
Evaluating Temporal Plans in Incomplete Domains

Daniel Morwood and Daniel Bryce
dan.morwood@aggiemail.usu.edu, daniel.bryce@usu.edu

Utah State University

Abstract

Recent work on planning in incomplete domains focuses on
constructing plans that succeed despite incomplete knowl-
edge of action preconditions and effects. As planning mod-
els become more expressive, such as in temporal planning,
the types of incompleteness may not only change, but plans
become more challenging to evaluate. The primary diffi-
culty to temporal plan evaluation is accounting for temporal
constraints that may not be satisfied under all interpretations
of the incomplete domain. In this work, we formulate in-
complete temporal plan evaluation as a generalization of the
temporal consistency problem, called partial temporal con-
sistency. We present a knowledge compilation approach that
is combined with symbolic constraint propagation and model
counting algorithms for counting the number of incomplete
domain model interpretations under which a plan is consis-
tent. We present an evaluation that identifies the aspects of
incomplete temporal plans most impact performance.

Introduction
Automated planning requires complete and correct domain
models that are the result of often costly knowledge en-
gineering (Simpson, Kitchen, and McCluskey 2007; Va-
quero et al. 2007) or machine learning (Wu, Yang, and
Jiang 2007). With insufficient human expertise or data,
the planning domain model can be incomplete (Garland
and Lesh 2002). Recent work (Weber and Bryce 2011;
Nguyen, Kambhampati, and Do 2010) has shown that it is
possible to synthesize plans that are robust to the incom-
plete model. Such robust plans are similar to conformant
plans, where instead of incomplete knowledge of the world
state, we have incomplete knowledge of the actions. Plan
quality is defined by the number of interpretations of the in-
complete domain under which the plan will succeed, which
is most naturally posed as a propositional model counting
problem (Gomes, Sabharwal, and Selman 2009). This work
extends this formalism to PDDL 2.1 level 3 temporal plans
(Fox and Long 2003).

Counting the domain model interpretations under which
a temporal plan will succeed requires expressing the plan
with conditional temporal constraints along with proposi-
tional constraints describing our knowledge of the domain.
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While prior work (Tsamardinos, Vidal, and Pollack 2003;
Schwalb, Kask, and Dechter 1994) considers testing the con-
sistency of such constraints, we wish to count the number of
satisfiable assignments to the uncontrollable propositional
variables (representing our incomplete knowledge), where
the implied temporal constraints are consistent.

Tsamardinos, Vidal, and Pollack (2003) solve a deci-
sion form of this problem, where the propositional variables
are uncontrollable and the constraints are either weakly or
strongly consistent with respect to all propositional models.
Alternatively, Schwalb, Kask, and Dechter (1994) solve the
satisfiability version of this problem where the propositional
variables are controllable. We bridge these approaches by
assuming that the propositional variables are partitioned into
controllable and uncontrollable sets. We also address a cor-
responding counting problem (which we call partial consis-
tency), where we must count the number of propositional
models where the constraints are either weakly or strongly
consistent, while maximizing over the controllable vari-
ables. Our approach involves compiling the propositional
and temporal constraints into algebraic decision diagrams
(ADDs) (Bahar et al. 1993), composing the ADDs in a
symbolic version of the Floyd-Warshall algorithm (Dechter,
Meiri, and Pearl 1991), and then counting the propositional
models that imply consistent temporal problems.

We conduct several experiments to evaluate our approach
that vary the incompleteness of the planning domain and the
structure of the plans from highly concurrent to sequential.
We find that our approach scales well to evaluate large tem-
poral plans in incomplete temporal planning domains and is
most dramatically effected by the number of possible pre-
conditions and delete effects (which cause plan threats, and
disjunction in our knowledge representation).

Our presentation is organized as follows. We review con-
ditional temporal problems and consistency in the next sec-
tions, and follow with our contribution to evaluating partial
consistency. We then show how incomplete plan evaluation
is formulated as partial consistency, and empirically evalu-
ate the algorithms in several plan evaluation scenarios. We
end with a discussion of related work and a conclusion.

Conditional Temporal Problems
The combination of propositional and temporal constraints
has been studied under the names conditional temporal prob-
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lem (CTP) (Tsamardinos, Vidal, and Pollack 2003), and
conditional temporal networks (CTNs) (Schwalb, Kask, and
Dechter 1994). Where the former is used to condition
time points (nodes) on uncertain observations in conditional
planning, the latter conditions constraints (edges) on action
choices. In both cases, the conditions are represented as
propositional sentences, and have an effect of implying an
underlying temporal problem. Aside from the difference in
how the implied temporal problems are conditioned (based
on either nodes or edges), the main difference lies in what
constitutes a solution to a CTP or a CTN. Solutions to CTPs
ensure that all propositional models imply a consistent tem-
poral problem because the propositions are assumed uncon-
trollable. Solutions to CTNs ensure that a single proposi-
tional model exists where the implied temporal constraints
are consistent because the propositions are assumed control-
lable. In the following, we rely on the CTN representation
(i.e., conditioned edges), but subscribe more closely to the
CTP notion of a solution. We further generalize the notion
of consistency to partial consistency, where we count the
conditions (propositional models) under which an implied
network is consistent because not all models of the uncon-
trollable variables imply consistent temporal problems.
Conditional Temporal Networks: We define a Conditional
Temporal Network (CTN) as a tuple 〈B, V,E, ψ〉 where

• B is a set of propositions that is the union of:
– Bnc: propositions that are not controllable.
– Bc: propositions that are controllable.

• V is a set of real-valued temporal variables.
• E is a set of conditional constraints of the form

c⇒ vi
[l,u]−−→ vj

where vi, vj ∈ V , l, u ∈ R, and c is a controllable
proposition p ∈ Bc or logical true > (meaning the con-
straint is not conditional). The constraint states that if c
is true, then time point vi must occur between l and u
time units before time point vj . We assume that for each
constraint, there exists an equivalent (implicit) constraint

c⇒ vj
[−u,−l]−−−−−→ vi ∈ E to simplify our discussion below.

• ψ ∈ 22
B

is a propositional sentence expressed over B,
with a set of models M(ψ) ⊆ 2B . Each model m ∈
M(ψ) is defined as a pair (mnc,mc), where mnc ⊆ Bnc
and mc ⊆ Bc. We also refer to the sets of partial mod-
els Mc(ψ) = {mc|(mnc,mc) ∈ M(ψ)} and Mnc(ψ) =
{mnc|(mnc,mc) ∈M(ψ)}.
We denote by E(m), the set of temporal constraints im-

plied by a model m ∈ M(ψ). A temporal constraint is im-
plied by a model of m if its condition is > or it is p and
p ∈ m. A CTN is consistent (Schwalb, Kask, and Dechter
1994) (Thrm. 2) iff there is a model m ∈ M(ψ), such that
the temporal constraintsE(m) that are implied by the model
are consistent – the well-known simple temporal problem
(STP) (Dechter, Meiri, and Pearl 1991). We denote by the
0-1 indicator function δ(E(m)) whether the constraints are
consistent. Tsamardinos, Vidal, and Pollack (2003) define a
similar notion called scenario projections. A scenario pro-

jection is a set of temporal variables (and related constraints)
with satisfiable conditions.

Schwalb, Kask, and Dechter (1994) need only find a
model of ψ to show consistency because each proposition
is assumed controllable (i.e., Bnc = {}); Tsamardinos,
Vidal, and Pollack (2003) relax this assumption such that
Bnc 6= {} and corresponds to observations possibly made
at execution time. When there exists uncontrollable propo-
sitions, it is possible to define weak and strong consistency
in terms of the set of implied temporal problems. We extend
these definitions to CTNs following the intuitions in CTPs.
Consistency: A CTN is weakly consistent iff for every un-
controllable partial model mnc ∈M(ψ), there exists a con-
trollable partial model mc where the implied simple tempo-
ral problem is consistent; formally,

∀mnc ∈Mnc(ψ)∃(mnc,mc) ∈M(ψ)δ(E(mnc,mc)) = 1

A CTN is strongly consistent iff there exists a controllable
partial model where, with all corresponding uncontrollable
partial models, it implies a consistent STP; formally,

∃mc ∈Mc(ψ)∀(mnc,mc) ∈M(ψ) δ(E(mnc,mc)) = 1

Weak consistency assumes that the uncontrollable proposi-
tions are observed prior to execution. Strong consistency as-
sumes that the uncontrollable propositions are not observed.
Partial Consistency: When a network is not weakly or
strongly consistent (wrt. the universal quantifiers) it is useful
to gauge the degree to which it is consistent. To accomplish
this we define partial weak and strong consistency of a CTN.

The weak partial consistency of a CTN is the number of
uncontrollable partial models where a corresponding con-
trollable partial model is consistent, formally∑

mnc∈Mnc(ψ)

max
(mnc,mc)∈M(ψ)

δ(E((mnc,mc)))

replacing the quantifiers by a maximum and summation.
The strong partial consistency of a CTN is the maximum

over controllable partial models of the number of uncontrol-
lable partial models that are consistent, formally

max
mc∈Mc(ψ)

∑
(mnc,mc)∈M(ψ)

δ(E((mnc,mc)))

Partial Consistency Algorithms
We view partial consistency as a propositional model count-
ing problem where each model can only be counted if it
implies a consistent STP. Model counting algorithms can
be broadly grouped into search or knowledge compila-
tion (Gomes, Sabharwal, and Selman 2009). As noted by
Tsamardinos, Vidal, and Pollack (2003), many of the mod-
els can imply the same or similar temporal problem; in such
cases, search based approaches can be inefficient because
they may solve many related temporal problems disjunc-
tively. We develop a knowledge compilation approach that
exploits the overlapping constraints involved in solving sim-
ilar temporal problems by using ADDs.

Our approach involves testing the consistency of each
STP implied by a model of ψ. We test the consistency of
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Algorithm 1: Floyd-Warshall(D,V )
1 for vk ∈ V do
2 for vi ∈ V do
3 for vj ∈ V do
4 Dij = min(Dij , Dik +Dkj);

these STPs simultaneously by generalizing each scalar entry
of the Floyd-Warshall (Cormen, Leiserson, and Rivest 1990)
distance matrix to become an ADD. As the Floyd-Warshall
algorithm requires only minimization and summation opera-
tions, both of which are defined for ADDs, the algorithm re-
mains otherwise unchanged. The ADDs encode which mod-
els of ψ imply an upper bound on the distance between two
time points and are defined over the set of CTN propositions
B. We start by reviewing the Floyd-Warshall algorithm and
its application to STPs.
Floyd-Warshall for STPs: Dechter, Meiri, and Pearl (1991)
show that a simple temporal problem 〈V,E〉 (equivalent to
a CTN with B = {} and only unconditional constraints in
E) is consistent through a special form of constraint propa-
gation using the Floyd-Warshall all-pairs shortest path algo-
rithm. The approach defines a distance graph that is repre-
sented by an explicit distance matrix D with entries

Dij =


u : vi

[l,u]−−→ vj ∈ E, i < j

−l : vi
[l,u]−−→ vj ∈ E, i > j

0 : i = j
∞ : otherwise

The Floyd-Warshall algorithm (Algorithm 1) computes the
minimum distance between all pairs of time points, and the
STP is guaranteed consistent if the graph does not contain
a negative cycle (i.e., there does not exist a Dii < 0). If
consistent, the tightened constraint on two time points is

vi
[−Dji,Dij ]−−−−−−−→ vj , and a feasible schedule is an assignment

to the time points respecting the tightened constraints.
Floyd-Warshall for CTNs: In theory, it is possible to test
the consistency of each STP implied by a model of ψ in a
CTN by enumerating the models consistent with ψ and fol-
lowing the explicit approach above for STPs; however, this
can be inefficient when the set of constraints in the CTN in-
cludes many unconditional constraints. We propose a sym-
bolic generalization of the approach above that can exploit
the common constraints among the implied STPs. The in-
tuition is to replace each scalar entry of the distance matrix
by an ADD. Each ADD encodes the distances between two
time points for all possible implicit STPs implied by models
of ψ. Upon completing the symbolic Floyd-Warshall algo-
rithm, we count the number of consistent STPs by determin-
ing which STPs implied by models of ψ have negative cycles
in the distance graph. All operations from Floyd-Warshall
summations and minimizations, to partial consistency sum-
mations and maximizations are carried out symbolically as
ADD operations.

We define a distance cij(e) with respect to each constraint

e ∈ E and time points vi, vj ∈ V

cij(e) =

{
c→ u;∞ : c⇒ vi

[l,u]−−→ vj ∈ E, i < j

c→ −l;∞ : c⇒ vi
[l,u]−−→ vj ∈ E, i > j

where the if-then-else notation c → u;∞ is used to denote
an ADD node representing that if c is satisfied, then u is the
distance, else∞ is the distance.

There may be multiple conditional constraints that relate
two time points, and we denote the minimum among all of
the constraints by the ADD cij , defined as

cij =

{
min (mine∈E cij(e),∞) : i 6= j

0 : i = j

At this point, we could define the entries of the symbolic
distance matrix as Dij = cij and run the Floyd-Warshall al-
gorithm. However, this would correspond to testing the con-
sistency of an implicit STP for each model m ∈ 2B , many
of which may not satisfy ψ (i.e., they are irrelevant). We
can limit ourselves to testing the consistency of only those
STPs implied by models m ∈ M(ψ) by further modifying
the distance matrix entries so that all models m 6∈ M(ψ)
imply STPs that are guaranteed to be inconsistent. We can
make an STP inconsistent if we define the distance between
all pairs of time points as −∞. We accomplish this by rep-
resenting ψ by an ADD that maps all models m ∈M(ψ) to
∞ and all models m 6∈ M(ψ) to −∞ and then taking the
minimum of it with each cij . We define the entries in the
distance matrix as

Dij = min(ψ∞, cij)

where ψ∞ = ((ψ · 2)− 1) · ∞.
Computing Partial Consistency: At the completion of the
Floyd-Warshall algorithm, we can inspect the diagonal el-
ements Dii of the symbolic distance matrix to gather the
consistent implicit STPs (those STPs that are defined by the
paths in the ADDs that do not terminate in negative leaf
nodes). Using the ADD threshold operator, we define an
0-1 ADD D≥0ii for each Dii where all leaf nodes with value
greater or equal to 0 are mapped to 1, and all other leaf nodes
are mapped to 0 (i.e., mapping all models with consistent
STPs to 1). The STP implied by a model is inconsistent if
there exists one i where D≥0ii maps the model to 0. There-
fore, if we take the minimum over i of entries D≥0ii , the re-
sulting ADD we call C, will map a model to 0 if there exists
at least one i making the STP inconsistent, formally

C = min
i
D≥0ii

We denote by C(m) the constant ADD resulting from sub-
stituting > for each propositional variable b ∈ m, and ⊥ for
each b 6∈ m into C. If C(m) = 1 the STP implied by m
is consistent, and is inconsistent otherwise, as stated by the
following theorem.
Theorem 1. For all m ∈ M(ψ), the implied explicit STP
defined over the variables in V and constraintsE(m) is con-
sistent (i.e., δ(E(m)) = 1) iff the implicit STP is consistent,
(i.e., C(m) = 1).
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Proof. (Sketch) If we assume that the explicit STP im-
plied by m ∈ M(ψ) is consistent then each diagonal en-
try of the explicit Floyd-Warshall distance matrix is equal to
zero. If C(m) = 0, then at the completion of the Floyd-
Warshall algorithm there is an i in the explicit matrix where
Dii(m) < 0. However, we assumed m ∈ M(ψ) and the
implied explicit STP is consistent, which is a contradiction.

If we assume that C(m) = 1, then m ∈ M(ψ) and for
all i in the symbolic distance matrix, Dii(m) = 0. If the
explicit STP implied by m is inconsistent, then a diagonal
entry Dii of the explicit distance matrix must be negative.
A negative entry in Dii of the explicit matrix implies that
in the symbolic distance matrix Dii(m) < 0, which is a
contradiction.

We compute the weak partial consistency by∑
Bnc

max
Bc

C

and strong partial consistency by

max
Bc

∑
Bnc

C

By summing over the uncontrollable propositions and maxi-
mizing over the controllable propositions (where both oper-
ations are similar to Boolean projection), we attain a scalar
indicating the respective weak or strong partial consistency.
Example: The following example illustrates the formu-
lation of a symbolic distance matrix corresponding to a
plan (described in the next section). We define a CTN
〈(Bnc, Bc), V, E, ψ〉 where for ε > 0:

• Bnc = {adde(a(s1), p), dele(a(s2), p), pres(a(s∞), p)}
• Bc = {se2 ≺ se1, ss∞ ≺ se2}
• V = {se0, ss1, se1, ss2, se2, ss∞}

• E = { se2 ≺ se1 ⇒ se2
[ε,∞]−−−→ se1,

ss∞ ≺ se2 ⇒ ss∞
[ε,∞]−−−→ se2,

> ⇒ se0
[ε,∞]−−−→ v, v ∈ {ss1, se1, ss2, se2, ss∞}

> ⇒ v
[ε,∞]−−−→ ss∞, v ∈ {se0, ss1, se1, ss2, se2}

> ⇒ ss1
[dur(s1),dur(s1)]−−−−−−−−−−−→ se1,

> ⇒ ss2
[dur(s2),dur(s2)]−−−−−−−−−−−→ se2}

• ψ =
(
¬pres(a(s∞), p) ∨ adde(a(s1), p)

)
∧(

¬dele(a(s2), p) ∨ se2 ≺ se1 ∨ ss∞ ≺ se2
)

This CTN formulation of a plan uses temporal variables
V for the start and end times of durative actions, control-
lable propositionsBc for step orderings for threat resolution,
uncontrollable propositions Bnc for incomplete action fea-
tures. The temporal constraintsE denote plan step orderings
and the propositional constraints ψ denote cases consistent
with the incomplete knowledge about the domain where the
plan will succeed (i.e., the open conditions are satisfied and
there are no threats).

The distance matrix is defined as follows:
ψ0 ψ∞ ψ∞ ψ∞ ψ∞ ψ∞
ψ−ε ψ0 ψd(s1) ψ∞ ψ∞ ψ∞
ψ−ε ψ−d(s1) ψ0 ψ∞ Dse1,s

e
2

ψ∞
ψ−ε ψ∞ ψ∞ ψ0 ψd(s2) ψ∞
ψ−ε ψ∞ ψ∞ ψ−d(s2) ψ0 Dse2,s

s
∞

ψ−ε ψ−ε ψ−ε ψ−ε ψ∞ ψ0


where the ADDs are defined

Dse1,s
s
2
=(se2 ≺ ss1)→ ψ−ε;ψ∞

Dse2,s
s
∞

=(ss∞ ≺ se2)→ ψ−ε;ψ∞

ψk =ψ → k;−∞
for k ∈ {−ε,∞, 0, d(s1),−d(s1), d(s2),−d(s2)}. We
overload the if-then-else notation in the ψk ADD above for
the sake of brevity by replacing the proposition tested in the
if condition by a propositional sentence ψ that must be sat-
isfiable to satisfy the if condition.

At the completion of the Floyd-Warshall algorithm, the
diagonal entries of the matrix are:

Dse0,s
e
0
= 0

Dii = (ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺ ss1)→ 0;−k
for i ∈ {ss1, se1, ss2, se2, ss∞}

where k is a possibly different, strictly positive constant for
each i and each model not satisfying ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺
ss1. After mapping negative ADD leaves to zero and non-
negative leaves to one, we have the threshold ADDs:

D≥0se0,se0 = 1

D≥0ii = (ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺ ss1)→ 1; 0

for i ∈ {ss1, se1, ss2, se2, ss∞}
Finally, taking the minimum among the threshold ADDs, we
compute C:

C = min(D≥0se0,se0 , D
≥0
ss1,s

s
1
, D≥0se1,se1 , D

≥0
ss2,s

s
2
, D≥0se2,se2 , D

≥0
ss∞,ss∞

)

= (ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺ ss1)→ 1; 0

Any model that satisfies (ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺ ss1) can be
counted toward the partial consistency count. We compute
the weak partial consistency by first maximizing C over the
controllable variables Bc (and expanding ψ):

max
Bc

C =
(
¬pres(a(s∞), p) ∨ adde(a(s1), p)

)
→ 1; 0

Summing over Bnc computes the weak partial consistency:∑
Bnc

(¬pres(a(s∞), p) ∨ adde(a(s1), p))→ 1; 0 = 6

That is, there are six partial models mnc in
Mnc(¬pres(a(s∞), p) ∨ adde(a(s1), p)).

Computing strong partial consistency involves first sum-
ming over the uncontrollable variables:∑

Bnc

C =
∑
Bnc

(ψ ∧ ¬ss∞ ≺ se2 ∧ se2 ≺ ss1)→ 1; 0

= ¬ss∞ ≺ se2 ∧ se2 ≺ ss1 → 6; 0
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Finally, maximizing over the controllable variables com-
putes the strong partial consistency:

max
Bc

¬ss∞ ≺ se2 ∧ se2 ≺ ss1 → 6; 0 = 6

In this example, the weak and strong partial consistency are
identical. This happens because there is only one assignment
to the controllable variables that implies consistent STPs
(of which there are six). In practice, when there are multi-
ple satisfying assignments to the controllable variables, each
will imply a potentially different number of consistent STPs,
making weak and strong partial consistency differ.

Temporal Planning in Incomplete Domains
Planning in incomplete domains (Weber and Bryce 2011;
Nguyen, Kambhampati, and Do 2010) involves actions with
incompletely specified preconditions and effects, and plans
are evaluated with respect to how many interpretations of the
incomplete domain under which they succeed. While the
problem has been studied by extending the classical plan-
ning model, its analog in the temporal planning model has
been previously unstudied. In the following, we define the
incomplete temporal planning model, and show how tempo-
ral plans are evaluated in the partial consistency framework.
Incomplete Temporal Domains: We extend the PDDL 2.1
(Fox and Long 2003) model of temporal actions to allow in-
complete knowledge of the actions; our formalism largely
builds upon incomplete classical planning domains (Weber
and Bryce 2011). An incomplete temporal planning domain
defines the tuple 〈P, I,G,A, F, φ〉, where P is a set of state
propositions, I is a set of initial state propositions, G is a set
of goal propositions, A is a set of durative actions, F is a set
of propositions (disjoint from P ) describing the incomplete
action features, and φ is a propositional sentence over F de-
scribing the incomplete knowledge about the actions. In this
work, we assume that each action’s duration d(a) is known
(leaving unknown durations for future work).

The set F consists of propositions of the form preγ(a, p),
addτ (a, p), and delτ (a, p), where γ ∈ {s, e, i} and τ ∈
{s, e}, which indicate the standard PDDL 2.1 relationships
between a state proposition p and the time during the action
a, where it is a precondition, add effect, or delete effect.
The superscript denotes the start s, end e, or entire interval
i of the action’s duration. The models of the sentence φ are
defined in terms of the propositions in F , and each model of
φ corresponds to an interpretation of the incomplete domain
F i ⊆ F . Each interpretation is a normal PDDL 2.1 domain.
We say that a feature f ∈ F is unknown if φ 6|= f and
φ 6|= ¬f , and is otherwise known. In practice, we omit the
known action features from F and φ and reason about them
separately, but we find it more parsimonious to describe the
action representation as a propositional sentence.
Temporal Plans: A plan π is a tuple 〈S,L,O〉, where S
is a set of steps, L is a set of causal links, and O is a set
of temporal constraints on the start and end times of each
step in s ∈ S , which we denote by ss and se respectively.

A causal link si
p@[γ,τ ]−−−−−→ sj states that p is a precondition

of sj at time τ ∈ {s, e, i} satisfied by an effect of si at time
γ ∈ {s, e}. All plans contain dummy steps s0 and s∞ where

Figure 1: Example Plan

the effects of s0 are the initial state and the preconditions of
s∞ are the goals.

For example, the plan in Figure 1 consists of steps
S = {s0, s1, s2, s∞} (s0 not shown), causal links L =

{s1
p@[e,s]−−−−→ s∞}, and temporal constraints in O that re-

late the start and end of each step and the end of step s1
with the start of s∞. The features are F = {adde(a(s1), p),
dele(a(s2), p), pre

s(a(s∞), p)}, where a(s) is the action
applied in the step; the features indicate that a(s1) might
add p at its end, a(s2) might delete p at its end, and s∞
might require p as a precondition at its start. The knowledge
φ = > means that we have no information about whether
the features in F are actual preconditions and effects or not.
Encoding Temporal Plans as CTNs: Encoding a temporal
plan as a CTN allows us to compute the quality of the plan
in terms of its weak or strong partial consistency. The set of
temporal variables V includes variables for the start ss and
end se time of each step s ∈ S. The set of propositions are:

Bnc = F

Bc = {sµ3 ≺ s
γ
1 , s

τ
2 ≺ s

µ
3 |delµ(a(s3), p) ∈ F,

s1
p@[γ,τ ]−−−−−→ s2 ∈ L}

where each pair of propositions sµ3 ≺ sγ1 , s
τ
2 ≺ sµ3 in Bc

indicate whether time point sµ3 (a threat) is promoted or de-
moted. In the example, Bc = {se2 ≺ se1, ss∞ ≺ se2}.

The conditional temporal constraintsE are defined as fol-
lows. Each temporal constraint o ∈ O is an unconditional
constraint that states i) the duration of a step in terms of its
start and end times, ii) orderings between time points cor-
responding to the producer and consumer of a causal link,
and iii) promotion or demotion of a step known to threaten
a causal link. There are also conditional constraints in E for
every promotion/demotion variable in Bc of the form

sµ1 ≺ sτ2 ⇒ sµ1
[ε,∞]−−−→ sτ2

where ε > 0. The example from the previous section in-
cludes an exhaustive list of the conditional and uncondi-
tional constraints for the plan in Figure 1.

The propositional constraints ψ are defined in terms of
whether the goal step s∞ succeeds, which we denote by an
indicator proposition η(s∞) (and similarly for other steps).
We use these indicator propositions to handle circular defi-
nitions that occur when two steps can possibly threaten each
other’s supporting causal links. We define a success axiom
for each step, denotedψ(si). Each axiom defines the success
of a step η(si) as the step having each of its preconditions
satisfied by a successful causal link, so that

ψ(si) := η(si)⇔
∧
p∈P,

τ∈{s,e,i}

preτ (a(si), p)⇒
∨

l∈L(π)

ψ(l)
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where l = sj
p@[γ,τ ]−−−−−→ si and ψ(l) represents the cases under

which the causal link l succeeds (i.e., the step sj succeeds
and no step sk clobbers the link). We note that if there are no
causal links supporting the precondition, then the disjunc-
tion is equal to logical false, ⊥. In the example, steps s1 and
s2 have no preconditions, so ψ(s1) = >, ψ(s2) = > and

ψ(s∞) := η(s∞)⇔ pres(a(s∞), p)⇒ ψ(l1)

where l1 = s1
p@[e,s]−−−−→ s∞. The success of a causal link

ψ(l) is defined as whether the producing step sj succeeds
and adds the effect, and the link is not threatened:

ψ(l) := η(sj) ∧ addγ(a(sj), p) ∧
∧

sk∈S\{s0,s∞}

nt(sk, l)

where nt(sk, l) identifies the domain interpretations where
sk is not a threat to link l. In the example,

ψ(l1) := η(s1) ∧ adde(a(s1), p) ∧ nt(s2, l1)
A step is not a threat to a link nt(sk, l), as defined by

nt(sk, l) := ¬η(sk)∨¬delµ(a(sk), p)∨sµk ≺ s
γ
j ∨s

τ ′′

i ≺ s
µ
k

where the step sk must fail, not delete p at time µ ∈ {s, e}
between times sγj and sτ

′′

i , and τ ′′ = e if τ ∈ {e, i} or
τ ′′ = s if τ = s. In the example,

nt(s2, l1) := ¬dele(a(s2), p) ∨ se2 ≺ se1 ∨ ss∞ ≺ se2
We define ψ (in the CTN representing the plan) in terms

of the success of s∞ and our knowledge φ, but must en-
sure that we do not include the η(si) variables in the partial
consistency counts because ψ must be defined over B. To
express ψ in terms of B, we substitute > for each instance
of η(s∞) because we want to count the models where the
plan succeeds, and we existentially abstract the other η(si)
variables (i.e., project onto the variables in B ), so that

ψ := ∃{η(si)|si∈S}ψ(s∞)[>/η(s∞)] ∧ φ
where existential abstraction is defined: ∃Sf = ∃S\s∃sf
and ∃sf = f [>/s] ∨ f [⊥ /s].

From the example, after substitution and existential ab-
straction, we define

ψ := ∃{η(si)|si∈S}ψ(s∞)[>/η(s∞)] ∧ φ
=
(
¬pres(a(s∞), p) ∨ adde(a(s1), p)

)
∧(

¬dele(a(s2), p) ∨ se2 ≺ se1 ∨ ss∞ ≺ se2
)

which states that either p is not a precondition of s∞, or
s1 adds p, and at least one of the following: s2 does not
delete p, s2 ends prior to s1 ending, or s2 ends after the start
of s∞ (which will not occur because the implied temporal
constraints will be inconsistent).

We can count the number of interpretations of an incom-
plete domain under which a plan is valid by formulating
the plan as a CTN and evaluating its partial consistency.
The following theorem establishes that an interpretation of
the incomplete domain and a particular choice of promo-
tions/demotions is valid iff the corresponding model of the
CTN implies a consistent STP.

Theorem 2. Plan π has no flaws under the domain in-
terpretation F i iff in the CTN corresponding to π, when
mnc = F i, there exists a partial model mc such that
C((mnc,mc)) = 1.
Proof. (Sketch) If we assume that π has no flaws under the
domain interpretation F i, then there are no open conditions
or threatened links. If mnc = F i and there does not exist
an mc ∈ Mc(ψ) where C((mnc,mc)) = 1, then by Theo-
rem 1, it must be the case that (mnc,mc) 6∈ M(ψ) (if there
is an open condition) or the STP implied by (mnc,mc) is
inconsistent (if there is a threat), which is a contradiction.

Assume that mnc = F i and there exists a partial model
mc such that C((mnc,mc)) = 1. If π has a flaw under
the domain interpretation F i, then there is an open condi-
tion or threatened link. If there is an open condition, then
(mnc,mc) 6∈ M(ψ) and C((mnc,mc)) = 0, and if there is
a threat, then there is not a mc such that C((mnc,mc)) = 1,
which is a contradiction.

It follows from Theorem 2 that the number of domain in-
terpretations under which a plan is valid is equivalent to the
weak or strong partial consistency of the CTN formulated
from the plan.

Evaluation
We evaluate our approach by using it to assess the quality
of the plans generated by the fastest temporal planners for
each instance solved during the 2011 International Planning
Competition (IPC). We augment each instance by injecting
incomplete domain features that affect the plan, and then
compute partial consistency. In the following, we discuss the
test cases chosen for the evaluation, implementation details,
the evaluation metrics, and the empirical results.
Test Cases: In our first experiment we select from the 2011
IPC instances a representative small, medium, and large plan
from three domains: Matchcellar (instances 000, 017, and
013), TMS (instances 000, 001, and 014), and Sokoban (in-
stances 000, 005, and 004). These domains represent alter-
native plan structures that provide some insight to our eval-
uation. Plans in the Matchcellar domain admit sequences
of tightly constrained concurrent actions (i.e., walking and
changing a fuse while holding a match for each possible
fuse). TMS plans involve multiple concurrent, yet relatively
unconstrained actions. Sokoban involves sub-plans for mul-
tiple agents that are sequential, but have multiple constraints
on how agents can interact concurrently. Matchcellar is rel-
atively sequential, Temporal Machine Shop is mostly con-
current, and Sokoban has aspects of both.

We attain incomplete domains by randomly introducing
(over ten random seeds) unknown features that impact the
plans. To introduce a possible add effect, we uniformly sam-

ple a causal link si
p@[γ,τ ]−−−−−→ sj from the plan and add the

proposition addγ(a(si), p) to F (and similarly for precon-
ditions). For delete effects, we uniformly sample a causal

link si
p@[γ,τ ]−−−−−→ sj and an action a from the plan, and add

dele(a, p) to F . In each instance we add incomplete features
in multiples of three because we add a possible precondition,
add effect, and delete effect together.
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|F | E[F (l)] T (ψ∞) T (FW ) T (SC) T (WC)

m1 21 0.81 0.01 0.00 0.00 0.00
m1 42 1.70 4.15 0.17 1.36 4.79
m1 63 2.51 OOT OOT OOT OOT
m2 21 0.36 0.01 0.01 0.00 0.00
m2 42 0.83 7.74 4.41 4.77 6.97
m2 63 1.20 OOT OOT OOT OOT
m3 21 0.22 0.04 0.15 0.00 0.00
m3 42 0.50 3.46 28.79 0.21 1.20
m3 63 0.57 298.58 7.45 15.76 55.63

s1 21 0.13 0.00 0.00 0.00 0.00
s1 42 0.28 6.38 0.03 0.32 0.13
s1 63 0.40 57.26 0.92 17.09 8.77
s2 21 0.10 0.02 0.00 0.00 0.00
s2 42 0.21 0.81 0.01 0.05 0.02
s2 63 0.31 122.06 0.51 11.23 5.66
s3 21 0.05 0.24 0.01 0.00 0.00
s3 42 0.09 1.41 0.02 0.03 0.03
s3 63 0.13 61.02 0.13 1.26 0.58

t1 21 0.55 4.21 0.31 0.23 5.46
t1 42 0.26 492.85 0.01 0.98 0.33
t1 63 1.42 OOT/M OOT/M OOT/M OOT/M
t2 21 0.50 8.22 1.50 0.57 2.63
t2 42 1.18 OOT OOT OOT OOT
t3 21 0.39 20.03 0.96 0.80 9.67
t3 42 0.96 OOT/M OOT/M OOT/M OOT/M

Table 1: Incomplete features, expected link impact, and run-
times averaged over ten random seeds.

Implementation: Our implementation uses the CUDD
package (Somenzi 1998) to manage ADDs and was imple-
mented in C++.

Negative cycles in Floyd-Warshall are problematic be-
cause they cause the values across the matrix to slowly move
toward −∞, which results in a large number of leaf nodes
in our ADDs. In our implementation we avoid this issue by
incrementally checking for negative cycles during the exe-
cution of Floyd-Warshall and when a negative cycle is de-
tected the values across the matrix for that model are im-
mediately reduced to −∞. This does not change the value
of the final count because all models with negative cycles
are inconsistent and once a negative cycle is introduced in
Floyd-Warshall it is never removed by more information.
Experiments: We conduct three sets of experiments, all run
on a 2 GHz Xeon processor. The first (with results presented
in Table 1) introduces differing numbers of incomplete fea-
tures so that we can measure the impact of incompleteness
upon knowledge compilation (constructing the ADD ψ∞),
Floyd-Warshall, and model counting as plans increase in
size and across the domains. The second, an ablation exper-
iment, increases a single type of incomplete feature (precon-
dition, add, or delete) with respect to a single plan to assess
the total time to compute partial consistency. The third, in
Table 2 provides runtime by domain.

In Table 1, we present the number of incomplete fea-
tures (|F |) per instance (excluding the known precondi-

Figure 2: Time(s) and ψ∞ ADD Nodes vs # of Features

tions and effects), the average expected number of incom-
plete features directly impacting a causal link (E[F (l)]),
the knowledge compilation time to construct the ψ∞ ADD
(T (ψ∞)), the time to complete the symbolic Floyd-Warshall
(T (FW )), and the time to complete model counting in the
weak (T (WC)) and strong (T (SC)) cases; all time is in
seconds. Instances surpassing a 15 minute limit are denoted
“OOT”, those surpassing a 2GB memory limit are denoted
“OOM”, and both on different random seeds are denoted
“OOT/M”. Table 2 lists results by domain for each domain
in the 2011 IPC. Within each domain, we evaluate instances
with 0, 9, 18, and 27 randomly inserted possible features
F , and report the minimum, maximum, and average total
runtime in seconds (from knowledge compilation, Floyd-
Warshall, and both strong and weak consistency evaluation)
across the plans for each instance in the domain and ten ran-
dom seeds. The last column in Table 2 lists two numbers: the
number of instance and random seed pairs under which the
plan was evaluated within five minutes, and the total number
of instances where an IPC planner generated a plan times the
number of random seeds.
Discussion: In the first experiment, we see that the ex-
pected number of incomplete features directly affecting a
link E[F (l)] is correlated with runtime across all phases
of the algorithm. Knowledge compilation time T (ψ∞) ac-
counts for a majority of the runtime, followed by model
counting for strong T (SC) or weak T (WC) partial con-
sistency. By domain, the differences in runtime seem to be
explained by the expected number of incomplete features per
causal link, which means that our approach scales well in the
size of the plans, but not as well in the density of the incom-
pleteness. However, we note that an incomplete domain can
consist of many incomplete features that do not affect the
plan. There does not appear to be correlation between the
domain and runtime, meaning that the degree of concurrency
(which varied among the domains) may not play a large role
(as supported by the runtimes for Floyd-Warshall T (FW ));
however, it was possible to achieve lower runtimes for the
higher expected number of incomplete features per link in
Matchcellar because the plans were relatively smaller.

In our second experiment we independently increased the
type of incomplete feature (preconditions, add, or delete ef-
fects) in the second Sokoban plan s2; we saw similar results
in other plans and domains. Figure 2 plots the total time for
knowledge compilation, Floyd-Warshall, and strong partial
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|F | Min (s) Max (s) Avg (s) #Eval

Pe
gs

ol
0 0 0.03 0.01 200 / 200
9 0 0.09 0.01 200 / 200

18 0 0.87 0.04 200 / 200
27 0.01 9.34 0.32 200 / 200

M
at

ch
ce

ll 0 0 0.1 0.03 200 / 200
9 0 3.74 0.18 200 / 200

18 0 66.36 3.33 200 / 200
27 0.01 299.96 22.61 200 / 200

Pa
rk

in
g 0 0 0.54 0.15 200 / 200

9 0.01 1.08 0.21 200 / 200
18 0.01 2.14 0.36 200 / 200
27 0.02 21.93 1.39 200 / 200

So
ko

ba
n 0 0.04 7 0.86 120 / 120

9 0.05 16.46 1.09 120 / 120
18 0.06 17.81 1.52 120 / 120
27 0.07 110.24 4.65 120 / 120

Fl
oo

rt
ile 0 0.06 3.2 0.81 137 / 150

9 0.07 247.06 9.55 137 / 150
18 0.07 298.47 31.46 137 / 150
27 0.06 293.19 46.15 137 / 150

C
re

w
pl

an 0 0.04 6.76 1.34 200 / 200
9 0.04 293.5 7.1 200 / 200

18 0.04 295.18 19.79 200 / 200
27 0.04 290.47 53.84 200 / 200

St
or

ag
e 0 0.58 144.26 21.44 190 / 190

9 0.62 287.82 29.95 190 / 190
18 0.6 286.17 35.54 190 / 190
27 0.62 269.03 34.83 190 / 190

T
M

S

0 2.14 214.3 67.55 77 / 190
9 5.82 214.5 71.41 129 / 190

18 3.65 212.92 63.07 85 / 190
27 3.65 214.3 62.67 97 / 190

E
le

va
to

rs 0 18.11 291.39 114.71 106 / 200
9 4.39 291.39 110.52 178 / 200

18 4.39 291.39 123.74 184 / 200
27 0 0 0 0 / 200

Tr
n&

op
en 0 8.5 276.12 94.35 121 / 190

9 8.55 276.12 87.93 94 / 190
18 8.55 276.12 90.88 73 / 190
27 8.55 243.89 85.35 73 / 190

Table 2: Results for all 2011 IPC plans: min, max, and avg.
time in seconds across all plans in domain.

consistency model counting for each number of each fea-
ture; it also shows the number of ADD nodes in the rep-
resentation of ψ∞. We see that incomplete delete effects
have the largest effect upon runtime, followed by incom-
plete preconditions. Additional add effects have little to no
effect. Because runtime is dominated by knowledge com-
pilation, we can explain the impact of each action feature
in its effect upon ψ∞. Possible delete effects and possi-
ble preconditions tend to increase the disjunction (c.f., the
definitions of nt(sk, l) and ψ(si), respectively) in ψ, while
possible add effects do not (c.f., the definition of ψ(l)). As
disjunction increases, the ADD representation of ψ can be-
come large, which determines the cost of all of the ADD
operations (which are polynomial in the ADD size).

In our third experiment (Table 2) we see that there are
some significant differences between the domains. The do-

Figure 3: Avg., min, and max steps per plan per domain.

mains with relatively low average evaluation time (and eas-
ily evaluable instances) include Pegsol, Matchcellar, Park-
ing, Sokoban, Crewplan, and Storage. Those that are more
challenging include Floortile, TMS, Elevators, and Turn and
open. Interestingly, some of these domains are relatively
insensitive to the number of incomplete features (over the
range that we tested); for example, Elevators, TMS, and
Turn and open all happen to be insensitive, but are from
the relatively challenging group of domains. If we exam-
ine minimum, maximum, and average steps per plan in these
domains (Figure 3), it appears that the difficulty stems from
the plan size. However, from Table 1, we see that as incom-
pleteness increases, the plan size has less of a relative impact
on runtime.

Related Work
Evaluating plans in incomplete domains was first consid-
ered by Garland and Lesh (2002). Weber and Bryce (2011)
extend this work to synthesize plans that are robust to in-
completeness, and show that counting diagnoses of failure
to bias plan synthesis can outperform counting models, as
studied by Nguyen, Kambhampati, and Do (2010). We-
ber and Bryce (2011) also showed that planning in incom-
plete domains can be formulated as conformant planning, in
which partially ordered plan evaluation (as described herein)
is known to be costly (Kushmerick, Hanks, and Weld 1994).

If we assume that the domain model is fully known,
then the weak and strong partial consistency algorithms
are solving a disjunctive temporal problem (Stergiou and
Koubarakis 2000), and are similar to approaches to planning
with disjunctive ordering constraints (Nguyen and Kamb-
hampati 2001). The primary difference in our work is the
disjunctive constraints are effected by incomplete knowl-
edge of the domain rather than being unconditionally im-
posed as a means of threat resolution.

While we are not the first to study conditional temporal
problems, we are (to our knowledge) the first to count solu-
tions. Schwalb, Kask, and Dechter (1994) solve the corre-
sponding satisfiability problem (i.e., finding a satisfying as-
signment to propositional variables, where an induced tem-
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poral problem is consistent). Tsamardinos, Vidal, and Pol-
lack (2003) study the weak, strong, and dynamic consistency
of conditional temporal problems. Our work is a natural ex-
tension to these prior works and can be extended to consider
probabilistic consistency through weighted model counting.

Sheini et al. (2005) solve very similar encodings of
soft temporal constraints using Bender’s decomposition to
find models of Boolean constraints using a SAT solver
and checking the implied temporal constraints using an
STP/DTP solver. While the overall encoding resembles
ours, the model counting nature of our work motivates a
knowledge compilation approach rather than search.

Conclusion & Future Work
Model counting is a useful technique for evaluating the de-
gree of weak or strong temporal consistency when a problem
is not fully consistent. While we demonstrate our approach
with PDDL 2.1 action models, our formulation of partial
consistency can incorporate other models. Our approach
combines knowledge compilation and symbolic constraint
propagation to find consistent temporal problems. We then
count the number of temporal problems that are consistent
as model counting in ADDs. Our experiments show that our
approach scales to evaluate large temporal plans and largely
incomplete temporal planning domains.

As previously alluded, this work is a necessary step to-
ward synthesizing plans in incomplete temporal planning
domains. Practical planning algorithms will evaluate partial
plans inside of a search algorithm and it is likely that ap-
proximate plan evaluation, as well as search heuristics, will
be required to scale-up. We intend to address these issues
in future work by extending approaches taken in classical
(non-temporal) planning (Weber and Bryce 2011).

We also plan to extend this work to handle unknown ac-
tion durations, which can be formulated as an extension
to temporal controllability. Our setting is most similar to
probabilistic STPs (Tsamardinos, Pollack, and Ramakrish-
nan 2003) that maximize the probability that uncontrollable
time points can be legally executed, except that we do not
assume knowledge about probability distributions. We fore-
see that uncertain duration actions will require us to extend
the CTN model so that the propositional models imply prob-
lems similar to probabilistic STPs instead of just STPs.
Acknowledgements: This material is based upon work sup-
ported by DARPA under Contract No. HR0011-07-C-0060
and Utah State University.
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