
Sembler: Ensembling Crowd Sequential Labeling for Improved Quality

Xian Wu
Shanghai Jiao Tong University

Shanghai, 200240, China
wuxian@apex.sjtu.edu.cn

Wei Fan
IBM T.J.Watson Research Center

Yorktown Heights, New York
weifan@us.ibm.com

Yong Yu
Shanghai Jiao Tong University

Shanghai, 200240, China
yyu@apex.sjtu.edu.cn

Abstract

Many natural language processing tasks, such as named
entity recognition (NER), part of speech (POS) tagging,
word segmentation, and etc., can be formulated as se-
quential data labeling problems. Building a sound la-
beler requires very large number of correctly labeled
training examples, which may not always be possible.
On the other hand, crowdsourcing provides an inexpen-
sive yet efficient alternative to collect manual sequen-
tial labeling from non-experts. However the quality of
crowd labeling cannot be guaranteed, and three kinds of
errors are typical: (1) incorrect annotations due to lack
of expertise (e.g., labeling gene names from plain text
requires corresponding domain knowledge); (2) ignored
or omitted annotations due to carelessness or low con-
fidence; (3) noisy annotations due to cheating or van-
dalism. To correct these mistakes, we present Sembler,
a statistical model for ensembling crowd sequential la-
belings. Sembler considers three types of statistical in-
formation: (1) the majority agreement that proves the
correctness of an annotation; (2) correct annotation that
improves the credibility of the corresponding annotator;
(3) correct annotation that enhances the correctness of
other annotations which share similar linguistic or con-
textual features. We evaluate the proposed model on a
real Twitter and a synthetical biological data set, and
find that Sembler is particularly accurate when more
than half of annotators make mistakes.

Introduction
Statistical models have been applied with great success to
a wide range of natural language processing tasks, such as
CRF (Conditional Random Fields) for named entity recogni-
tion (NER) and SVM (Support Vector Machine) for polarity
classification. Building a sound statistical model requires
sufficient number of manual annotations, which is typically
quite large. It is expensive and time consuming to obtain
these labeled examples, and may not always be possible
for many real-world applications. The recent flourishing of
Crowdsourcing services, such as Amazon Mechanical Turk
(MTurk) 1 and CrowdFlower 2 , provide an inexpensive and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.mturk.com/mturk/welcome
2http://crowdflower.com/

efficient method to acquire manual annotations. Snow et al.
(2008) has published five NLP annotation tasks on MTurk
and demonstrated the effectiveness and efficiency of crowd
annotation on these tasks.

However the annotators in Crowdsourcing services are or-
dinary web users, and their devotions and expertise are not
evaluated in advance. Therefore the quality of crowd anno-
tations cannot be guaranteed. Various errors caused by the
lack of expertise, inexperience, carelessness, vandalism and
etc. are quite common. To remove these errors and preserve
high quality annotations, some refinement approaches have
been proposed. Snow et al. (2008) provides a bias correc-
tion method for combining non-expert annotations; Demp-
ster, Laird, and Rubin (1977) introduces a statistical frame-
work to merge noisy labels from multiple sources and infer
the correct one; Raykar et al. (2009) further integrates linear
regression model into the statistical framework proposed by
(Dempster, Laird, and Rubin 1977).

For these previously proposed approaches, it is assumed
that the instances to be annotated are independent from
each other. And each instance is viewed as an atomic unit
where the internal dependencies is not considered. How-
ever, for many natural language processing tasks, like named
entity recognition, POS tagging and word segmentation,
the input instances are “sequential data” or sequences of
words/entities, where statistical dependencies exists not only
among instances but also among entities inside instances.
For example, in a named entity recognition task, the annota-
tor is required to label the appearances of named entities in
sentences. The annotator needs to provide a reasonable la-
bel sequence for the whole sentence instead of labeling each
token in each sentence separately from the context. In other
words, for sequential labeling task, the typical i.i.d. assump-
tion is no longer true.

To cope with noisy and potentially erroneous crowd an-
notations for sequential data, we provide Sembler, a statis-
tical model to ensemble or combine crowd sequential la-
belings. Similar to (Snow et al. 2008) and (Raykar et al.
2009), we consider the majority agreement and the anno-
tator’s credibility in developing this model. As an import
improvement over previous work, we also model the rela-
tionships/dependencies in sequential data.

For example, in the gene name annotation task given be-
low, Sentence 1 is correctly annotated by Annotator 1, as the

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1713

appearance of gene name “FGF1” is labeled; while the label-
ing on Sentence 2 is wrong, as the Annotator 2 missed the
gene name “FGF2”. From the first correct annotation, Sem-
bler can learn three clues to assign the label B to a token:
(1) has the prefix “FGF”; (2) is surrounded by words “ac-
tivation” and “by”; (3) the previous token is labeled as O.
Combining these three clues, Sembler can correct the mis-
take made by annotator 2 and assign the label B to “FGF2”.
In this manner, Sembler takes advantage of the correlation
and dependency among multiple instances to improve per-
formance, and this statistical correlation and dependency is
ignored by state-of-the-art methods.

Sentence 1: activation induced by FGF1
Annotator 1: O O O B
Sentence 2: promoter activation by FGF2
Annotator 2: O O O O

In order to enable such functions in Sembler, we need to
model the dependencies among instances, as well as the rich
set of local features (e.g., prefix, adjacent words, etc) of se-
quential data. To do so, we extend the statistical framework
of CRF and propose a parametric model to simulate the gen-
erating process of crowd sequential labelings. By maximiz-
ing the likelihood (or MLE), the parameters involved in this
model can be inferred. With these parameters, we can either
(1) generate refined and unified sequential labelings from
noisy and erroneous crowd inputs or (2) provide a sequen-
tial data annotator directly. In other words, Sembler is able
to train a unified sequential annotator from crowd sequen-
tial labelings. We demonstrate the advantages of Sembler
over majority vote on a Twitter corpus and a synthetic bio-
logical data set. Most importantly, we find that (1) Sembler
have higher accuracy ranging from about 5% to over 10%,
when the quality of crowd sequential labeling is quite poor
(or most crowd answers are wrong), and (2) the margin of
improvement actually grows larger as the quality of crowd
sequential labeling is poorer.

The Framework
Problem Definition
Definition 1 (Sequential Data) We define a sequence of en-
tities to be an instance of sequential data. In the context
of named entity recognition, each entity represents a single
word, an instance of sequential data is thus a word sequence
(w1, w2, . . . , wM). As follows, we use X(i) to denote an in-
stance and X = {X(1), X(2), . . . , X(N)} to denote the set
of sequential data.

Definition 2 (Sequential Labeling) A sequence labeling is
the assignment of labels on each entity of the sequen-
tial data. For example, in NER tasks, the word sequence
(w1, w2, . . . , wM) is labeled with (l1, l2, . . . , lM), where
li is the label assigned for word wi. Each label is se-
lected from an alphabet set, typically, {B,I,O}, to denote
the Beginning, the Intermediate and the non-named entity
tokens or Objects.

Definition 3 (Crowd Sequential Labeling) The crowd se-
quence labeling are conducted by multiple annotators from

Symbol Description
X set of sequential data
A set of crowd sequential labeling on X
X(i) ith instance in X
A

(i)
k crowd sequential labeling on X(i)

conducted by the kth annotator
{A(i)

k } set of all crowd sequential labeling on X(i),
short form of {A(i)

1 , A
(i)
2 , . . . , A

(i)
K }.

L
(i)
t tth possible sequential labeling on X(i)

{L(i)
t } set of all possible sequential labeling on X(i),

short form of {L(i)
1 , L

(i)
2 , . . .}.

N number of instances in X
K number of annotators
xij jth entity in the instance X(i)

aijk label on jth entity of X(i) in the labeling
sequence A

(i)
k

lijt label on jth entity of X(i) in the labeling
sequence L

(i)
t

Table 1: Notation Used in this Paper

crowdsourcing services. Let {A(i)
1 , A

(i)
2 , . . . , A

(i)
K } denote

the crowd sequential labeling conducted on instance X(i)

by K different annotators. A(i)
k is a sequential labeling con-

ducted by the kth annotator.

As follows, we present a parametric framework to model
the conditional probability distribution Pr(A|X), where X
is the set of sequential data and A represents the crowd se-
quential labeling on X . Please note that, here we model
the conditional probability distribution Pr(A|X) instead of
the joint probability distribution Pr(A,X). This is because
modeling the joint probability distribution requires to model
the distribution Pr(X), which involves non-trivial statistical
dependencies. Besides, the conditional probability distribu-
tion is sufficient for sequential data labeling.

The proposed approach is to formulate Pr(A|X) as para-
metric models, and then solve it by maximizing its likeli-
hood on crowd sequential labelings, in order to obtain val-
ues of parameters. As shown later in this paper, we can use
these parameters to predict the labels of unseen sequential
data. Interestingly, if we re-label the training data with these
parameters, the sequential labelings from multiple annota-
tors can be merged into one unified labeling. As a result,
many existing sequential data models, such as HMM (Hid-
den Markov Model) (Rabiner 1990) MeMM (Maximum
Entropy Markov Model) (McCallum, Freitag, and Pereira
2000) and CRF (Conditional Random Fields) (Lafferty, Mc-
Callum, and Pereira 2001), that are initially designed for sin-
gle source training data, can be applied to crowd sequential
labeling. The notations used in this paper are summarized in
Table 1.

The Ensembling Model: Sembler

We represent the conditional probability Pr(A|X) in Eq.(1).

1714

Pr(A|X) =
N∏
i=1

Pr({A(i)
k }|X

(i))

=
N∏
i=1

∑
t

Pr({A(i)
k }|L

(i)
t , X(i))Pr(L(i)

t |X(i))

=
N∏
i=1

∑
t

K∏
k=1

Pr(A(i)
k |L

(i)
t)Pr(L(i)

t |X(i)) (1)

where L(i)
t represents one possible sequential labeling on

X(i) and the set {L(i)
1 , L

(i)
2 , . . .} represents all possible se-

quential labeling on X(i). In Eq.(1), we assume the value of
A

(i)
k only relies on L(i)

t and is independent from X(i). Thus
we have:

Pr({A(i)
k }|L

(i)
t , X(i)) = Pr({A(i)

k }|L
(i)
t)

In Eq.(1), Pr(A|X) is decomposed into the combinations of
two simpler probabilities:

1. Pr(L(i)
t |X(i)) denotes the conditional probability of as-

signing the labels L(i)
t to the instance X(i).

2. Pr(A(i)
k |L

(i)
t) denotes the probability of transforming the

labeling on instance X(i) from L
(i)
t to A(i)

k .

Using parametric modeling, we then introduce two sets of
parameters ϑ and ϕ to model these two probabilities sepa-
rately.

Since Pr(L(i)
t |X(i)) does not involve crowd related vari-

ables, we can adopt existing methods designed for single-
source labeling to estimate this probability. For example, in
the framework of CRF, the statistical dependencies between
L
(i)
t and X(i) are modeled by an undirected graph (which

we simplify into a chain representation in this paper) and
the conditional probability Pr(L(i)

t |X(i)) can be represented
in Eq. (2).

Pr(L(i)
t |X(i)) =

exp
(∑

j,p λpfp(li(j−1)t, lijt, xij)
)

Z(X(i))
(2)

where ϑ = (λ1, λ2, . . . , λP) is the set of parameters to be
estimated, and Z(X(i)) is an instance specific normalization
function.

Z(X(i)) =
∑
t

exp
(∑

j,p

λpfp(li(j−1)t, lijt, xij)
)

(3)

Since the feature function fp is common to all instances in
sequential data. The total number of parameters in ϑ is equal
to the size of feature functions, or P .

Then the problem is to formulate Pr(A(i)
k |L

(i)
t) with para-

metric modeling. Since the annotators vary in expertise and
responsibility, we need to introduce parameters to model the
performance of each individual annotator. Here we extend

the parameters proposed by (Raykar et al. 2009) and use
ϕ = (α, β, γ) to calculate the probability Pr(A(i)

k |L
(i)
t).

We exemplify the meaning of ϕ in an NER task. Assume
the adopted label alphabet is {B, I, O} where B represents
the beginning token of a named entity, I represents the in-
termediate token of a named entity and O represents other
tokens. An NER process is to assign each token in text with
a label from {B, I, O}. Then the expertise of the kth annota-
tor can be modeled by a 3×3 matrix of parameters as shown
below:

B I O
B
I
O

[
αk1 αk2 1− αk1 − αk2

βk1 βk2 1− βk1 − βk2
γk1 γk2 1− γk1 − γk2

]
(4)

where αk1 denotes the precision of the kth annotator in an-
notating a token with correct label B, αk2 denotes the prob-
ability that the answer is B but the annotator labels it with I,
accordingly, 1 − αk1 − αk2 denotes the probability that the
answer is B but the annotator labels it with O. The param-
eters β and γ are defined with similar meanings as that of
α. One can easily infer that the higher values the parameters
on diagonal of Eq.(4) are, the more reliable is this annotator.
Given K annotators, the total number of parameters of ϕ is
K × 3× 3.

With these parameters describing the annotator’s reliabil-
ity, we represent Pr(A(i)

k |L
(i)
t) in Eq.(5).

Pr(A(i)
k |L

(i)
t) =

∏
j

Pr(aijk|lijt) (5)

where Pr(aijk|lijt) can be represented by the parameters de-
fined in the matrix of Eq.(4). For example, when lijt =B and
aijk=I, the probability Pr(aijk|lijt) equals to αk2.

Parameter Estimation
The problem now is to estimate the parameters ϑ and ϕ, and
we achieve this objective by maximizing the likelihood in
Eq. (6).

l = log Pr(A|X)

=
N∑
i=1

log
(∑

t

K∏
k=1

Pr(A(i)
k |L

(i)
t)Pr(L(i)

t |X(i))
)

(6)

Since Eq. (6) involves the log calculation over the sum of
products, it is intractable to estimate the parameters directly.
To solve this problem, we employ EM (Expectation Maxi-
mization) method and introduce new hidden variables µ in
Eq.(7).

µit = Pr(L(i)
t |{A

(i)
k }, X

(i)) (7)

After introducing the hidden variables, the log-likelihood
could be transformed to Eq. (8)

l′ = l′1 + l′2 (8)

1715

where

l′1 =
N∑
i=1

∑
t

µit

K∑
k=1

log Pr(A(i)
k |L

(i)
t) (9)

l′2 =
N∑
i=1

∑
t

µit log Pr(L(i)
t |X(i)) (10)

In the E-step: µ is estimated as follows in Eq. (11).

µit =

∏K
k=1 Pr(A(i)

k |L
(i)
t)Pr(L(i)

t |X(i))∑
t

∏K
k=1 Pr(A(i)

k |L
(i)
t)Pr(L(i)

t |X(i))
(11)

Since the parameter ϕ only appears in l′1 and the parameter
ϑ only appears in l′2. In the M-Step, with the parameters u
fixed, we maximize the loglikelihood l′1 and l′2 in Eq. (9)
and Eq. (10) separately to calculate ϕ and ϑ.

For the parametersϕ = (α, β, γ), it can be obtained easily
by differentiating the log-likelihood in Eq. (9). For example,

αk1 =

∑N
i=1

∑
t µitn

k1
it∑N

i=1

∑
t µit(nk1it + nk2it + nk3it)

(12)

where nk1it denotes the number of tokens in X(i) with the
label B in L(i)

t and the kth annotator also labels it with B.
nk2it and nk3it are defined similarly. Thus the sum nk1it +nk2it +
nk3it denotes the number of the tokens that are labeled with
B in L(i)

t .
For the parameters ϑ, if we combine Eq. (2) and (10) to-

gether, it is easy to find that the maximization of Eq. (10) is
indeed a weighted CRF parameter estimation problem. The
input training set is in the form below:

(X(1), L
(1)
1) (X(1), L

(1)
2) . . . (X(1), L

(1)
T)

(X(2), L
(1)
1) (X(2), L

(1)
2) . . . (X(1), L

(2)
T)

. .
(X(N), L

(N)
1) (X(N), L

(N)
2) . . . (X(N), L

(N)
T)

where each instance (X(i), L
(i)
t) is associated with a weight

µit, therefore the log-likelihood of CRF optimization is
modified to

l′2 =
N∑
i=1

(∑
t

∑
j,p

µitλpfp(li(j−1)t, lijt, xij)

− log(Z(X(i))
)

(13)

where Z(X(i))) can be calculated via Eq.(3).
The Eq. (13) can be calculated by the iterative scal-

ing algorithms (IIS) proposed by (Lafferty, McCallum, and
Pereira 2001). IIS works in an iterative manner and consec-
utively update the weights as λp ← λp + δλp. The complete
process of parameter estimation in Sembler is listed in Al-
gorithm 1.

Algorithm 1 first enumerates all the possible labeling on
each instance X(i) and then adds every instance label pair

Algorithm 1: Parameter Estimation Process of Sembler
1 Set the training data set D = ∅.
2 foreach Instance X(i) do
3 Enumerate all possible labeling {L(i)

1 , L
(i)
2 , . . .}.

4 Add all instance label pairs (X(i), L
(i)
t) to D.

5 while EM not converged do
6 E step:
7 Update the values of hidden variable µ according

to Eq. (11).
8 M step:
9 Update ϕ according to Eq. (12).

10 Assign weights µit to each item in D.
11 Estimate the values of λp with IIS method.
12 while IIS not converged do
13 Calculate δλp.
14 λp ← λp + δλp

(X(i), L
(i)
t) into the training data set D. If the average num-

ber of different labeling per instance is T̄ , the total size of
the training set is thus N × T̄ . Then the EM iteration is
performed to estimate the values of ϑ and ϕ. Please note
that the M-Step of Algorithm 1 includes parameter estima-
tion of weighted CRF over the training data set D which
also employs an iterative process. Therefore Algorithm 1
can be viewed as a level 2 nested iteration. If we repre-
sent the computational complexity of CRF parameter esti-
mation with o(CRF), the dominant computational complex-
ity of Sembler is I×o(CRF) where I denotes the number of
EM iterations. Since Sembler is performed off line and the
parameter estimation process of CRF can be accelerated and
parallelized (Vishwanathan et al. 2006), the computational
complexity is not a barrier for practical use of Sembler.

Generation of All Possible Sequential Labelings
In the formulation above, for each instance X(i), we need to
generate all possible sequential labelings {L(i)

1 , L
(i)
2 , . . .}. A

straight-forward approach is to enumerate all label combina-
tions. However such an approach will cause combinatorial
explosion and lead to difficulties in computation. For ex-
ample, if the label Alphabet is {B, I, O}, the total number
of sequential labeling is as large as 3M in a sentence with
M tokens. Besides, many sequential labelings generated by
brute-force enumeration are not valid. For example, in NER
tasks, the label sequence (O, I) is incorrect and label a token
that is obviously not part of a named entity with B or I is
inappropriate. To reduce the size of sequential labelings and
avoid unnecessary compututational cost, we propose Algo-
rithm 2 to generate valid sequential labelings.

To demonstrate how the above algorithm works, we ex-
amine the following example:

Sentence 1: activation induced by FGF1
Annotator 1: O O O B
Annotator 2: O B O O

Sentence 1 is annotated by two annotators with different la-

1716

Algorithm 2: Generating Valid Sequential Labelings

1 foreach A(i)
k on X(i) do

2 foreach token wj in X(i) do
3 Restore the label aijkof A(i)

k on wj .

4 foreach token wj in X(i) do
5 Reserve the labels on wj the frequency of which is

above a preset threshold.
6 Remove other labels.
7 Generating sequential labeling with the remaining

labels on each token.

belings. If we set the threshold to be 1, four possible sequen-
tial labelings will be generated as follows:

Sentence 1: activation induced by FGF1
Labeling 1: O O O O
Labeling 2: O O O B
Labeling 3: O B O O
Labeling 4: O B O B

Experiments
We evaluate the proposed approach from two main perspec-
tives: (1) Does it outperform the baseline ensemble methods,
such as majority voting; (2) Does its performance remain
stable in different settings of annotator size and individual
expertise. We evaluate the first perspective on a real Twitter
NER data set, and generate synthetic data sets with varied
expertise settings to explore the second.

Twitter Data Set
We use the Tweet dataset provided by (Finin et al. 2010).
They publish 441 tweets on Amazon Mechanical Turk and
invite annotators to label the appearance of organization, ad-
dress and person names. In total, they received 4,791 anno-
tations from 269 different contributors. That is 10 annota-
tions for each tweet. Finin et al. (2010) also provides the
”Gold” labeling answers for these 441 tweets. The number
of organizations, persons, and places in the tweet data set are
170, 171 and 167 respectively.

For each type of named entities, we apply the following
three methods to the Tweet data set separately. Table 2 lists
the F1 value of the annotations given by these three methods
on the golden standard.

• Random Select (RS): For each tweet, we randomly select
one of its annotators with equal probability and use his
annotation as the result.

• Majority Vote (MV): For each word in tweet, we select
the label that the majority of its annotators agree on.

• Sembler: the proposed method. For each word in a tweet,
we select the common features used in typical named en-
tity recognition tasks, including the adjacent words, the
prefixes and suffixes, capitalization, etc. We treat these
features as our observed knowledge over input word se-
quence and include them in Eq. (2). After preforming

parameter estimation step, we apply the acquired param-
eter ϑ to relabel the input tweets which follows the CRF
inference process.

From Table 2, we observe that the proposed Sembler
method outperforms the rest two for all named entities. Most
importantly, the advantage in performance is more signif-
icant when the quality of crowd annotations is poor. For
example, in the “Organization” named entity, the majority
of the annotators provide wrong labels. But in case of ran-
dom selection, its possible that the correct label from the
minorities is chosen. As a result, the Majority Vote method
performs even worse than Random Select. In this condition,
Sembler improves the f1 values by more than 50% compared
to Majority Vote. This is because when majority agreement
does not work, the Sembler method instead relies on labeled
organization names to recognize other names with similar
features. Therefore Sembler has both higher precision than
majority vote and the higher recall than random select at the
same time.

BioCreative Data Set
To explore the performance of the proposed method in var-
ious circumstances, we need to simulate crowd annotations
with different settings on the number of annotators and ex-
pertise. We generate a synthetic data set from BioCreative
(Hirschman et al. 2005), which consists of 7,500 Medline
abstracts. In each abstract, the appearances of gene names
are labeled by domain experts. Therefore, this data set can
be viewed as a golden standard for gene name identifica-
tion. We randomly select 400 sentences from BioCreative to
generate synthetic crowd annotations. From our knowledge
on gene name annotation, three types of mistakes are easily
made by annotators.

• Ignore Error: due to the pressure of manual annotating,
some gene name appearances could be missed by annota-
tors.

• Boundary Error: due to the complexity of gene names,
some inexperienced annotators could not label the start-
ing position and ending position of gene names correctly.
Four types of mistakes are common: the inclusion of an
extra token that lies before/after the gene name; the exclu-
sion of the first/last token of a gene name.

• Split Error: since some gene names occupy several to-
kens, a single gene name can be mistaken for several ad-
jacent gene names.

To include the above three types of common mistakes, we
generate synthetic crowd sequential labeling in BioCreative
according to the following steps:

1. For each annotator a, we assign a probability p to repre-
sent his annotating expertise.

2. For each appearance of a gene name in the sentence, this
annotator has p probability to correctly label this gene
name and 1− p probability to make mistakes.

3. When this annotator is chosen to make mistakes on a gene
name, the above three types of errors are picked with

1717

Canada Organization Person Address
Precision Recall F1 Precision Recall F1 Precision Recall F1

RS 0.402 0.183 0.252 0.524 0.532 0.528 0.658 0.477 0.553
MV 0.667 0.118 0.200 0.610 0.631 0.621 0.823 0.557 0.664
Sembler 0.660 0.215 0.324 0.612 0.714 0.659 0.800 0.599 0.685

Table 2: Comparison Results between Three Methods on Twitter NER Corpus

equal probability. For example, the Ignore Error can hap-
pen with probability 1−p

3 . When it occurs, the labels on
each token of this gene are changed to O.

Figure 1: Comparative Evaluation on Synthetic BioCreative
Datasets

Figure 1 summarizes the comparison results among three
methods on the BioCreative data set where the number of
annotators is set to be 5. We observe that with different set-
ting of annotator expertise, the proposed Sembler method
consistently outperforms the other two baselines. Similar
to previous experiment on Twitter data set, the performance
advantages become much more significant when the quality
of crowd annotating is poor, i.e., with smaller p.

We also explore whether the number of annotators can af-
fect the performance of the proposed method. We set the
number of annotators to 6,8 and 10 respectively, and gener-
ate synthetic data sets with different expertise settings. Table
3 lists the comparison results of three methods. From this ta-
ble, we find that under different annotator number settings,
Sembler consistently outperforms the other two baselines.
The number of annotators can help to improve the accu-
racy when the expertise of each annotator is reliable which
is in compliance with the conclusion of (Sheng, Provost, and
Ipeirotis 2008).

Related Works
There have been increasing interests to collect manual an-
notations for NLP tasks via crowdsourcing services. In
(Snow et al. 2008), the annotators from MTurk are invited to
work on five NLP annotating tasks, including affect recogni-
tion, word similarity, recognizing textual entailment, event
temporal ordering, and word sense disambiguation. They
find that a small number of repeated non-expert annotations
could match the performance of an expert annotator. In (Su

Annotator Method p = 0.2 p = 0.4 p = 0.6
RS 0.312 0.504 0.683

K=6 MV 0.477 0.748 0.948
Sembler 0.582 0.806 0.962
RS 0.273 0.475 0.668

K=8 MV 0.424 0.797 0.947
Sembler 0.487 0.849 0.968
RS 0.279 0.499 0.697

K=10 MV 0.450 0.750 0.968
Sembler 0.557 0.831 0.983

Table 3: F1 Value of Three Methods on BioCreative Data
Set with Different Settings of Annotator Expertise

et al. 2007), the annotators provided labels for hotel name
entity entities as well as other information extraction tasks.
They also found that the crowd annotations are of high ac-
curacy. In (Yetisgen-Yildiz et al. 2010), the annotators are
invited to label medical names which requires specific do-
main knowledge. Surprisingly, the quality of acquired crowd
annotations are still satisfactory. In (Callison-Burch 2009)
and (Evanini, Higgins, and Zechner 2010), they prove the
usefulness of crowdsourcing in complex NLP tasks, such as
document translation and speech transcription.

Although the crowd annotations have been proven useful
for many NLP tasks. Due to the unknown expertise and de-
votion of annotators, some errors caused by unintentional
or deliberate reasons are inevitable. Therefore, many ap-
proaches have been proposed to remove these errors while
preserving correct annotations. In (Zaidan and Callison-
Burch 2011), they provide several linguistic and statistical
measures to discriminate between acceptable and unaccept-
able crowd translations; In (Sheng, Provost, and Ipeirotis
2008), they explore the use of noisy labels in training clas-
sifiers. They provide answers to two questions, (1) how to
choose which example should get more labels; (2) how to
consider the label’s uncertainty; In (Dempster, Laird, and
Rubin 1977), they propose a maximum likelihood based sta-
tistical framework to model the labels from multiple sources
and infer the correct label for each item; (Raykar et al.
2009) further extends the framework proposed by (Demp-
ster, Laird, and Rubin 1977) and integrate it with the clas-
sification process. As a result, a classifier can be trained
directly from crowd annotations.

In previously proposed approaches, the crowd annotations
are abstracted as either a numerical rating or a binary selec-
tion problem, each annotation is assumed independent from
each other. Therefore the dependency information are ig-
nored in refining crowd annotations. Different from previ-
ous approach, we propose an ensemble method that is able
to model the dependencies among annotations, as well as

1718

other factors, like majority vote and individual annotator’s
expertise.

Conclusion
In this paper, we present a statistical model Sembler to en-
semble crowd sequential labeling. With help of this model,
we can either acquire a refined and unified sequential label-
ing over the input data set, or train a sequential data anno-
tator directly from crowd annotations. Therefore the pro-
posed framework can benefit many sequential labeling tasks
including named entity recognition (NER), part of speech
(POS) tagging and word segmentation.

Similar to previous refinement approaches that are tar-
geted for numeric rating or binary selection, the proposed
framework model the expertise of individual annotators and
follow the majority vote principal as well. Importantly, the
proposed framework also considers the statistical dependen-
cies and co-relation between sequential data. As a result, the
labels on all entities in an instance are considered as a whole
in the ensemble process. Besides, correct annotation in one
instance enhances the correctness of other annotations which
share similar linguistic or contextual features. We evaluate
the proposed model on a real Twitter and a synthetical bio-
logical data set, and find that the proposed method outper-
form baseline methods, such as majority vote, consistently
in various environment settings. Interestingly, the proposed
Sembler works particuarly well when the quality of crowd
annotation are poor.

References
Callison-Burch, C. 2009. Fast, cheap, and creative: eval-
uating translation quality using amazon’s mechanical turk.
In Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1 - Volume 1,
EMNLP ’09, 286–295. Stroudsburg, PA, USA: Association
for Computational Linguistics.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the em algorithm.
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SE-
RIES B 39(1):1–38.
Evanini, K.; Higgins, D.; and Zechner, K. 2010. Using ama-
zon mechanical turk for transcription of non-native speech.
In Proceedings of the NAACL HLT 2010 Workshop on Cre-
ating Speech and Language Data with Amazon’s Mechani-
cal Turk, CSLDAMT ’10, 53–56. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Finin, T.; Murnane, W.; Karandikar, A.; Keller, N.; Mar-
tineau, J.; and Dredze, M. 2010. Annotating named entities
in twitter data with crowdsourcing. In Proceedings of the
NAACL HLT 2010 Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk, CSLDAMT
’10, 80–88. Stroudsburg, PA, USA: Association for Com-
putational Linguistics.
Hirschman, L.; Yeh, A.; Blaschke, C.; and Valencia, A.
2005. Overview of BioCreAtIvE: critical assessment of
information extraction for biology. BMC bioinformatics 6
Suppl 1.

Lafferty, J. D.; McCallum, A.; and Pereira, F. C. N. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learning,
ICML ’01, 282–289. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
McCallum, A.; Freitag, D.; and Pereira, F. C. N. 2000.
Maximum entropy markov models for information extrac-
tion and segmentation. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML ’00,
591–598. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Rabiner, L. R. 1990. Readings in speech recognition. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
chapter A tutorial on hidden Markov models and selected
applications in speech recognition, 267–296.
Raykar, V. C.; Yu, S.; Zhao, L. H.; Jerebko, A.; Florin, C.;
Valadez, G. H.; Bogoni, L.; and Moy, L. 2009. Super-
vised learning from multiple experts: whom to trust when
everyone lies a bit. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, 889–
896. New York, NY, USA: ACM.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, KDD ’08, 614–622. New York, NY, USA:
ACM.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008.
Cheap and fast—but is it good?: evaluating non-expert an-
notations for natural language tasks. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’08, 254–263. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Su, Q.; Pavlov, D.; Chow, J.-H.; and Baker, W. C. 2007.
Internet-scale collection of human-reviewed data. In Pro-
ceedings of the 16th international conference on World Wide
Web, WWW ’07, 231–240. New York, NY, USA: ACM.
Vishwanathan, S. V. N.; Schraudolph, N. N.; Schmidt,
M. W.; and Murphy, K. P. 2006. Accelerated training of
conditional random fields with stochastic gradient methods.
In Proceedings of the 23rd international conference on Ma-
chine learning, ICML ’06, 969–976. New York, NY, USA:
ACM.
Yetisgen-Yildiz, M.; Solti, I.; Xia, F.; and Halgrim, S. R.
2010. Preliminary experience with amazon’s mechani-
cal turk for annotating medical named entities. In Pro-
ceedings of the NAACL HLT 2010 Workshop on Creat-
ing Speech and Language Data with Amazon’s Mechanical
Turk, CSLDAMT ’10, 180–183. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.
Zaidan, O. F., and Callison-Burch, C. 2011. Crowdsourcing
translation: professional quality from non-professionals. In
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, 1220–1229. Stroudsburg, PA,
USA: Association for Computational Linguistics.

1719

