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Abstract

UCT, the premier method for solving games such as Go, is
also becoming the dominant algorithm for probabilistic plan-
ning. Out of the five solvers at the International Probabilistic
Planning Competition (IPPC) 2011, four were based on the
UCT algorithm. However, while a UCT-based planner, PROST,
won the contest, an LRTDP-based system, GLUTTON, came
in a close second, outperforming other systems derived from
UCT. These results raise a question: what are the strengths
and weaknesses of LRTDP and UCT in practice?
This paper starts answering this question by contrasting the
two approaches in the context of finite-horizon MDPs. We
demonstrate that in such scenarios, UCT’s lack of a sound
termination condition is a serious practical disadvantage. In
order to handle an MDP with a large finite horizon under a
time constraint, UCT forces an expert to guess a non-myopic
lookahead value for which it should be able to converge on
the encountered states. Mistakes in setting this parameter can
greatly hurt UCT’s performance. In contrast, LRTDP’s con-
vergence criterion allows for an iterative deepening strategy.
Using this strategy, LRTDP automatically finds the largest
lookahead value feasible under the given time constraint. As a
result, LRTDP has better performance and stronger theoretical
properties. We present an online version of GLUTTON, named
GOURMAND, that illustrates this analysis and outperforms
PROST on the set of IPPC-2011 problems.

Introduction
The introduction of Monte-Carlo based tree search and the
UCT algorithm that exemplifies it (Kocsis and Szepesvári
2006) has significantly advanced several fields of AI. Among
other achievements, these method have drastically improved
machines’ ability to play Go (Gelly and Silver 2008) and Soli-
taire (Bjarnason, Fern, and Tadepalli 2009). Recently, UCT
has received close attention from the probabilistic planning
community as well. Out of the five solvers at the Interna-
tional Probabilistic Planning Competition (IPPC) 2011, four
were based on UCT, including the winner, PROST (Keller and
Eyerich 2012). UCT’s success is at least partly attributable
to its model-free nature — it does not need to know state
transition probabilities explicitly in order to estimate state
values. Indeed, in games such probabilities are typically un-
known, as they depend on the behavior of the opponent. In
planning, they may be available, but if each state, on average,
allows transitions to many others, the probabilities cannot

be explicitly used to compute Bellman backups efficiently,
as many conventional, Value Iteration-based (Bellman 1957)
MDP algorithms require. In the meantime, a large average
number of transitions per state, i.e., a high branching factor,
is characteristic of many interesting planning problems, e.g.
the benchmarks at IPPC-2011. Therefore, UCT seems ide-
ally suited for such complicated planning scenarios as well
as games.

At the same time, the runner-up at IPPC-2011, GLUTTON
(Kolobov et al. 2012), was the only planner built around
an algorithm different from UCT. GLUTTON’s core is an
iterative-deepening version of LRTDP (Bonet and Geffner
2003), an optimal heuristic search algorithm. GLUTTON
circumvents the issue of large number of possible state tran-
sitions by having LRTDP subsample the transition function,
and uses a number of other optimizations to make this idea
work. Besides the use of UCT and LRTDP respectively, an-
other major difference between PROST and GLUTTON was
how they used these algorithms. While PROST employed
UCT in an online manner, interleaving planning and exe-
cution, GLUTTON constructed policies offline. GLUTTON’s
performance is very close to UCT-based PROST’s, and vastly
better than that of all other IPPC-2011 competitors (Sanner
2011), which also use UCT.

Critically analyzing these results, in this paper we ask: is
the nascent trend of using UCT as the dominant probabilistic
planning algorithm justified? Which, of UCT and LRTDP,
performs better if both are used online? Does LRTDP have
any practical advantages over UCT in online mode?

To start answering these questions, we compare the suit-
ability of UCT and LRTDP to solving finite-horizon MDPs
under time constraints. A finite-horizon MDP Ms0(H) with
horizon H and initial state s0 represents a probabilistic plan-
ning problem in which an agent is trying to maximize the
total expected reward from executing a sequence ofH actions
starting at s0. Finite-horizon MDPs with large horizons are
useful for modeling processes that are in fact nearly infinite,
such as controlling traffic lights on a road grid, managing
the delivery of packages that keep arriving at a distribution
center, etc. Incidentally, many such scenarios impose time
constraints on policy computation and execution. E.g., in the
package delivery example, the planner may need to produce
a new policy for how to group packages for delivery at least
every half an hour.
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Settings as above naturally lend themselves to online plan-
ning, i. e., interleaving planning with execution. A practical
way of solving a non-goal-oriented MDP online is to come
up with a policy starting from the current state assuming the
horizon of the problem is some fairly small value L, execute
the first action of that policy, transition to a new state, and
proceed this way until the process stops. It is easy to see that
if L is equal to the number of remaining decision epochs, this
approximation scheme yields an optimal policy for Ms0(H).
However, solving a state (i.e., coming up with an optimal
L-lookahead policy for it) for such a large L is typically in-
feasible, as the size of the reachable state space is generally
exponential in L. However, barring pathological cases, we
would like to solve each state for as large an L as possible
under the given time constraint. Unfortunately, for a given
problem and timeout, this “optimal” value of L is usually
unknown a-priori.

In this paper, we claim that because of the difficulty of
choosing L LRTDP is generally better suited for solving
finite-horizon MDPs under time constraints than UCT. In par-
ticular, UCT does not have a convergence condition, making
it hard to determine the time it takes it to converge for a given
L and effectively forcing the practitioner to specify L based
on a guess. In the meantime, a good L is heavily problem-
dependent. Setting it too high will cause UCT to fail to solve
the state completely for this lookahead and pick an action
largely at random. Setting it too low may make UCT’s be-
havior too myopic. On the other hand, as we demonstrate in
this paper, LRTDP, thanks to its convergence condition, can
determine a good lookahead value automatically via a reverse
iterative deepening strategy of the kind used in GLUTTON.
Moreover, if the time constraint is specified for executing the
entire process, not on a per-epoch-basis, iterative deepening
LRTDP allows for a strategy that distributes the available
computation time among different decision epochs in the pro-
cess in a problem-independent manner and without human
intervention.

The contributions of this paper are the following:

• We analyze strengths and weaknesses of UCT and LRTDP
when solving large finite-horizon MDPs under time con-
straints.

• We present a novel algorithm, GOURMAND, that exploits
LRTDP’s termination condition to find a good lookahead
value automatically for the given time constraint and thus
robustly solve finite-horizon MDP online.

• We compare the performance of GOURMAND, PROST, and
GLUTTON, the exponents of online LRTDP, online UCT,
and offline LRTDP respectively, on the set of all IPPC-
2011 benchmarks. As the experimental results demon-
strate, GOURMAND significantly outperforms the other
two algorithms across these eighty diverse problems, indi-
cating that online LRTDP makes for a very potent MDP
solver.

Background
MDPs. Our analysis in this paper focuses on probabilistic
planning problems modeled by finite-horizon MDPs with

a start state, defined as tuples of the form Ms0(H) =
〈〈S,A, T ,R, s0〉, H〉 where S is a finite set of states, A is a
finite set of actions, T is a transition function S ×A× S →
[0, 1] that gives the probability of moving from si to sj by
executing a, R is a map S × A → R that specifies action
rewards, s0 is the start state, and H is the number of decision
epochs after which the process stops.

In this paper, we will use the concept of the augmented
state space of M(H), which is a set S ×{0, . . . ,H} of state-
number of remaining decision epochs pairs. Solving M(H)
means finding a policy, i.e. a rule for selecting actions in
augmented states, s.t. executing the actions recommended
by the policy starting at the augmented initial state (s0, H)
results in accumulating the largest expected reward over H
decision epochs.

Specifically, let a value function be any mapping V : S ×
{0, . . . ,H} → R, and let the value function of policy π
be the mapping V π : S × {0, . . . ,H} → R that gives the
expected reward from executing π starting at any augmented
state (s, h) for h epochs to go till the end of the process,
h ≤ H . Ideally, we would like to find an optimal policy
π∗ closed with respect to s0, i.e. a policy that specifies an
action for every state reachable from s0 via this policy, and
value function V ∗ for all such states s obeys V ∗(s, h) =
maxπ {V π(s, h)} for 0 ≤ h ≤ H .

As it turns out, for a given MDP V ∗ is unique and satisfies
Bellman equations (Bellman 1957) for all s ∈ S:

V ∗(s, h) = max
a∈A

R(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′, h− 1)

for 1 ≤ h ≤ H and V ∗(s, 0) = 0 otherwise.
WLOG, we assume the optimal action selection rule π∗

to be deterministic, i.e. of the form π∗ : S × {1, . . . ,H} →
A, since for every finite-horizon MDP at least one optimal
deterministic policy is guaranteed to exist (Puterman 1994).
If V ∗ is known, a deterministic π∗ can be derived from it via
the optimality equation for all 1 ≤ h ≤ H:

π∗(s, h) = argmax
a∈A

R(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′, h− 1)

Solution Methods. The above equations suggest a dynamic
programming-based way of finding an optimal policy, called
Value Iteration (VI) (Bellman 1957). VI uses Bellman equa-
tions as an assignment operator, Bellman backup, to compute
V ∗ in a bottom-up fashion for h = 1, 2, . . . ,H and then
derives π∗ from it via the optimality equation.

A more efficient modification of VI are trial-based meth-
ods, which explore the state space by executing multiple trials
from the initial state.

One popular trial-based method, LRTDP (Bonet and
Geffner 2003), updates states its trials pass through with
Bellman backups and, crucially, has a convergence condition
that tells it when a state’s value has stabilized.

Another powerful trial-based method is UCT. When ex-
ecuting a trial, in each state UCT picks an action based on
its current quality estimate and an “exploration term”. The
exploration term forces UCT to choose actions that have been
tried rarely in the past, even if their estimated quality is low.
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This strategy makes UCT suitable for some scenarios other
MDP algorithms cannot handle (e.g., when the transition
function is not known explicitly). However, it also extorts
a price — since UCT from time to time tries suboptimal
actions, it has no reliable termination condition indicating
when UCT is near convergence.
Online versus Offline Planning. Many planning algorithms,
including VI, LRTDP, and UCT, allow offline planning mode,
when the planner tries to find a complete π∗ closed w.r.t. s0
before executing it. In many cases, doing so is infeasible and
unnecessary — the problem may have so many states that
they cannot all be visited over the lifetime of the system, so
finding π∗ for them is a waste of time. E.g., over its lifetime
a robot will ever find itself in only a small fraction of possible
configurations. Such problems may be better solved online,
i.e. by finding π∗ or its approximation for the current state,
executing the chosen action, and so on. In many scenarios,
the MDP needs to be solved online and under time constraint.
Ways of adapting MDP solvers to the online setting vary
depending on the algorithm. This paper compares online
versions of UCT and LRTDP.

Solving Finite-Horizon MDPs Under Time
Constraints

As already mentioned, solving finite-horizon MDPs offline
may not be a feasible or a worthwhile strategy. Generally,
the number of states reachable from the initial state via a
given policy by executing t actions grows exponentially with
t (although in MDPs with finite state spaces it tapers off as
t goes to infinity). Thus, the number of states for which the
policy may need to be stored may exceed available memory
even for moderate horizon values. Moreover, computing
policy for all of them may be wasteful, since over its lifetime,
a system such as a robot may be able to visit only a small
fraction of the states reachable by any given policy.

Instead, consider solving finite-horizon MDPs online. In
an online setting the planner decides on the best or near-
optimal action in the current state, executes it, decides on
an action in the state where it ends up, and so on. The
advantage of this approach is the that planner spends much
less resources on analyzing states it never visits — they are
only analyzed as a side-effect of computing an action for
a state it does visit. Many real-life scenarios conform to
this setting. E.g., consider a robot trying to navigate an
environment with a lot of people. Instead of computing
a policy offline by considering the probabilities of people
showing up in its path, it can decide on the direction in which
to move until the next decision epoch, e.g., for 1 second, in
order to avoid running into anyone. Executing the action will
bring it to a different state, where it can repeat the decision
process.

There are many possible ways of choosing an action in
the current state s. In a finite-horizon MDP Ms0(H), a prin-
cipled way to do so is to optimally solve MDP Ms(L), a
problem that is identical to the original one except for the
start state, which is now s, and the horizon L < H , and then
select action π∗L(s, L) recommended by its optimal policy.
This action selection rule has the intuitive property that if the

number L, which we call lookahead, is as large as the number
of decision epochs remaining till the end of the process, an
optimal policy resulting from it, an L-lookahead policy, is op-
timal for the original MDP. Note that this does not imply that
as L approaches H , the quality of an optimal L-lookahead
policy, as measured by its value function, monotonically ap-
proaches that of π∗H . Indeed, one can construct pathological
examples in which increasing lookahead up to a certain point
results in policies of deteriorating quality. However, in many
non-contrived real-life examples, such as robot navigation,
traffic light grid control, or package delivery management,
larger lookahead generally translates to a better policy. Thus,
given a time constraint, obtaining the best approximation
in practice according to this scheme requires answering the
question: at each decision epoch t, 0 ≤ t ≤ H − 1, what
is the largest lookahead value for which we can reasonably
afford to compute the optimal action in the current state?

The answer to this question is influenced by the type of
time constraint we are dealing with:

• Per-epoch constraint. In this case, the system is told how
much time it can spend computing an action at each of the
H decision epochs of the process.

• Per-process constraint. There is a final deadline for the
execution to stop. In effect, the system is told the total
amount of planning time T that it has; the system is then
free to allocate this amount to different process epochs in
an arbitrary way.

We consider the second scenario, since the solution to the
first one is just a special case of it. In the next section, we
discuss a method for determining a good lookahead value at
each decision epoch automatically, given a per-process time
constraint T .

The GOURMAND Algorithm
We now present an algorithm called GOURMAND, a solver
for finite-horizon MDPs that demonstrates how the termina-
tion condition can help LRTDP find a good lookahead value
automatically in an online setting. GOURMAND is analogous
to PROST in that both use a version of a basic algorithm,
LRTDP and UCT respectively, to choose an action in an aug-
mented state (s, h) encountered at the t-th decision epoch
of the process (t and h are related, since t = H − h) by
trying to solve the state for some lookahead. However,
while PROST needs an engineer to specify the value of the
lookahead and the timeout to devote to choosing an action
at epoch t, GOURMAND determines both of these values
without human intervention. GOURMAND is also related to
GLUTTON — they use the same version of LRTDP and en-
gineering optimizations such as subsampling the transition
function (Kolobov et al. 2012). A major difference between
the two is the mode in which they use LRTDP. GLUTTON
uses it in an offline fashion. As a result, when the time T
allocated for solving the MDP runs out, GLUTTON may not
have solved all the states reachable by its policy and has to
resort to ad-hoc methods of action selection when it encoun-
ters such states during policy execution. GOURMAND does
not have this difficulty — thanks to its online use of LRTDP
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and time allocation strategy, it makes an informed choice in
any state where it ends up.

Algorithm 1 shows GOURMAND’s pseudocode. Roughly,
GOURMAND initially distributes the total timeout T equally
among the H decision epochs. While choosing an action
during the initial decision epoch (epoch 0), it estimates how
long solving a state takes for different lookahead values.
During each subsequent epoch t, GOURMAND first divides
up the total remaining time T for solving the problem equally
among the remaining epochs, i.e. virtually allocates time
Tt =

T
H−t to each of them, including the current one. Then,

using the previously obtained estimates for time it takes to
solve for different lookahead values, GOURMAND determines
the largest lookahead Lt for which it can almost certainly
solve any remaining epoch if time Tt is allocated to it. Finally,
GOURMAND checks whether in the current decision epoch, it
could solve for an even larger lookahead L̂t by taking away
a small amount of computation time from future decision
epochs while still guaranteeing that it can solve for lookahead
Lt in each of them. If so, it solves the current epoch for
lookahead L̂t, otherwise — for Lt. Proceeding this way lets
GOURMAND adaptively pick a good lookahead value at each
decision epoch, given the per-process time constraint T .

The key to GOURMAND’s resource allocation strategy is
the knowledge of how long it takes LRTDP to solve a state
for lookahead values L = 1, 2, . . . , L̂ ≤ H for some L̂. To
collect these data, GOURMAND uses a reverse iterative deep-
ening LRTDP version called LR2TDP, first introduced in
GLUTTON (Kolobov et al. 2012). LR2TDP’s pseudocode
is shown on lines 35 - 45 of Algorithm 1 for completeness.
Its main idea is to arrive at a policy for an MDP Ms′0

(H ′) by
solving a sequence of MDPsMs′0

(1),Ms′0
(2), . . . ,Ms′0

(H ′),
where values of states computed when solving Ms′0

(h) are
used to help compute state values for Ms′0

(h+ 1). LR2TDP
has two advantages over a straightforward adaptation of
LRTDP (Bonet and Geffner 2003) to finite-horizon MDPs,
which we call LRTDPFH , that would run trials of length
H ′ from the augmented state (s′0, H

′) until V (s′0, H
′) con-

verges:
• LR2TDP is generally more efficient than LRTDPFH be-

cause its trial length is short. Typically, when solving
MDP Ms′0

(L) from the above sequence, LR2TDP’s trials
run into a state solved as part of some Ms′0

(L′), L′ < L,
already after a few action executions. For LRTDPFH , on
the other hand, the early trials are of length L.

• More importantly, by solving a sequence of MDPs with an
increasing horizon, LR2TDP allows us to measure how
long on average solving an augmented state (s, L) takes
for various values of L.

In fact, LR2TDP uses LRTDPFH in its inner loop (line 41).
GOURMAND starts solving for each decision epoch by as-

suming it will allocate the remaining time uniformly over the
remaining decision epochs, including the current one (line
12). If it is the initial epoch, it runs LR2TDP for the ini-
tial state (lines 14 - 16), timing how long LR2TDP takes to
solve Ms0(1),Ms0(2), . . . and thereby initializing the aver-
ages Ts1, T s2, . . . (lines 41-43), as long as the computation

1 Input: MDP Ms0(H), timeout T
2 Output: Actions for states encountered at epochs
0, . . . , H − 1

3 // Running averages of the amount of time it takes to
4 // solve a state for lookahead L

5 Ts0 ← 0 ;
6 TsL ←∞ for all L = 1, . . . , H;
7 T ← T ;

8 function GOURMAND(MDP Ms0(H), timeout T )
9 begin

10 s← s0;
11 foreach t = 0, . . . , H − 1 do
12 Tt ← T

H−t
;

13 if t == 0 then
14 Run LR2TDP(Ms(H), Tt)

15 T ← T − Tt ;
16 L̂0 ← largest L for which Ms(L) is solved;
17 end
18 else
19 Lt ← largest L s.t. TsL < Tt ;
20 T̂t ← Tt + (Tt − TsLt)(H − t− 1) ;
21 L̂t ← Lt ;
22 if TsLt+1 < T̂t or TsLt+1 ==∞ then
23 L̂t ← Lt + 1 ;
24 end
25 tstart ← current time ;
26 Run LR2TDP(Ms(L̂t), T̂t);
27 tend ← current time ;
28 SolutionT ime← tend − tstart;
29 T ← T − SolutionT ime ;
30 end
31 Actiont ← π∗

Ms(L̂t)
(s, L̂t);

32 s← execute Actiont in s;
33 end
34 end

35 function LR2TDP(MDP Ms′0
(H ′), timeout T )

36 begin
37 Tsh ← 0 ;
38 tstart ← current time ;
39 tend ← current time ;
40 foreach h = 1, . . . , H ′ or until time T runs out do
41 Run LRTDPFH (Ms′0

(h), T − (tend − tstart)) ;
42 tend ← current time ;
43 Tsh ← update average with (tend − tstart) ;
44 end
45 end

46 function LRTDPFH (MDP Ms′0
(h), timeout T )

47 begin
48 Convert Ms′0

(h) into the equivalent goal-oriented MDP
Mh

g s′0
, whose goals are all states of the form (s, 0).

49 Run LRTDP(Mh
g s′0

) until time T runs out, memoizing the
values of all encountered augmented states

50 end
Algorithm 1: GOURMAND
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time T0 allocated to the first decision epoch has not run out.
Crucially, conducting these measurements is possible due to
LR2TDP’s stopping condition that makes LR2TDP proceed
to solving MDP Ms0(L + 1) once MDP Ms0(L) has been
solved.

By the time T0 runs out, GOURMAND achieves two things.
First, it solves s0 for some lookahead L̂0 (line 16), and can
select an action in s0 according to the optimal policy for
Ms0(L̂0) (line 31). Second, in the process of solving for
lookahead L̂0 it gets estimates TsL of the time it takes to
solve a state completely for lookaheads L = 1, 2, . . . , L̂0

(lines 42 - 43).
In each epoch t past the initial one, GOURMAND figures

out the finite lookahead value Lt for which it should be able
to solve the current and all subsequent epochs if it allocated
time Tt = T

H−t to each (line 19). It does this based on the
estimates TsL it has obtained previously. Then, GOURMAND
decides whether it realistically may be able to solve the cur-
rent decision epoch for an even larger lookahead L̂t without
impacting performance guarantees for future decision epochs,
i.e. while ensuring that it can solve them for lookahead Lt.
To see the intuition for how GOURMAND can achieve this,
observe that since TsLt

< Tt, if GOURMAND solved the
current epoch just for lookahead Lt, there would probably
be some extra time of approximately (Tt − TsLt) left. By
itself, this extra time chunk does not let GOURMAND solve
for a lookahead bigger than Lt. However, if GOURMAND
“borrows” similar extra time chunks from future decision
epochs t′ > t, solving for a larger lookahead now may well
be possible. Since there are (H− t−1) decision epochs after
t, the total amount of additional time GOURMAND can gain
via such borrowing is (Tt− TsLt

)(H − t− 1). Accordingly,
GOURMAND adds (Tt − TsLt

)(H − t − 1) to Tt (line 20)
and determines whether it can increase the target lookahead
to Lt + 1 thanks to the borrowed time. Establishing this
may be complicated by the fact that GOURMAND does not
necessarily know how long solving for Lt+1 takes, in which
case its estimate for TsLt+1 is∞ (line 6) . However, both in
the case when TsLt+1 is unknown and in the case when it is
known to be less that T̂t, GOURMAND takes the risk and sets
the target lookahead L̂t to Lt + 1 (line 23).

GOURMAND then sets off solving MDP Ms(L̂t) until it
either manages to solve s for lookahead L̂t or the allocated
time T̂t runs out (line 26). Throughout the process it has
LR2TDP measure how long solving s takes for lookaheads
L = 1, 2, . . . , L̂t and update the running averages TsL ac-
cordingly (lines 42 - 43).

Although as described, GOURMAND can decide on looka-
heads L̂t for each decision epoch automatically, the use of
LRTDP introduces an important practical limitation. LRTDP
updates state value via Bellman backups. A Bellman backup
assigns the value of the best action a∗ in a state (s, h) to
(s, h) itself. To evaluate an action a, it iterates over all suc-
cessors of s under a. In MDPs with exogenous events, the
number of such successors may be astronomical, possibly
the entire state space. Vanilla LRTDP and LR2TDP would
not be able to handle such problems in practice. On the other

hand, UCT can cope with them more easily, since it never
explicitly iterates over successors of a state.

To address this issue, GLUTTON’s implementation of
LR2TDP heavily subsamples the set of successors of each
state-action pair and uses other engineering optimizations
such as separating out the natural dynamics to make sub-
sampling even more efficient (Kolobov et al. 2012). Our
implementation of GOURMAND adopts these modifications
to the basic LR2TDP as well.

Experimental Results
Experimental Setting. The goal of our empirical evaluation
was to compare the performance of online LRTDP as used
in GOURMAND to that of online UCT as used in PROST and
offline LRTDP as used in GLUTTON across a diverse col-
lection of finite-horizon MDPs. To this end, we present the
results of these planners on the set of all benchmarks from
the most recent International Probabilistic Planning Compe-
tition, IPPC-2011 (Sanner 2011). Since at present PROST
and GLUTTON are not publicly available, we had to run
GOURMAND under the IPPC-2011 conditions and compare
its performance to PROST’s and GLUTTON’s competition
results (Sanner 2011).

Overall, the IPPC-2011 setting models solving finite-
horizon MDPs under time constraints fairly well. At the
competition, each participant had 24 hours to solve the 80
available benchmark MDPs. The problems came from 8
sets (domains), 10 problems per set. MDPs in each domain
were numbered 1 through 10, with size/difficulty increasing
roughly with a problem’s ordinal. Participants could divide
up this time among the problems in any way they wished.
Both PROST and GLUTTON chose to solve problems from
the lowest-numbered to the highest-numbered ones. Initially,
both PROST1 and GLUTTON divided the time equally among
all problems, but gradually redistributed time in similar ways
to give more of it to larger problem instances, since smaller
ones could be solved quickly. GOURMAND adopted this
approach as well. As a result, planners ended up spending
as little as several dozens of seconds on each of the small
MDPs, and as long as 40 minutes on the largest ones. Details
aside, all three planners had to solve finite-horizon MDPs
under a time constraint, which was our intended comparison
scenario.

Like competitors at IPPC-2011, GOURMAND ran on a sep-
arate Large Instance of Amazon EC2 node with 7.5 GB RAM.
The policy of each participant on each problem was evaluated
by having the participant execute its policy 30 times starting
from the initial state to the horizon. The competition server,
which simulated the actions sent by the planner, computed
average reward of the policy of the 30 attempts. Afterwards,
these rewards were converted to relative scores on a scale
from 0 to 1 for each problem. The score of 0 corresponded
to the average reward of a random policy or a policy that
executed only the noop action, whichever was highest. The
score of 1 corresponded to the highest reward any planner’s
policy earned on this problem. The winner was the planner
with the highest relative score averaged across all 8 domains.

1From personal communication with the authors of PROST.
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Figure 1: GOURMAND (avg. score 0.9052) vastly outperforms
PROST (0.6099) on the Crossing Traffic domain.

Figure 2: All planners are tied on the Elevators domain.

The IPPC-2011 winner, PROST, used UCT in the manner
we already mentioned. Its authors specified a single tuned
lookahead value, L = 15, for all of the benchmark problems.
PROST also had a per-epoch timeout. To compute a policy,
PROST would run UCT with L = 15 for the time specified
by the timeout, return the best action (according to the value
function upon termination) to the server, which simulated
the action and sent PROST a new state. If UCT happened
to re-visit a state across the 30 policy execution attempts, it
returned an action for it immediately, without waiting for
the timeout. In this case, the freed-up time was redistributed
among subsequent epochs. Because of this, UCT could
also execute all 30 rounds before the time allocated to this
problem was up. When this happened, the remaining time
was distributed among the remaining problems.

Results and Analysis. The overall results for each domain
are presented in Figures 1 - 8. Across all domains, GOUR-
MAND earned the average score of 0.9183±0.0222, PROST—
0.8608 ± 0.0220, and GLUTTON— 0.7701 ± 0.0235, i.e.
GOURMAND outperforms the other two by a statistically
significant amount.

Several performance patterns deserve a special note. First,
we revisit the intuition we stated at the beginning that if the
value of L chosen for UCT is too large, by the timeout UCT
will still be very far from convergence and pick an action
largely at random, whereas online LRTDP will converge com-
pletely for a smaller lookahead and make a more informed
decision. While this may be true in some situations, our
results on the IPPC-2011 benchmarks do not confirm this. In
particular, consider the Sysadmin, Game of Life, and Traffic
domains. All of them require a very small lookahead, typi-
cally up to 8, to come up with a near-optimal policy. More-
over, they have extremely large branching factors (around
250 for some states of the largest Sysadmin instances). Since
UCT used L = 15, one might expect it to make hardly any
progress due to the enormous number of extra states it has
to explore. Nonetheless, it wins on these domains overall,
despite the fact that on many instances GOURMAND routinely
solves states for L = 6. We hypothesize that on these prob-
lems, UCT may be arriving at a good policy much sooner
than its value function converges. The fact that UCT does
not need to perform Bellman backups, which are expensive
in MDPs with large branching factors as in these domains,

Figure 3: PROST (avg. score 0.9934) mildly outperforms GOUR-
MAND (0.8438) on the Game of Life domain.

Figure 4: GOURMAND (avg. score 1.0) vastly outperforms PROST
(0.4371) on the Navigation domain.

probably contributed to UCT’s convergence speed. Nonethe-
less, more experimentation is needed for a more conclusive
explanation.

Second, we emphasize that GOURMAND’s performance is
more uniform than PROST’s. The lookahead parameter for
PROST was empirically picked to give good results across
many of the competition domains (competition rules allowed
this). Indeed, PROST performed very well on average and
even outperformed GOURMAND on three domains above.
Yet, due to its adaptive strategy, online LRTDP implemented
by GOURMAND does not suffer sharp drops in performance
on some problems sets as UCT implemented by PROST does,
and is robust across all benchmark domains.

In fact, UCT’s overall defeat was caused by very poor
performance on two domains, Navigation (Figure 4) and
Crossing Traffic (Figure 1). Incidentally, both of them are
in effect goal-oriented domains — the agent incurs a cost
for every decision epoch it is not in one of the special states
staying in which is “free”. Crucially, to reach these states
successfully, one needs to select actions very carefully during
the first epochs of the process. For instance, in Crossing
Traffic, the agent is trying to cross a motorway. It can do it
safely by making detours, or by boldly dashing across the
moving stream of cars, which can kill the agent. Getting to
the other side via detours takes longer, and the agent has to
plan with a sufficient lookahead during the first few decision
epochs of the process to realize this. This highlights the
main drawback of guessing a value for L — even within
the same domain, L = 15 is sufficient for some problems
but not others, leading to catastrophic consequences for the
agent in the latter case. Online LRTDP, if it has enough time,
eventually arrives at a sufficiently large lookahead and solves
many such problems successfully.

In comparison with GLUTTON, GOURMAND demonstrates
an even more pronounced advantage. Since GLUTTON at-
tempts to solve the problem offline, by the timeout it often
fails to visit many states that its policy can visit from the ini-
tial state. In other words, its policy is not closed with respect
to s0. To compensate for this, during policy execution it uses
various fallback cases in states it has never seen before. These
default policies are usually not very good. GOURMAND does
not have this problem, since it always makes an informed
choice of action in states that it visits.

Last but not least, we point out that the presence of a ter-
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Figure 5: GOURMAND and PROST are tied on the Recon domain.

Figure 6: GOURMAND and PROST are tied on the Skill Teaching
domain.

mination condition in LRTDP can give rise to many adaptive
time allocation strategies, of which GOURMAND exploits
only one. Our objective in designing and evaluating GOUR-
MAND was not to pick the best such strategy. Rather, it was
to demonstrate that at least some of them can turn a relatively
inefficient offline planning algorithm with a termination con-
dition into an online planner that is significantly more robust,
performant, and easier to deploy than UCT. GOURMAND’s
results on IPPC-2011 domains showcase this message.

Related Work
There has not been much literature on analyzing the perfor-
mance of UCT in solving MDPs. However, there have been
attempts to examine its properties in the context of adversarial
planning (Ramanujan and Selman 2011).

Finite-horizon MDPs (Puterman 1994) is a well-studied
MDP class. Besides VI and LRTDP, another well-known
algorithm for solving them is AO∗ (Nilsson 1980). However,
using any of these methods offline on large finite-horizon
MDPs is infeasible because of their time and space require-
ments. A promising class of approaches for solving finite-
horizon MDPs offline that would circumvent these limitations
is automatic dimensionality reduction ((Buffet and Aberdeen
2006), (Kolobov, Mausam, and Weld 2009)). It has worked
well for goal-oriented MDPs, but compactifying the value
function of finite-horizon MDPs appears to follow different
intuitions, and we are not aware of any such algorithms for
this class of problems. The methods for solving finite-horizon
MDPs online have been studied fairly little.

Conclusion
In the light of recent popularity of UCT for solving
MDPs, this paper attempts to answer the question: is UCT
fundamentally better than existing MDP solution algorithms
such as LRTDP? In particular, does LRTDP have any
advantages over UCT when both are used online? We
identify one property that makes online LRTDP a more
adaptable planning algorithm — its termination condition.
To solve a finite-horizon MDP under a time constraint,
UCT needs an expert to specify a lookahead L for which
UCT should solve states it encounters. Mistakes in setting
this parameter are easy to make and can be very costly. In
contrast, LRTDP’s termination condition allows us to devise
an adaptive strategy that determines a good lookahead value

Figure 7: PROST (avg. score 0.9978) mildly outperforms GOUR-
MAND (0.8561) on the Sysadmin domain.

Figure 8: PROST (avg. score 0.9791) mildly outperforms GOUR-
MAND (0.8216) on the Traffic domain.

automatically. We implement this strategy in an online
planner GOURMAND and compare it to the IPPC winner
PROST, which is based on online UCT, and GLUTTON,
based on offline LRTDP. The experimental results show
that, even with a carefully chosen lookahead, online UCT
performs worse than online LRTDP, the latter’s strategy of
choosing the lookahead being more adaptive and robust.
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