline classifier.
We generate training sets by considering all the partitions
and then featurizing them as described earlier. We trained a
linear BPM (a linear Gaussian Process classifier) by
considering all vectors except the terminal partitions
labeled as -1. Given a test vector, the function
provides the probability that the corresponding partition is
a terminal one.
Optimizing Weights for Separation of Clusters: Once
the partition is determined, we need to find weights that
maximize separation between these clusters. To this end,
we use the softmax function to approximate probabilities
that a data point is assigned to a cluster. We denote the
vector comprising of outputs of all component classifier for
a class as . Then, we define probability that the
data point is classified into the correct cluster as follows:

We invoke the principal of maximum likelihood to find
the optimal weights. In particular, we minimize the
following objective to tune the weights:

Algorithm 1 Learning Multilevel Ensemble Model
function ModelOut = LearnTree(Classes, Data)

ModelOut.wt {}, ModelOut.left {}, ModelOut.right {}

if (length(Classes) > 1)

 for all weight settings
 Compute Confusion Matrix C
 Partition SpectralPartition(C)
 Qpartition (Partition)
 end for

 [Classes_left, Classes_right] argmax Qpartition

 If false
 ModelOut.wt
 argmaxwt Objective(Classes_left, Classes_right, Data)
 ModelOut.left LearnTree(Classes_left, Data)
 ModelOut.right LearnTree(Classes_right, Data)

 end if
end if

Return ModelOut

Experiments and Results
We carried out experiments to study if good clustering and
stopping criteria can be learned from human actions and if
the resulting classifier would be able to perform well on
the test data. We also explore how the human-learned
model compares with reasonable ML attempt; that is, we
compare the learned scheme (denoted as Human Learned)
with four methods that rely on existing techniques:
1) Non hierarchical Average Classifier (Flat Average):

Sum equally weighted component classifiers to do
one-vs.-all classification. This is the simplest case and
serves a baseline.

2) Non hierarchical Trained Classifier (Flat Trained):
Sum of weighted component classifiers to do 1-vs-all
classification. The weights are trained by maximizing
the objective in Equation (1) assuming each class is a
separate cluster.

3) Hierarchical (Hierarchy Full): Same method as
described in Algorithm 1 with a learned clustering
quality criterion (Zelnik-Manor and Perona 2004) and
without stopping the splitting until the leaf nodes are
completely separable.

4) Hierarchical with Stopping (Hierarchy Stop): Same as
Algorithm 3 with a stopping heuristic that stops
partitioning if the learned quality criterion is less than
a threshold (0.99).

1575

First, we explore if the proposed scheme performs better
on the test examples. We note that all of the human
interaction as well as all of the training steps are limited to
the train-split of the data and neither the human nor the
training procedure has seen these test data points. Further,
in order to train the model for determining cluster quality
and the stopping criterion, we only use data from the
individuals that had showed boost over the baseline.

Figure 3 shows the recognition performance of the
proposed human-learned scheme as well as the four
alternatives on the Caltech-101 and Newsgroup datasets.
We did not perform this test for the Multipie dataset as we
did not have data from humans that showed gain (we tackle
Multipie data with transfer learning later in this section).
We plot the mean accuracy and standard error over 16
different train and test splits; the human-trained scheme
consistently outperforms the Flat Average baseline on all
the datasets and shows considerable gains over the others.
Furthermore, we observe that Hierarchy Full consistently
results in worse performance indicating that knowing when
to stop is important. This hypothesis is further confirmed
by observing that Hierarchy Stop fairs much better. These
results suggest that one of the reasons humans do well in
the task is that they apply expertise about when to stop,
perhaps with the aid of recognizable visual patterns, versus
the poor competencies with analogous “sensing” of state
employed within the learning procedures.

Next, we examine the patterns of partitioning that the
different methods generated. Figure 4 indicates different
instances of resulting training confusion matrices with
inferred partitioning of the Caltech-101 data by the three
hierarchical methods (Human Learned, Hierarchy Full, and
Hierarchy Stop). We note that the partitioning by

Hierarchy Full suffers from over partitioning of the space,
resulting in poor test accuracy (79.41%). We can see that
the human-learned partitioning is similar to the good
partitioning depicted in Figure 2. Although the Hierarchy
Stop works reasonable, it still appears to suffer from over
fitting due to over partitioning. The observed test accuracy
for this instance was 80.01% and less than the one
achieved by Human Learned (80.67%).

Finally, we tackle the Multipie data, where we found
relatively poor performance by participants, perhaps due to
high baseline recognition accuracy. We address the
Multipie challenge in the context of explorations about the
transferability of learning from humans about the partition
and stopping criterion across datasets. In particular, we
train our human-learned model using one dataset but then
use it on unseen test data. Table 2 depicts results where we
show average boost in accuracy (from the Flat Average
baseline) when the human-learned model is trained on
different datasets. The diagonal is the original case where
the two sets match. Surprisingly, we still observe a boost in
the off-diagonal entries, including for the Multipie case.
Such a boost suggests that common features may exist
across different learning algorithms that can be learned by
observing people while they perform classification
optimization for different tasks. We believe that these
results may have far reaching implications in that they
highlight potentially task-independent capabilities derived
from people that can be harnessed by machine learning
algorithms to effectively cut through large parameter
spaces.

Summary and Future Work
We pursued opportunities with extending machine learning
procedures by collecting data and learning about the
strategies of people seeking to optimize the performance of
classifiers. In particular, we observed the activities of
subjects interacting with a visual representation of the
performance of ensemble classifiers. Data was collected
about how people define multi-level hierarchies in a
multiclass classification problem. Our findings suggest that
people frequently can find good solutions without doing

Figure 3: Average classification accuracy over 16 train tests splits using different methods. Error bars show standard error.

Table 2: Boost over baseline (Flat Average) when Human
Learned is trained on one dataset and applied to another.

Train
Test

Caltech Newsgroup Multipie

Caltech 0.39 0.27 NA
Newsgroup 0.23 0.23 NA
Multipie 0.27 0.15 NA

1576

exhaustive search. We found evidence that participants’
success at this task is linked to the skills they have with
judging the quality of partitions and with determining
when to halt partitioning. We presented and evaluated a
methodology for learning such human competencies by
collecting data about human optimization activities and
then using a machine learning algorithm to construct
classifiers that are used at run time as components of a new
learning procedure. An evaluation demonstrates that we
can enhance machine learning with insights gleaned from
human problem solving. We also showed the potential to
share the learned competencies across classification tasks.

Our work is an initial attempt to design a pipeline that
enables machine-learning systems to learn from humans.
We aim to identify other forms of interaction, as well as
rich features for capturing behaviors, with the goal of
embedding additional human insights into machine-
learning procedures.

References
20 Newsgroups. http://kdd.ics.uci.edu/databases/20newsgroups/
20newsgroups.html.
Ankerst M., Elsen C., Ester M. and Kriegel H. P. (1999). Visual
Classification: An Interactive Approach to Decision Tree
Construction. KDD.
Becker B., Kohavi R. and Sommerfield D. (2001). Visualizing the
Simple Bayesian Classifier. Information Visualization in Data
Mining and Knowledge Discovery. Eds. Fayyad et al.
Bekkerman R., Raghavan H., Allan J. and Eguchi K. (2007).
Interactive Clustering of Text Collections According to a User
Specified Criterion. IJCAI.
Bilenko M., Basu S. and Mooney R. J. (2004). Integrating
Constraints and Metric Learning in Semi Supervised Clustering.
ICML

Caragea D., Cook D. and Honavar V.G. (2001). Gaining Insights
into Support Vector Machine Pattern Classifiers using Projection
Based Tour Methods. KDD.
Cuthill E., and McKee J. (1969). Reducing the Band width of
Sparse Symmetric Matrices. ACM National Conference.
Dai J. and Cheng J. (2008). HMM Editor: a visual editing tool for
profile hidden Markov models. BMC Genomics 9.
Fails J. A. and Olsen D.R.J. (2003). Interactive machine learning.
IUI.
Fei Fei L., Fergus R. and Perona P. (2006). One Shot Learning of
Object Categories. PAMI 28(4).
Hsiao K. and Lozano Perez T. (2006). Imitation Learning of
Whole Body Grasps. IROS.
Gross R., Matthews I., Cohn J. F., Kanade T. and Baker S.
(2008). Multi PIE. Int. Conference on Automatic Face and
Gesture Recognition.
Kapoor A., Lee B., Tan D. and Horvitz E. (2010). Interactive
Optimization for Steering Machine Classification. CHI.
Meyer M., Lee H., Barr A. and Desbrun M. (2002). Generalized
Barycentric Coordinates on Irregular Polygons. Journal of
Graphics Tools 7(1).
Minka T. P. (2001). Expectation Propagation for Approximate
Bayesian Inference. UAI.
Raghavan H., Madani O. and Jones R. (2005). InterActive
Feature Selection. IJCAI.
Rasmussen C. E. and Williams C. K. I. (2006). Gaussian
Processes for Machine Learning. The MIT Press.
Sutton R. S. and Barto A. G. (1998). Reinforcement Learning: An
Introduction. The MIT Press.
Talbot J., Lee B., Kapoor A. and Tan D. (2008) EnsembleMatrix:
Interactive Visualization to Support Machine Learning with
Multiple Classifiers. CHI.
Ware M., Frank E., Holmes G. Hall, M. and Witten I. (2001).
Interactive machine learning: letting users build classifiers.
IJHCS 56(3).
Zelnik Manor L. and Perona P. (2004). Self Tuning Spectral
Clustering. NIPS.

 (a) Hierarchy Full (c) Hierarchy Stop (a) Human Learned

Figure 4: Training confusion matrices and resulting partitioning for the Caltech 101 dataset, obtained by applying three hierarchical
methods. Test accuracy obtained by the human learned method is the best of the three methods. We find that the result for the Human
Learned case is most similar to results obtained when people make good decisions (Figure 2).

1577

