
The Complexity of Planning Revisited — A Parameterized Analysis

Christer Bäckström1 and Yue Chen2 and Peter Jonsson1 and
Sebastian Ordyniak2 and Stefan Szeider2

1Department of Computer Science, Linköping University, Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

2Institute of Information Systems, Vienna University of Technology, Vienna, Austria
chen@kr.tuwien.ac.at ordyniak@kr.tuwien.ac.at stefan@szeider.net

Abstract

The early classifications of the computational complexity of
planning under various restrictions in STRIPS (Bylander) and
SAS+ (Bäckström and Nebel) have influenced following re-
search in planning in many ways. We go back and reanalyse
their subclasses, but this time using the more modern tool of
parameterized complexity analysis. This provides new results
that together with the old results give a more detailed pic-
ture of the complexity landscape. We demonstrate separation
results not possible with standard complexity theory, which
contributes to explaining why certain cases of planning have
seemed simpler in practice than theory has predicted. In par-
ticular, we show that certain restrictions of practical interest
are tractable in the parameterized sense of the term, and that
a simple heuristic is sufficient to make a well-known partial-
order planner exploit this fact.

1 Introduction
Bylander (1994) made an extensive analysis of the compu-
tational complexity of propositional STRIPS under various
restrictions, like limiting the number of preconditions or ef-
fects. Bäckström and Nebel (1995) made a similar analysis
of planning with multi-valued state variables in the SAS+

formalism, investigating the complexity of all combinations
of the P, U, B and S restrictions introduced by Bäckström
and Klein (1991). These were among the first attempts to
understand why and when planning is hard or easy and have
had heavy influence on recent research in planning, of which
we list a few representative examples. Giménez and Jons-
son (2008), Chen and Giménez (2010) as well as Katz and
Domshlak (2008) have studied the complexity of planning
for various restrictions on the causal graph, the latter also
considering combinations with restrictions P and U. Katz
and Domshlak further pointed out a particularly important
usage of such results, saying:

Computational tractability can be an invaluable tool
even for dealing with problems that fall outside all the
known tractable fragments of planning. For instance,
tractable fragments of planning provide the foundations
for most (if not all) rigorous heuristic estimates em-
ployed in planning as heuristic search.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Two examples of slightly different ways to do this are the
following. Helmert (2004) used a planning algorithm for a
simpler restricted problem to compute heuristic values for
subproblems and then combine these values. Similarly, the
popular h+ heuristic (Hoffmann 2005) exploits Bylander’s
results that planning is simpler with only positive precondi-
tions and uses this as a relaxation for computing a heuristic
value. As a complement to such analyses of restricted plan-
ning lanugages, Helmert (2006) studied the complexity and
inherent restrictions in a number of application problems.

We revisit these early classifications of STRIPS and of
SAS+, but using parameterized complexity analysis rather
than standard complexity analysis. Parameterized complex-
ity analysis was invented to enable a more fine-grained anal-
ysis than standard complexity analysis allows, by treating a
parameter as independent of the instance rather than being a
part of it. Somewhat simplified, the idea is as follows. Con-
sider some problem and let n denote the instance size. We
usually consider a problem as tractable if it can be solved by
some algorithm in O(nc) time, that is, in polynomial time.
For many problems, like the NP-hard problems, we do not
know of any significantly faster way to solve them than do-
ing brute-force search, which typically requires requires ex-
ponential, or at least super-polynomial, time in n. In practice
the search is often not exponential in the size of the whole
instance, but rather in some smaller hard part of it. In these
cases the complexity may rather be something like O(2knc)
where k is a parameter that is typically independent of the in-
stance size n. Thus, the combinatorial explosion is confined
to the parameter k. We say that a problem is fixed-parameter
tractable (FPT) if it can be solved in this way. This is the
essence of parameterized complexity theory and provides
a tractability concept which is more relaxed than the usual
one, while correlating better with tractability in practice for
real-world problems. The theory also offers various classes
for problems that are not FPT, for example W[1] and W[2].
Parameterized complexity analysis has contributed funda-
mental new insights into complexity theory (Downey and
Fellows 1999). It is nowadays a very common technique in
many areas of computer science, including many subareas of
AI, like non-monotonic reasoning (Gottlob, Pichler, and Wei
2006), constraints (Gaspers and Szeider 2011), social choice
(Brandt, Brill, and Seedig 2011) and argumentation (Ordy-
niak and Szeider 2011). The examples in planning are rare,

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1735

however. Downey, Fellows and Stege (1999) proved that
STRIPS planning is W[1]-hard and conjectured that it is also
complete for W[1]. We disprove this conjecture and show
that STRIPS planning is actually W[2]-complete. There is
also a result by Bäckström and Jonsson (2011) that STRIPS
planning is FPT under a certain restriction that deliberately
lower-bounds the plan length, thus not contradicting our re-
sults. This restriction was motivated by a different agenda,
studying the expressive power of planning languages in gen-
eral rather than subclasses of a particular language.

The parameterized analyses of planning that we provide
in this paper does not replace the earlier results or make
them obsolete. Since the parameterized complexity classes
and the standard ones are not comparable, our results must
be viewed as supplementary, providing further informa-
tion. If we consider the previous classifications together
with our parameterized classification we get a more de-
tailed and informative picture of planning complexity than
by considering either of them alone. This sheds new light
on the discrepancy between theoretical and practical results
regarding the difficulty of planning. For instance, while
Bäckström and Nebel proved that restriction U (actions can
change only one variable) does not make planning easier
under standard analysis, we show that it is actually eas-
ier from a parameterized point of view. This is interest-
ing since restriction U has been considered acceptable in
some practical applications of planning, for instance on-
board planning in spacecrafts (Williams and Nayak 1997;
Brafman and Domshlak 2003). Furthermore, Bäckström and
Nebel showed that planning is NP-hard under restriction P
(there are never two actions that set the same variable value)
but did not provide any better upper bound than in the unre-
stricted case. We show that planning is actually FPT under
this restriction. We also show that a standard partial-order
planning algorithm (McAllester and Rosenblitt 1991) can
exploit this fact with a minor modification that could be im-
plemented as a heuristic. This suggests that many successful
applications of planning might be cases where the problem
is “almost tractable” and the algorithm used happens to im-
plicitly exploit this. This is in line with the claim by Downey
et. al. (2008) that in many cases existing algorithms with
heuristics turn out to already be FPT algorithms.

The rest of the paper is laid out as follows. Section 2
defines some concepts of parameterized complexity theory
and Section 3 defines the SAS+ and STRIPS languages. The
hardness results are collected in Section 4 and the member-
ship results in Section 5, including the result on using an
existing planning algorithm. Section 6 summarizes the re-
sults of the paper and discusses some observations and con-
sequences. The paper ends with a discussion in Section 7.

2 Parameterized Complexity
We define the basic notions of Parameterized Complexity
and refer to other sources (Downey and Fellows 1999; Flum
and Grohe 2006) for an in-depth treatment. A parameterized
problem is a set of pairs 〈I, k〉, the instances, where I is the
main part and k the parameter. The parameter is usually
a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if there exists an algorithm that

solves any instance 〈I, k〉 of size n in time f(k)nc where
f is an arbitrary computable function and c is a constant
independent of both n and k. FPT is the class of all fixed-
parameter tractable decision problems.

Parameterized complexity offers a completeness theory,
similar to the theory of NP-completeness, that allows the ac-
cumulation of strong theoretical evidence that some parame-
terized problems are not fixed-parameter tractable. This the-
ory is based on a hierarchy of complexity classes

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · ·

where all inclusions are believed to be strict. Each class
W[i] contains all parameterized decision problems that can
be reduced to a certain canonical parameterized problem
(known as WEIGHTED i-NORMALIZED SATISFIABILITY)
under parameterized reductions. A parameterized problem
L reduces to a parameterized problem L′ if there is a map-
ping R from instances of L to instances of L′ such that

1. 〈I, k〉 is a YES-instance of L if and only if 〈I′, k′〉 =
R(I, k) is a YES-instance of L′,

2. there is a computable function g such that k′ ≤ g(k),
and

3. there is a computable function f and a constant c
such that R can be computed in time O(f(k) · nc),
where n denotes the size of 〈I, k〉.

Not much is known about the relationship between the pa-
rameterized complexity classes and the standard ones, ex-
cept that P ⊆ FPT.

3 Planning Framework
Let V = {v1, . . . , vn} be a finite set of variables over a
finite domain D. Implicitly define D+ = D ∪ {u}, where
u is a special value not present in D. Then Dn is the set of
total states and (D+)n is the set of partial states over V and
D, where Dn ⊆ (D+)n. The value of a variable v in a state
s ∈ (D+)n is denoted s[v]. A SAS+ instance is a tuple P =
〈V,D,A, I,G〉 where V is a set of variables, D is a domain,
A is a set of actions, I ∈ Dn is the initial state and G ∈
(D+)n is the goal. Each action a ∈ A has a precondition
pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n. We will
frequently use the convention that a variable has value u in a
precondition/effect unless a value is explicitly specified. Let
a ∈ A and let s ∈ Dn. Then a is valid in s if for all v ∈ V ,
either pre(a)[v] = s[v] or pre(a)[v] = u. Furthermore, the
result of a in s is a state t ∈ Dn defined such that for all
v ∈ V , t[v] = eff(a)[v] if eff(a)[v] 6= u and t[v] = s[v]
otherwise.

Let s0, s` ∈ Dn and let ω = 〈a1, . . . , a`〉 be a sequence
of actions. Then ω is a plan from s0 to s` if either

1) ω = 〈〉 and ` = 0 or
2) there are states s1, . . . , s`−1 ∈ Dn such that for all i,

where 1 ≤ i ≤ `, ai is valid in si−1 and si is the result of
ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V ,
either G[v] = s[v] or G[v] = u. An action sequence ω is a
plan for P if it is a plan from I to some goal state s ∈ Dn.
We will study the following problem:

1736

BOUNDED SAS+ PLANNING
Instance: A tuple 〈P, k〉 where P is a SAS+ instance
and k is a positive integer.
Parameter: The integer k.
Question: Does P have a plan of length at most k?

We will consider the following four restrictions, originally
defined by Bäckström and Klein (1991).

P: For each v ∈ V and each x ∈ D there is at most
one a ∈ A such that eff(a)[v] = x.

U: For each a ∈ A, eff(a)[v] 6= u for exactly one
v ∈ V .

B: |D| = 2.
S: For all a, b ∈ A and all v ∈ V , if pre(a)[v] 6= u,

pre(b)[v] 6= u and eff(a)[v] = eff(b)[v] = u, then
pre(a)[v] = pre(b)[v].

For any set R of such restrictions we write
R-BOUNDED SAS+ PLANNING to denote the restric-
tion of BOUNDED SAS+ PLANNING to only instances
satisfying the restrictions in R.

The propositional STRIPS language can be treated as the
special case of SAS+ satisfying restriction B. More pre-
cisely, this corresponds to the variant of STRIPS that allows
negative preconditions.

4 Hardness Results
In this section we prove the two main hardness results of
this paper. For the first proof we need the following W[2]-
complete problem (Downey and Fellows 1999, p. 464).

HITTING SET
Instance: A finite set S, a collection C of subsets of S
and an integer k ≤ |C|.
Parameter: The integer k.
Question: Is there a hitting set H ⊆ S such that
|H| ≤ k and H ∩ c 6= ∅ for every c ∈ C?

Theorem 1. {B,S}-BOUNDED SAS+ PLANNING is W[2]-
hard, even when the actions have no preconditions.

Proof. By parameterized reduction from HITTING SET. Let
I = 〈S,C, k〉 be an instance of this problem. We construct
an instance I′ = 〈P, k′〉, where P = 〈V,D,A, I,G〉, of the
{B,S}-BOUNDED SAS+ PLANNING problem such that I
has a hitting set of size at most k if and only if there is a plan
of length at most k′ = k for I′ as follows. Let V = { vc | c ∈
C } and let A = {ae | e ∈ S} where eff(ae)[vc] = 1 if e ∈ c
and eff(ae)[vc] = u otherwise. We set I = 〈0, . . . , 0〉 and
G = 〈1, . . . , 1〉. Clearly, P satisfies restrictions B and S, and
the actions have no preconditions. It is now routine to show
that P has a plan of length at most k′ if and only if I has a
hitting set of size k.

We continue with the second result. The following prob-
lem is W[1]-complete (Pietrzak 2003).

PARTITIONED CLIQUE
Instance: A k-partite graph G = 〈V,E〉 with parti-
tion V1, . . . , Vk such that |Vi| = |Vj | = n for all i,
where 1 ≤ i < j ≤ k.

Parameter: The integer k.
Question: Are there nodes v1, . . . , vk such that
vi ∈ Vi for all i, where 1 ≤ i ≤ k and,
{vi, vj} ∈ E for all i, where 1 ≤ i < j ≤ k? (The
graph {{v1, . . . , vk}, {{vi, vj} | 1 ≤ i < j ≤ k}} is a
k-clique of G.)

Theorem 2. {U,B, S}-BOUNDED SAS+ PLANNING is
W[1]-hard, even for instances where every action has at
most one precondition and one postcondition.

Proof. By parameterized reduction from PARTITIONED
CLIQUE. Let G = 〈V,E〉 be a k-partite graph where V is
partitioned into V1, . . . , Vk. Let k2 =

(
k
2

)
and k′ = 7k2 + k.

We define Ji = { j | 1 ≤ j ≤ k and j 6= i } for every
1 ≤ i ≤ k.

For the {U,B, S}-BOUNDED SAS+ PLANNING instance
P we introduce four kinds of variables:

1) For every e ∈ E we introduce an edge variable x(e).
2) For every 1 ≤ i ≤ k and v ∈ Vi we introduce k − 1

vertex variables x(v, j) where j ∈ Ji.
3) For every 1 ≤ i ≤ k and every j ∈ Ji we introduce a

checking variable x(i, j).
4) For every v ∈ V , we introduce a clean-up variable

x(v).
We also introduce five kinds of actions:

1) For every e ∈ E we introduce an action ae such that
eff(ae)[x(e)] = 1.

2) For every e = {vi, vj} ∈ E where vi ∈ Vi and
vj ∈ Vj , we introduce two actions aei and aej such that
pre(aei)[x(e)] = 1, eff(aei)[x(vi, j)] = 1, pre(aej)[x(e)] = 1
and eff(aej)[x(vj , i)] = 1.

3) For every v ∈ Vi and j ∈ Ji, we introduce an action avj
such that pre(avj)[x(v, j)] = 1 and eff(avj)[x(i, j)] = 1.

4) For every v ∈ V , we introduce an action av such that
eff(av)[x(v)] = 1.

5) For every v ∈ Vi, for some 1 ≤ i ≤ k, and j ∈ Ji,
we introduce an action ajv such that pre(ajv)[x(v)] = 1 and
eff(ajv)[x(v, j)] = 0.
Let A1, . . . , A5 be sets of actions corresponding to these five
groups, and let A = A1 ∪ . . . ∪ A5 be the set of all actions.
Let I = 〈0, . . . , 0〉 and define G such that all checking vari-
ables x(i, j) are 1, all vertex variables x(v, j) are 0 and the
rest are u.

We now need to prove that G has a k-clique if and only
if there is a plan for P of length at most k′. We sketch the
leftward direction; the opposite is similar. Assume G has
a k-clique K = 〈VK , EK〉 where VK = {v1, . . . , vk} with
vi ∈ Vi for every 1 ≤ i ≤ k. For all 1 ≤ i < j ≤ k,
we apply the actions a{vi,vj} ∈ A1 and a

{vi,vj}
i , a

{vi,vj}
j ∈

A2. This gives 3k2 actions. Then for each checking variable
x(i, j), for every 1 ≤ i ≤ k and j ∈ Ji, we apply avi

j ∈ A3.
This gives 2k2 actions. Now we have all checking variables
set to the required value 1, but the vertex variables x(vi, j),
for 1 ≤ i ≤ k and j ∈ Ji, still bear the value 1 which will
have to be set back to 0 in the goal state. So we need some
actions to “clean up” the values of these vertex variables.
First we set up a cleaner for each vertex vi by applying avi

∈

1737

A4. This gives k actions. Then we use ajvi
∈ A5 for all j ∈

Ji to set the vertex variables x(vi, j) to 0. This requires 2k2
actions. We observe that all the checking variables are now
set to 1, and all vertex variables are set to 0. The goal state
is therefore reached from the initial state by the execution of
exactly k′ = k + 7k2 actions, as required.

5 Memberhip Results
Our membership results are based on first-order (FO) model
checking (Sec. 5.1) and partial-order planning (Sec. 5.2).

5.1 Model Checking
For a class of FO formulas Φ we define the following pa-
rameterized decision problem.

Φ-FO MODEL CHECKING
Instance: A finite structure A, an FO formula ϕ ∈ Φ.
Parameter: The length of ϕ.
Question: Does ϕ have a model?

Let Σ1 be the class of all FO formulas of the form
∃x1 . . . ∃xt.ϕ where t is arbitrary and ϕ is a quantifier-
free FO formula. For arbitrary positive integer u, let
Σ2,u denote the class of all FO formulas of the form
∃x1 . . . ∃xt∀y1 . . . ∀yu.ϕ where t is arbitrary and ϕ is a
quantifier-free FO formula. Flum and Grohe (2006, Theo-
rem 7.22) have shown the following result.

Proposition 1. The problem Σ1-FO MODEL CHECKING
is W[1]-complete. For every positive integer u the problem
Σ2,u-FO MODEL CHECKING is W[2]-complete.

We will reduce planning to model checking, so for
an arbitrary planning instance I = 〈P, k〉 (where P =
〈V,D,A, I,G〉) of the BOUNDED SAS+ PLANNING prob-
lem we need a relational structure A(P) defined as:

• The universe of A(P) is V ∪A ∪D+.

• A(P) contains the unary relations Var = V , Act = A,
and Dom = D+ together with the following relations of
higher arity:

– Init = { 〈v, x〉 ∈ V ×D | I[v] = x },
– Goalv = { 〈v, x〉 ∈ V ×D | G[v] = x 6= u },
– Pre = { 〈a, v〉 ∈ A× V | pre(a)[v] 6= u },
– Eff = { 〈a, v〉 ∈ A× V | eff(a)[v] 6= u },
– Prev = { 〈a, v, x〉 ∈ A×V ×D | pre(a)[v] = x 6= u }
– Effv = { 〈a, v, x〉 ∈ A×V ×D | eff(a)[v] = x 6= u }.

Theorem 3. BOUNDED SAS+ PLANNING is in W[2].

Proof. By parameterized reduction to the W[2]-complete
problem Σ2,2-FO MODEL CHECKING. Let I = 〈P, k〉
(where P = 〈V,D,A, I,G〉) be an instance of BOUNDED
SAS+ PLANNING. We construct an instance I′ =
〈A(P), ϕ〉 of Σ2,2-FO MODEL CHECKING such that I has
a solution if and only if I′ has a solution and the size of the
formula ϕ is bounded by some function that only depends
on k. Assume without loss of generality that A contains a
dummy action â with no preconditions and no effects. To
define ϕ we first need the following definitions.

We define a formula value(〈a1, . . . , ai〉, v, x) such that
value(〈〉, v, x) = Init(v, x) and value(〈a1, . . . , ai〉, v, x) =
(value(〈a1, . . . , ai−1〉, v, x) ∧ ¬Eff(ai, v)) ∨ Effv(ai, v, x)
for every 0 ≤ i ≤ k, which holds if applying a1, . . . , ai in
state I results in a state s such that s[v] = x.

We also define a formula check-pre(〈a1, . . . , ai〉, v, x) =
Prev(ai, v, x) → value(〈a1, . . . , ai−1〉, v, x) for all
1 ≤ i ≤ k, that is, ∀v∀x.Var(v) ∧ Dom(x) ∧
check-pre(〈a1, . . . , ai〉, v, x) holds if all preconditions
of action ai are satisfied after actions a1, . . . , ai−1
have been executed in state I . We similarly de-
fine a formula check-pre-all(〈a1, . . . , ak〉, v, x) =∧k

i=1 check-pre(〈a1, . . . , ai〉, v, x) that “checks” the
preconditions of all actions in a sequence.

Finally, define check-goal(〈a1, . . . , ak〉, v, x) =
Goalv(v, x) → value(〈a1, . . . , ak〉, v, x). The formula
∀v∀x.Var(v) ∧ Dom(x) ∧ check-goal(〈a1, . . . , ak〉, v, x)
holds if the goal state is reached after the execution of the
sequence a1, . . . , ak in the state I .

We can now define the formula ϕ itself as:

ϕ = ∃a1 . . . ∃ak∀v∀x .
(
∧k

i=1 Act(ai)) ∧
(Var(v) ∧ Dom(x) →

check-pre-all(〈a1, . . . , ak〉, v, x) ∧
check-goal(〈a1, . . . , ak〉, v, x)).

Evidently ϕ ∈ Σ2,2, the length of ϕ is bounded by some
function that only depends on k and A(P) |= ϕ if and only
if P has a plan of length at most k. The dummy action guar-
antees that there is a plan exactly of length k if there is a
shorter plan.

The proof of the next theorem resembles the previous
proof but the details are a bit involved. Thus, we only pro-
vide a high-level description of it.
Theorem 4. {U}-BOUNDED SAS+ PLANNING is in W[1].

Proof sketch: In order to show W[1]-membership of {U}-
BOUNDED SAS+ PLANNING we will reduce this problem
to Σ1-FO MODEL CHECKING and the basic idea is fairly
close to the proof of Theorem 3. However, we cannot di-
rectly express within Σ1 that all the preconditions of an ac-
tion are satisfied, as this would require a further universal
quantification and thus move the formula to Σ2,u. Hence,
we avoid the universal quantification with a trick: we ob-
serve that the preconditions only need to be checked with
respect to at most k “important” variables, that is, the vari-
ables in which the preconditions of an action differ from the
initial state. If the precondition differs in more than k vari-
ables from the initial state, then it cannot be used in any plan
of length k. It is now possible to guess the important vari-
ables with existential quantifiers.

It remains to check that all the significant variables are
among these guessed variables. We do this without univer-
sal quantification by adding dummy elements d1, . . . , dk and
a relation Diff-act to the relational structureA(P). The rela-
tion associates with each action exactly k different elements.
These elements consist of all the important variables of the
action, say the number of these variables is k′, plus k − k′

1738

dummy elements. Hence, by guessing these k elements and
eliminating the dummy elements, the formula knows all the
significant variables of the action and can check the precon-
ditions without a universal quantification.

5.2 Partial-order Planning
To prove that {P}-BOUNDED SAS+ PLANNING is in FPT
we use a slight modification of the well-known planning al-
gorithm by McAllester and Rosenblitt (1991), which we re-
fer to as MAR. It appears in Figure 1, combining the original
and the modified versions into one. The only modification
is the value of L′, which could easily be implemented as a
heuristic for the original algorithm. The algorithm is gen-
eralized to SAS+ rather than propositional STRIPS, which
is straightforward and appears in the literature (Bäckström
1994). We only explain the algorithm and our notation, re-
ferring the reader to the original paper for details.

The algorithm works on a partially ordered set of action
occurences, each occurence being a unique copy of an ac-
tion. For each precondition pre(oc)[v] 6= u of an occurence
oc, the algorithm uses a causal link op

v=x−→ oc to explicitly
keep track of which other occurence op with eff(op)[v] = x
guarantees this precondition. An occurence ot is a threat to
op

v=x−→ oc if eff(ot)[v] 6= u and op 6= ot 6= oc. A plan struc-
ture for a planning instance P = 〈V,D,A, I,G〉 is a tuple
Θ = 〈O,P,L〉 where O is a finite set of action occurences
over A, P is a binary relation over O and L is a set of causal
links. We write o ≺ o′ for 〈o, o′〉 ∈ P. Furthermore,
O always contains the two special elements oI , oG, where
eff(oI) = I , pre(oG) = G and oI ≺ oG ∈ P. An open goal
in Θ is a tuple 〈o, v, x〉 such that o ∈ O, pre(o)[v] = x 6= u

and there is no o′ ∈ O such that o′ v=x−→ o ∈ L.
We say Θ is complete if both the following conditions

hold: 1) For all oc ∈ O and all v ∈ V such that pre(oc)[v] =

x 6= u, there is a causal link op
v=x−→ oc ∈ L. 2) For every

op
v=x−→ oc ∈ L and every threat ot ∈ O to op

v=x−→ oc, either
ot ≺ op ∈ P or oc ≺ ot ∈ P. McAllester and Rosenblitt
proved that if starting with Θ = 〈{oI , oG}, {oI ≺ oG},∅〉
then the algorithm fails if there is no plan and otherwise re-
turns a plan structure 〈O,P,L〉 such that any topological
sorting of O− {oI , oG} consistent with P is a plan.

That the modified variant of MAR is correct for SAS+-
P instances is based on the following observation about the
original variant applied to such instances. Consider three
occurences o1, o2, o3 such that o1 has preconditions v = x
and w = y which are both effects of o2. If v = x is also
an effect of o3, then also w = y must be an effect of o3
due to restriction P. However, the algorithm must link both
conditions from the same occurence, either o2 or o3, since it
would otherwise add both o2 ≺ o3 and o3 ≺ o2, causing it
to fail. The set of possible outcomes for the two variants are
thus identical, but the modified variant is an FPT algorithm.
Theorem 5. {P}-BOUNDED SAS+ PLANNING is in FPT.

Proof. Consider the modified version of MAR. All nodes in
the search tree run in polynomial time in the instance size.
The search tree contains two types of nodes: leafs that ter-
minate in either line 2 or 3 and nodes that make a nondeter-

1 function Plan(Θ = 〈O,P,L〉,k)
2 if 〈O,P〉 is not acyclic or |O| > k + 2 then fail
3 elsif Θ is complete then return Θ

4 elsif there is an op
v=x−→ oc ∈ L with a threat ot ∈ O

and neither ot ≺ op ∈ P nor oc ≺ ot ∈ P then
5a choose either of
5b return Plan(〈O,P ∪ {ot ≺ op},L〉,k)
5c return Plan(〈O,P ∪ {oc ≺ ot},L〉,k)
6 else arbitrarily choose an open goal g = 〈oc, v, x〉
7a nondeterministically do either
7b 1) nondeterministically choose an op ∈ O

such that eff(op)[v] = x
7c 2) if there is an a ∈ A such that eff(a)[v] = x

then let op be a new occurence of a
8 if original algorithm then

L′ := {op
v=x−→ oc}

9 if modifed algorithm then
L′ := {op

w=y−→ oc | eff(op)[w] = pre(oc)[w] = y,
y 6= u and 〈oc, w, y〉 is an open goal }

10 return Plan(〈O ∪ {op},P ∪ {op ≺ oc},L ∪ L′〉,k)

Figure 1: The MAR algorithm.

ministic choice either in line 5 or in line 7 and then make
a recursive call. The latter nodes correspond to branching
points in the search tree, and we analyse their contribution
to the search-tree size separately.

Each time line 5 is visited, it adds a new element to P,
which thus grows monotonically along every branch in the
search tree. We can thus visit line 5 at most (k + 2)2 times
along any branch since |P| ≤ (k + 2)2. There are two
choices in line 5 so it contributes at most a factor 2(k+2)2

to the size of the search tree. Also O grows monotonically
along every branch and |O| ≤ k+ 2. At any visit to lines 6–
10 there are thus at most k + 1 occurences with open goals
and at most k + 1 different occurences to link these goals
to. That is, the preconditions of each occurence are par-
titioned into at most k + 1 parts, each part having all its
elements linked at once in line 9. Lines 6–10 can thus be
visited at most (k+1)2 times along any branch in the search
tree. Since there are at most k + 1 existing occurences to
link to and at most one action to instantiate as a new oc-
curence, the branching factor is k + 2. The contribution of
this to the size of the search tree is thus at most a factor
(k + 2)(k+1)2 . Hence, the total search-tree size is at most
2 · 2(k+2)2(k + 2)(k+1)2 where the factor 2 accounts for the
leaves. This does not depend on the instance size and each
node is polynomial-time in the instance size so the modified
MAR algorithm is an FPT algorithm.

6 Summary of Results
The complexity results for the various combinations of re-
strictions P, U, B and S are displayed in Figure 2. Solid lines
denote separation results by Bäckström and Nebel (1995),
using standard complexity analysis, while dashed lines de-
note separation results from our parameterized analysis. The

1739

-

P U S B

PU PS PB US UB BS

PUS PUB PBS UBS

PUBS

in P
NP-H

NP-C

PSPACE-C
in FPT

W[1]-C

W[2]-C

Figure 2: Complexity of BOUNDED SAS+ PLANNING for
all combinations of restrictions P, U, B and S.

W[2]-completeness results follow from Theorems 1 and 3,
the W[1]-completeness results follow from Theorems 2 and
4, and the FPT results follow from Theorem 5.

Bylander (1994) studied the complexity of STRIPS under
varying numbers of preconditions and effects, which is natu-
ral to view as a relaxation of restriction U in SAS+. Table 1
shows such results (for arbitrary domain sizes ≥ 2) under
both parameterized and standard analysis. The parameter-
ized results are derived as follows. For actions with an arbi-
trary number of effects, the results follow from Theorems 1
and 3. For actions with at most one effect, we have two
cases: With no preconditions the problem is trivially in P.
Otherwise, the results follow from Theorems 2 and 4.

We are left with the case when the number of effects is
bounded by some constant me > 1. Bäckström (1992, proof
of Theorem 6.7) presented a polynomial time reduction of
this class of SAS+ instances to the class of instances with
one effect. It is easy to verify that his reduction is a param-
eterized reduction so we have membership in W[1] by The-
orem 4. When mp ≥ 1, then we also have W[1]-hardness
by Theorem 2. For the final case (mp = 0), we have no
corresponding parameterized hardness result.

All non-parameterized hardness results in Table 1 follow
directly from Bylander’s (1994, Fig. 1 and 2) complexity re-
sults for STRIPS. Note that we use results both for bounded
and unbounded plan existence, which is justified since the
unbounded case is (trivially) polynomial-time reducible to
the bounded case. The membership results for PSPACE
are immediate since BOUNDED SAS+ PLANNING is in
PSPACE. The membership results for NP (when mp = 0)
follow from Bylander’s (1994) Theorem 3.9, which says that
every solvable STRIPS instance with mp = 0 has a plan of
length ≤ m where m is the number of actions. It is easy to
verify that the same bound holds for SAS+ instances.

Since W[1] and W[2] are not directly comparable to the
standard complexity classes we get interesting separations
from combining the two methods. For instance, we can sin-
gle out restriction U as making planning easier than in the
general case, which is not possible with standard analysis.
Since restrictions B and S remain as hard as the general
case even under parameterized analysis, this shows that U
is a more interesting and important restriction than the other
two. Even more interesting is that planning is in FPT under

me = 1 fix me > 1 arb. me

mp = 0 in P in W[1] W[2]-C
in P NP-C NP-C

mp = 1 W[1]-C W[1]-C W[2]-C
NP-H NP-H PSPACE-C

fix mp > 1 W[1]-C W[1]-C W[2]-C
NP-H PSPACE-C PSPACE-C

arb. mp W[1]-C W[1]-C W[2]-C
PSPACE-C PSPACE-C PSPACE-C

Table 1: Complexity of BOUNDED SAS+ PLANNING, re-
stricting the number of preconditions (mp) and effects (me)

restriction P, making it easier than the combination restric-
tion US, while it seems to be rather the other way around
for standard analysis where restriction P is only known to be
hard for NP. In general, we see that there are still a num-
ber of open problems of this type in both Figure 2 and Ta-
ble 1 for the standard analysis, while there is only one single
open problem for the parameterized analysis: hardness for
the case where mp = 0 and me is fixed.

7 Discussion
This work opens up several new research directions. We
briefly discuss some of them below.

Although a modification was needed to make MAR an
FPT algorithm for restriction P, no modification is necessary
if also the number of preconditions of each action is bounded
by a constant c. Then we can even relax P, such that for some
constant d there can be at most d actions with the same ef-
fect. The proof is similar to the one for Theorem 5, using
that the total number of causal links is bounded by c(k + 1)
and the branching factor in line 7 is k + 1 + d. This is an
important observation since many application and example
problems in planning satisfy these constraints, for instance,
many variants of the LOGISTICS domain used in the interna-
tional planning competitions. Since planners like NONLIN
and SNLP are practical variants of MAR, this may help to
explain the gap between empirical and theoretical results for
many applications.

The use of parameterized analysis in planning is by no
means restricted to using plan length as parameter. We did
so only to get results that are as comparable as possible with
the previous results. For instance, Downey et. al. (1999)
show that STRIPS planning can be recast as the SIGNED DI-
GRAPH PEBBLING problem which is modelled as a special
type of graph. They analyse the parameterized complexity
of this problem considering also the treewidth of the graph as
a parameter. As another example, Chen and Giménez (2010)
show that planning is in P if the size of the connected com-
ponents in the causal graph is bounded by a constant, and
otherwise unlikely to be in P. It seems natural to study this
also from a parameterized point of view, using the compo-
nent size as the parameter. It should also be noted that the
parameter need not be a single value; it can itself be a com-
bination of two or more other parameters.

1740

There are close ties between model checking and plan-
ning and this connection deserves further study. For in-
stance, model-checking traces can be viewed as plans and
vice versa (Edelkamp, Leue, and Visser 2007), and methods
and results have been transferred between the two areas in
both directions (Edelkamp 2003; Wehrle and Helmert 2009;
Edelkamp, Kellershoff, and Sulewski 2010). Our reductions
from planning to model-checking suggest that the prob-
lems are related also on a more fundamental level than just
straightforward syntactical translations.

Acknowledgements
We would like to thank the anonymous reviewers for con-
structive comments. Chen, Ordyniak, and Szeider ac-
knowledge the support from the European Research Council
(ERC), project COMPLEX REASON, 239962.

References
Bäckström, C., and Jonsson, P. 2011. All PSPACE-complete
planning problems are equal but some are more equal than
others. In 4th Int’l Symp. Combinatorial Search (SoCS-
2011) Castell de Cardona, Barcelona, Spain, 10–17.
Bäckström, C., and Klein, I. 1991. Planning in polynomial
time: The SAS-PUBS class. Comput. Intell. 7:181–197.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comput. Intell. 11:625–656.
Bäckström, C. 1992. Computational Complexity of Rea-
soning about Plans. PhD diss., Linköping University, Lin-
köping, Sweden.
Bäckström, C. 1994. Planning using transformation between
equivalent formalisms: A case study of efficiency. In Work-
shop Comparative Analysis of AI Planning Systems, at 12th
Nat’l Conf. Artif. Intell. (AAAI’94), Seattle, WA, USA.
Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. J. Artif. Intell. Res.
18:315–349.
Brandt, F.; Brill, M.; and Seedig, H. G. 2011. On the fixed-
parameter tractability of composition-consistent tournament
solutions. In 22nd Int’l Joint Conf. Artif. Intell. (IJCAI’11),
Barcelona, Spain, 85–90.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Chen, H., and Giménez, O. 2010. Causal graphs and
structurally restricted planning. J. Comput. Syst. Sci. 76(7):
579–592.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. New York:
Springer Verlag.
Downey, R. G.; Fellows, M. R.; and Langston, M. A. 2008.
The Computer Journal special issue on parameterized com-
plexity: Foreword by the guest editors. Comput. J. 51(1):
1–6.
Downey, R.; Fellows, M.; and Stege, U. 1999. Parame-
terized Complexity: A Framework for Systematically Con-
fronting Computational Intractability, volume 49 of DI-
MACS Series in Disc. Math. Theor. Comput. Sci. 49–99.

Edelkamp, S.; Kellershoff, M.; and Sulewski, D. 2010. Pro-
gram model checking via action planning. In Model Check-
ing and Artif. Intell. - 6th Int’l. Workshop, (MoChArt’10),
Atlanta, GA, USA, 32–51.
Edelkamp, S.; Leue, S.; and Visser, W. 2007. Summary of
Dagstuhl seminar 06172 on directed model checking. In Di-
rected Model Checking, number 06172 in Dagstuhl Seminar
Proceedings. Dagstuhl, Germany.
Edelkamp, S. 2003. Taming numbers and durations in the
model checking integrated planning system. J. Artif. Intell.
Res. 20:195–238.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory, volume XIV of Texts in Theoretical Computer Sci-
ence. An EATCS Series. Berlin: Springer Verlag.
Gaspers, S., and Szeider, S. 2011. Kernels for global con-
straints. In 22nd Int’l Joint Conf. Artif. Intell. (IJCAI’11),
Barcelona, Spain, 540–545.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. J. Artif. Intell.
Res. 31:319–351.
Gottlob, G.; Pichler, R.; and Wei, F. 2006. Bounded
treewidth as a key to tractability of knowledge represen-
tation and reasoning. In 21st Nat’l. Conf. Artif. Intell.
(AAAI’06), Boston, MA, USA.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In 14th Intl. Conf. Automated Planning and
Scheduling, (ICAPS’04), Whistler, BC, Canada, 161–170.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. In 6’th Int’l Conf. Automated Plan-
ning and Scheduling, (ICAPS’06), Cumbria, UK, 52–62.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works: Lo-
cal search topology in planning benchmarks. J. Artif. Intell.
Res. 24:685–758.
Katz, M., and Domshlak, C. 2008. New islands of
tractability of cost-optimal planning. J. Artif. Intell. Res. 32:
203–288.
McAllester, D. A., and Rosenblitt, D. 1991. Systematic non-
linear planning. In 9th Nat’l Conf. Artif. Intell. (AAAI’91),
Anaheim, CA, USA, 634–639.
Ordyniak, S., and Szeider, S. 2011. Augmenting
tractable fragments of abstract argumentation. In 22nd
Int’l Joint Conf. Artif. Intell. (IJCAI’11), Barcelona, Spain,
1033–1038.
Pietrzak, K. 2003. On the parameterized complexity
of the fixed alphabet shortest common supersequence and
longest common subsequence problems. J. Comput. Syst.
Sci. 67(4):757–771.
Wehrle, M., and Helmert, M. 2009. The causal graph re-
visited for directed model checking. In Static Analysis, 16th
Int’l Symp., (SAS’09), Los Angeles, CA, USA, volume 5673
of Lecture Notes in Computer Science, 86–101. Springer.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In 15th Int’l Joint Conf. Artif.
Intell. (IJCAI’97), Nagoya, Japan, 1178–1185.

1741

