
Improving Hierarchical Planning Performance by the Use of Landmarks

Mohamed Elkawkagy, Pascal Bercher, Bernd Schattenberg, Susanne Biundo
Institute of Artificial Intelligence,

Ulm University, D-89069 Ulm, Germany,
email: forename.surname@uni-ulm.de

Abstract

In hierarchical planning, landmarks are tasks that occur on
every search path leading from the initial plan to a solu-
tion. In this work, we present novel domain-independent
planning strategies based on such hierarchical landmarks.
Our empirical evaluation on four benchmark domains shows
that these landmark-aware strategies outperform established
search strategies in many cases.

1 Introduction
While landmarks are widely used to improve the perfor-
mance of classical planners, a different notion of land-
marks has recently been developed for HTN-based ap-
proaches (Elkawkagy, Schattenberg, and Biundo 2010). Un-
like the classical case where landmarks are facts that must
hold in some intermediate state of any solution plan, hierar-
chical landmarks are mandatory tasks – tasks that have to be
decomposed on any search path leading from the initial plan
to a solution of the planning problem.

Hierarchical task network (HTN) planning relies on the
concepts of tasks and methods (Erol, Hendler, and Nau
1994). While primitive tasks correspond to classical plan-
ning operators, abstract tasks are a means to represent com-
plex activities. For each abstract task, a number of (decom-
position) methods are available, each of which provides a
task network, i.e., a plan that specifies a predefined (ab-
stract) solution of the task. Planning problems are (initial)
task networks; they are solved by incrementally decompos-
ing the abstract tasks until the network contains only exe-
cutable primitive ones.

Strategies of HTN-based planners differ in the ways they
select appropriate methods and interleave the decomposi-
tion of tasks with measures to resolve causal interactions
between tasks. Systems of the SHOP family, like SHOP2,
expand tasks in the order in which they are to be executed
and consider causality only on primitive levels (Nau et al.
2003). Other strategies alternate task decomposition and
causal conflict resolution (McCluskey 2000) or comply with
the current state of the task network (Schattenberg, Bidot,
and Biundo 2007).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we describe how the exploitation of land-
mark information leads to novel domain-independent search
strategies for HTN-based planning. A so-called landmark
table is extracted from the current planning problem in a
pre-processing step. It lists the landmark tasks and reveals
the various options at hand. Options are tasks that are not
mandatory, but may have to be decomposed depending on
the method that is selected to implement the respective land-
mark. This information is used to compute the expansion
effort of the problem – a heuristic to guide the selection of
methods and with that reduce the effective branching factor
of the search space.

We implemented the landmark-aware planning strategies
in our experimental setting and evaluated their performance
on four different benchmark domains. It turned out that our
novel strategies outperform their conventional counterparts
on practically all problems if the decomposition hierarchy of
the underlying domain is of non-trivial depth.

In classical state-based planning the concept of land-
marks (Porteous, Sebastia, and Hoffmann 2001) enabled
the development of strong heuristics (Helmert and Domsh-
lak 2009; Bonet and Helmert 2010). One of the cur-
rently best performing planners uses such a landmark heuris-
tic (Richter and Westphal 2010). The work of Zhu and Gi-
van (2004) generalized landmarks to so-called action land-
marks. Marthi, Russell, and Wolfe (2008) specify a seman-
tics for HTN planning in which the preconditions and effects
of abstract tasks can be interpreted as abstract landmarks,
as they are gained via incremental abstraction of more basic
tasks.

In the following, we briefly introduce the underlying plan-
ning framework and the concept of hierarchical landmarks.
We then define the landmark-aware strategies and describe
the experimental setting as well as the evaluation results.

2 Planning Framework
The planning framework is based on a formalization which
is the fusion of HTN planning with partial-order causal-link
(POCL) planning (Biundo and Schattenberg 2001). A task
(or task schema) t(τ) = 〈prec, eff〉 specifies preconditions
and effects via conjunctions of literals over the task param-
eters τ̄ = τ1 . . . τn. States are sets of literals. Applicability
of tasks and the state transformations caused by their execu-
tion are defined as usual. A (partial) plan P = 〈S,≺, V, C〉

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1763

consists of a set S of plan steps, i.e., uniquely labeled task
instances, a set ≺ of ordering constraints that impose a par-
tial order on S, a set V of variable constraints, and a setC of
causal links. V consists of (in)equations that associate task
parameters with other parameters or constants. We denote
by Ground(S, V) the set of ground tasks obtained by replac-
ing all parameters of all tasks in P with constants in a way
compatible with V. The causal links are adopted from POCL
planning: A causal link l:t(τ̄) →ϕ l

′:t′(τ̄ ′) indicates that ϕ
is implied by the precondition of plan step l′:t′(τ̄ ′) and at
the same time is a consequence of the effects of plan step
l:t(τ̄). Hence, ϕ is said to be supported this way. A task is
called abstract if at least one method is provided for refining
it, otherwise it is called primitive. A method m = 〈t(τ), P 〉
relates the abstract task t(τ) to the plan P, which is called
an implementation of t(τ).

An HTN planning problem Π = 〈D, sinit, Pinit〉 is com-
posed of a domain model D = 〈T,M〉, where T and M
denote finite sets of tasks and methods, an initial state sinit,
and an initial plan Pinit. A plan P = 〈S,≺, V, C〉 is a solu-
tion to Π if and only if: (1) P is a refinement of Pinit, i.e.,
a successor of the initial plan in the induced search space
(see Def. 1 below); (2) each precondition of a plan step in
S is supported by a causal link in C and no such link is
threatened, i.e., for each l:t(τ̄) →ϕ l′:t′(τ̄ ′) the ordering
constraints in ≺ ensure that no plan step l′′:t′′(τ̄ ′′) with an
effect that is unifiable with ¬ϕ can be placed between l:t(τ̄)
and l′:t′(τ̄ ′); (3) the ordering constraints are consistent, i.e.,
≺ respects the ordering implied by C and it does not induce
cycles on S; (4) the variable constraints are consistent, i.e.,
the (in)equations in V are not contradictory; and (5) all plan
steps in S correspond to primitive ground tasks.
SolΠ denotes the set of all solutions of Π.
Please note that we encode the initial state via the effects

of an artificial primitive “start” task, as it is usually done in
POCL planning. In doing so, criteria (2) to (5) guarantee that
the solution is executable in the initial state.

In order to refine the initial plan into a solution, there are
various refinement steps (or plan modifications) available; in
HTN planning, these are: (1) The decomposition of abstract
tasks using methods, (2) the insertion of causal links to sup-
port open preconditions of plan steps, (3) the insertion of
ordering constraints, and (4) the insertion of variable con-
straints. Given an HTN planning problem we can define the
induced search space as follows.

Definition 1 (Induced Search Space) The directed graph
PΠ = 〈VΠ , EΠ〉 with vertices VΠ and edges EΠ is called the
induced search space of the planning problem Π if and only
if (1) Pinit ∈ VΠ , (2) if there is a plan modification refining
P ∈ VΠ into a plan P ′, then P ′ ∈ VΠ and (P, P ′) ∈ EΠ ,
and (3) PΠ is minimal such that (1) and (2) hold.

For PΠ = 〈VΠ , EΠ〉, we write P ∈ PΠ instead of P ∈ VΠ .
Note that PΠ is in general neither acyclic nor finite. For
the former, consider a planning problem in which there are
the abstract tasks t(τ), t′(τ ′) as well as two methods, each
of which transforms one task into the other. For the latter,
consider a planning problem containing an abstract task t(τ)
and a primitive task t′(τ ′) as well as two methods for t(τ):

one maps t(τ) to a plan containing only t′(τ ′), the other
maps t(τ) to a plan containing t′(τ ′) and t(τ) thus enabling
the construction of arbitrary long plans.

In order to search for solutions the induced search space is
explored in a heuristically guided manner by the following
generic refinement planning algorithm:

Algorithm 1: Refinement Planning Algorithm
Input : The sequence Fringe = 〈Pinit〉.
Output : A solution or fail.

1 while Fringe = 〈P1 . . . Pn〉 6= ε do
2 F ← fFlawDet(P1)
3 if F = ∅ then return P1

4 〈m1 . . . mk〉 ← fModOrd(
⋃
f∈F

fModGen(f))

5 succ← 〈app(m1, P1) . . . app(mk, P1)〉
6 Fringe← fPlanOrd(succ ◦ 〈P2 . . . Pn〉)
7 return fail

The fringe 〈P1 . . . Pn〉 is a sequence containing all un-
explored plans that are direct successors of visited non-
solution plans in PΠ . It is ordered in a way such that a plan
Pi is estimated to lead more quickly to a solution than plans
Pj for j > i. The current plan is always the first plan of
the fringe. The planning algorithm iterates on the fringe as
long as no solution is found and there are still plans to refine
(line 1). Hence, the flaw detection function fFlawDet in line 2
calculates all flaws of the current plan. A flaw is a set of
plan components that are involved in the violation of a solu-
tion criterion. The presence of an abstract task raises a flaw
that consists of that task, a causal threat consists of a causal
link and the threatening plan step, for example. If no flaws
can be found, the plan is a solution and returned (line 3).
In line 4, the modification generating function fModGen cal-
culates all plan modifications that address the flaws of the
current plan. Afterwards, the modification ordering func-
tion fModOrd orders these modifications according to a given
strategy. The fringe is finally updated in two steps: First,
the plans resulting from applying the modifications are com-
puted (line 5) and put at the beginning of the fringe (line 6).
Second, the plan ordering function fPlanOrd orders the up-
dated fringe. This step can also be used to discard plans, i.e.,
to delete plans permanently from the fringe. This is useful
for plans that contain unresolvable flaws like an inconsistent
ordering of tasks. If the fringe becomes empty, no solution
exists and fail is returned.

In this setting, the search strategy appears as a combina-
tion of the plan modification and plan ordering functions. In
order to perform a depth first search, for example, the plan
ordering is the identity function (fPlanOrd(P) = P for any
sequence P), whereas the modification ordering fModOrd de-
termines which branch of the search space to visit first.

3 Landmarks
The landmark-aware planning strategies rely on hierarchical
and local landmarks – ground tasks that occur in the plan se-

1764

quences leading from a problem’s initial plan to its solution.

Definition 2 (Solution Sequences) Let 〈VΠ , EΠ〉 be the in-
duced search space of the planning problem Π. Then, for
any plan P ∈ VΠ , SolSeq

Π
(P) := {〈P1 . . . Pn〉 | P1 = P,

Pn ∈ SolΠ, and for all 1 ≤ i < n, (Pi, Pi+1) ∈ EΠ}.
Definition 3 (Landmark) A ground task t(τ) is called a
landmark of planning problem Π, if and only if for each
〈P1 . . . Pn〉 ∈ SolSeqΠ

(Pinit) there is an 1 ≤ i ≤ n, such
that t(τ) ∈ Ground(Si, Vn) for Pi = 〈Si,≺i, Vi, Ci〉 and
Pn = 〈Sn,≺n, Vn, Cn〉.

While a landmark occurs in every plan sequence that is
rooted in the initial plan and leads towards a solution, a local
landmark occurs merely in each such sequence rooted in a
plan containing a specific abstract ground task t(τ).

Definition 4 (Local Landmark of an Abstract Task) For
an abstract ground task t(τ) let PΠ(t(τ)) := {P ∈ PΠ |
P = 〈S,≺, V, C〉 and t(τ) ∈ Ground(S, V)}.
A ground task t′(τ ′) is a local landmark of t(τ), if and only if
for all P ∈ PΠ(t(τ)) and each 〈P1 . . . Pn〉 ∈ SolSeqΠ

(P)
there is an 1 ≤ i ≤ n, such that t′(τ ′) ∈ Ground(Si, Vn)
for Pi = 〈Si,≺i, Vi, Ci〉 and Pn = 〈Sn,≺n, Vn, Cn〉.

Since there are only finitely many tasks and we assume
only finitely many constants, there is only a finite number of
(local) landmarks.

Given a planning problem Π, the relevant landmark in-
formation can be extracted in a pre-processing step. We use
the extraction procedure introduced in previous work of the
authors (Elkawkagy, Schattenberg, and Biundo 2010) and
assume that the information is already stored in a so-called
landmark table. Its definition relies on a task decomposition
graph, which is a relaxed representation of how the initial
plan of a planning problem can be decomposed.

Definition 5 (Task Decomposition Graph) The directed
bipartite graph 〈VT , VM , E〉 with task vertices VT , method
vertices VM , and edges E is called the task decomposition
graph (TDG) of the planning problem Π if and only if

1. t(τ) ∈ VT for all t(τ) ∈ Ground(S, V), for
Pinit = 〈S,≺, V, C〉,

2. if t(τ) ∈ VT and if 〈t(τ ′), 〈S,≺, V, C〉 〉 ∈ M s.t. τ is
compatible with τ ′ and V, then

(a) 〈t(τ), 〈S,≺, V ′, C〉〉 ∈ VM such that V ′ ⊇ V binds all
variables in S to a constant and

(b) (t(τ), 〈t(τ), 〈S,≺, V ′, C〉〉) ∈ E,
3. if 〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM , then

(a) t′(τ ′) ∈ VT for all t′(τ ′) ∈ Ground(S, V) and
(b) (〈t(τ), 〈S,≺, V, C〉 〉, t′(τ ′)) ∈ E, and

4. 〈VT , VM , E〉 is minimal such that (1), (2), and (3) hold.

Note that the TDG of a planning problem is always finite
as there are only finitely many methods and ground tasks.

Please also note that, due to the uninformed instantiation
of unbound variables in a decomposition step in criterion
2.(a), the TDG of a planning problem generally becomes in-
tractably large. We hence prune parts of the TDG which can
provably be ignored due to a relaxed reachability analysis of

primitive tasks. This pruning technique is described in our
earlier work (Elkawkagy, Schattenberg, and Biundo 2010).

The landmark table represents a (possibly pruned) TDG
plus additional information about local landmarks.

Definition 6 (Landmark Table) Let 〈VT , VM , E〉 be a
(possibly pruned) TDG of the planning problem Π. The land-
mark table of Π is the setLT = {〈t(τ),M(t(τ)), O(t(τ))〉|
t(τ) ∈ VT abstract ground task}, where M(t(τ)) and
O(t(τ)) are defined as follows:

M(t(τ)) := {t′(τ ′) ∈ VT | t′(τ ′) ∈ Ground(S, V) for all
〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}

O(t(τ)) := {Ground(S, V) \M(t(τ)) |
〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}

Each landmark table entry partitions the tasks introduced
by decompositions into two sets: Mandatory tasks M(t(τ))
are those ground tasks that are contained in all plans in-
troduced by some method which decomposes t(τ); hence,
they are local landmarks of t(τ). The optional task set
O(t(τ)) contains for each method decomposing t(τ) the set
of ground tasks which are not in the mandatory set; it is
hence a set of sets of tasks.

Please note that the landmark table encodes a possibly
pruned TDG and is thus not unique. In fact, various local
landmarks might only be detected after pruning. For in-
stance, suppose an abstract task has three available methods,
two of which have some tasks in their referenced plans in
common. However, the plan referenced by the third method
is disjoint to the other two. Hence, the mandatory sets are
empty. If the third method can be proven to be infeasible and
is hence pruned from the TDG, the mandatory set will con-
tain those tasks the plans referenced by the first two methods
have in common.

Example
The following example will demonstrate how the TDG and a
landmark table of a planning problem looks like.

Let Π = 〈D, sinit, Pinit〉 an HTN planning problem with
D = 〈{t1(τ1), . . . , t5(τ5)}, {ma,m

′
a,mb,m

′
b}〉, Pinit =

〈{l1:t1(τ1)}, {τ1=c1}〉1, and constants c1 and c2, where:

ma :=〈t1(τ1), 〈{l1:t3(τ1), l2:t3(τ2), l3:t2(τ1)}, {τ1 6=τ2}〉〉
m′a :=〈t1(τ1), 〈{l4:t2(τ1), l5:t1(τ1)}, ∅〉〉
mb :=〈t3(τ1), 〈{l6:t4(τ1), l7:t5(τ1)}, ∅〉〉
m′b :=〈t3(τ1), 〈{l8:t4(τ1)}, ∅〉〉

The TDG for Π is given in Figure 1; the according
landmark table is given as follows:

Abs. Task Mandatory Optional
t1(c1) {t2(c1)} {{t3(c2), t3(c1)}, {t1(c1)}}
t3(c2) {t4(c2)} {∅, {t5(c2), t2(c2)}}
t3(c1) {t4(c1)} {∅, {t5(c1), t2(c1)}}

1As our example comes without ordering constraints and causal
links, we give plans as 2-tuples P = 〈S, V 〉.

1765

t1(c1)

m′t1mt1

t3(c2)

mt3 m′t3

t4(c2) t5(c2) t2(c2)

t2(c1)t3(c1)

mt′3
m′t′3

t4(c1) t5(c1)

Figure 1: The TDG for the planning problem Π. The method
vertices are given as follows:
mt1 = 〈t1(c1),ma|τ1=c1,τ2=c2

〉, m′t1 = 〈t1(c1),m′a|τ1=c1
〉,

mt3 = 〈t3(c2),mb|τ1=c2
〉, m′t3 = 〈t3(c2),m′b|τ1=c2

〉,
mt′3

= 〈t3(c1),mb|τ1=c1
〉, m′t′3 = 〈t3(c1),m′b|τ1=c2

〉

4 Landmark-Aware Strategies
Exploiting landmarks during planning is based on the idea of
treating landmarks as characteristic, “inevitable” elements
on the refinement paths to any solution. The mandatory sets
in the landmark table do not contribute directly to the iden-
tification of a solution path. They do, however, allow to esti-
mate upper and lower bounds for the number of expansions
an abstract task requires before a solution is found: A land-
mark table entry 〈t(τ),M(t(τ)), O(t(τ))〉 denotes that all
tasks inM(t(τ)) are introduced into the refinement plan, no
matter which method is used for decomposing t(τ). With
the optional tasks at hand we can now infer that in the most
optimistic case a solution can be developed straight from the
implementation of the method with the “smallest” remains
according toO(t(τ)). Following a similar argument, adding
the efforts for all implementations stored in O(t(τ)) allows
to estimate an upper bound for the “expansion effort”.

From the above considerations, two essential properties of
our landmark-aware strategies emerge: First, since the land-
mark exploitation will be defined in terms of measuring ex-
pansion alternatives, the resulting strategy component has to
be a modification ordering function. Second, if we base the
modification preference on the optional sets in the landmark
table entries, we implement an abstract view on the method
definition that realizes the least-commitment principle.

Concerning the first two strategies below, we interpret the
term “expansion effort” literally and therefore define “small-
est” method to be the one with the fewest abstract tasks in
the implementing plan. To this end, we define the cardinal-
ity of a set of tasks in terms of the number of corresponding
entries that a given landmark table does contain.

Definition 7 (Landmark Cardinality) Given a landmark
table LT , we define the landmark cardinality of a set of tasks
o = {t1(τ1), . . . , tn(τn)} to be

|o|LT := |{t(τ) ∈ o | 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT}|

A heuristic based on this information can heavily over-
estimate the search effort because the landmark table typi-
cally contains a number of tasks that turn out to be unachiev-
able in the given problem. The strategy also does not take
into account the refinement effort it takes to make an imple-
mentation operational on the primitive level by establishing
causal links, resolving causal threats, and grounding tasks.
For the time being, we assume that all methods deviate from
a perfect heuristic estimate more or less to the same amount.
We will see that this simplification actually yields a heuristic
with good performance.

Definition 8 (Landmark-aware strategy lm1) Given a
plan P = 〈S,≺, V, C〉, let ti(τ i) and tj(τ j) be ground
instances of two abstract tasks in S that are compatible
with the (in)equations in V and that are referenced by
two abstract task flaws fi and fj , respectively, that are
found in P. Let a given landmark table LT contain the
corresponding entries 〈ti(τ i),M(ti(τ i)), O(ti(τ i))〉 and
〈tj(τ j),M(tj(τ j)), O(tj(τ j))〉.

The modification ordering function lm1 orders a plan
modification mi before mj if and only if mi addresses fi, mj
addresses fj , and∑

o∈O(ti(τ i))

|o|LT <
∑

o∈O(tj(τj))

|o|LT

This strategy implements the least commitment princi-
ple, as it favors those decomposition plan refinements that
impose fewer successor plans. It reduces the effective
branching factor of the search space (cf. fewest alternatives
first heuristic in HTN planning (Tsuneto, Nau, and Hendler
1997)). The proper choice of the ground task instances
ti(τ i) and tj(τ j) in the above definition is crucial for the ac-
tual performance, however, because the plan modifications
typically operate on the lifted abstract tasks and method def-
initions.

While the above heuristic focuses on the very next level
of refinement, a strategy should also take estimates for sub-
sequent refinement levels into account, thus minimizing the
number of refinement choices until no more decompositions
are necessary. To this end, for a given landmark table LT ,
let O∗(t(τ)) be the transitive closure of the optional sets on
a recursive traversal of the table entries, beginning in t(τ).

Definition 9 (Closure of the Optional Set) The closure of
the optional set for a given ground task t(τ) and a land-
mark table LT is the smallest set O∗(t(τ)), such that
O∗(t(τ)) = ∅ for primitive t(τ), and otherwise:

O∗(t(τ)) = O(t(τ)) ∪
⋃

o∈O(t(τ))

(⋃
t′(τ ′)∈o

O∗(t′(τ ′))
)

with 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT

1766

Note that O∗(t(τ)) is always finite due to the finiteness
of the landmark table, even for cyclic method definitions.

Considering the previous example, the closures for the
three abstract tasks of the planning problem Π are as fol-
lows: O∗(t1(c1)) = O(t1(c1)) ∪ O(t3(c2)) ∪ O(t3(c1)),
O∗(t3(c2)) = O(t3(c2)), and O∗(t3(c1)) = O(t3(c1)).

Definition 10 (Landmark-aware strategy lm∗1) Given the
prerequisites from Def. 8, the modification ordering function
lm∗1 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O∗(ti(τ i))

|o|LT <
∑

o∈O∗(tj(τj))

|o|LT

So far, the “expansion effort” is defined in terms of de-
compositions that have to be applied until a solution is ob-
tained. The following strategies take into account that prim-
itive tasks contribute to the costs for developing the current
plan into a solution, as well. The cost measure is thereby a
uniform one: Solving the flaws affecting a primitive task is
regarded as expensive as the expansion of an abstract one.

Definition 11 (Landmark-aware strategy lm2) Given the
prerequisites from Def. 8, the modification ordering function
lm2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O(ti(τ i))

|o| <
∑

o∈O(tj(τj))

|o|

Like we did for the landmark-aware strategy lm1, we de-
fine a variant for strategy lm2 that examines the transitive
closure of the optional sets.

Definition 12 (Landmark-aware strategy lm∗2) Given the
prerequisites from Def. 8, the modification ordering function
lm∗2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and∑

o∈O∗(ti(τ i))

|o| <
∑

o∈O∗(tj(τj))

|o|

Since the landmark information can be extracted from any
domain model and problem in an automated pre-processing
step, the above strategies are conceptually domain- and
problem-independent heuristics. In addition, they are inde-
pendent from the actual plan generation procedure, hence
their principles can be incorporated into any refinement-
based hierarchical planning system.

5 Evaluation
We evaluated the performance of our novel strategies on four
hierarchical planning domains along two dimensions: (1) we
compared the time needed to find a solution in comparison
to conventional hierarchical search strategies and (2) these
benchmark tests were done on both the original planning do-
mains and the corresponding ones that resulted from apply-
ing our landmark-based domain reduction technique (Elka-
wkagy, Schattenberg, and Biundo 2010). Hence, we base
our evaluation on the same benchmark problems, but include
two additional domains.

Conventional Hierarchical Search Strategies
For the strategies SHOP and UMCP, we used plan and mod-
ification ordering functions that induce the search strate-
gies of these planning systems: In the UMCP system (Erol,
Hendler, and Nau 1994), plans are primarily transformed
into completely primitive plans in which causal interactions
are dealt with afterwards. The SHOP strategy (Nau et al.
2003) prefers task expansion for the abstract tasks in the or-
der in which they are to be executed.

In all other strategies the plan ordering function Fewer
Modifications First (fmf) was used. It prefers plans for which
a smaller number of refinement options is found, thereby
implementing the least commitment principle on the plan
ordering level. For the comparison to our landmark-aware
modification ordering functions, we also conducted experi-
ments with the following modification ordering functions:

The Expand-Then-Make-Sound (ems) procedure (Mc-
Cluskey 2000) alternates task expansion with other modi-
fications, which results in a “level-wise” concretization of
plan steps. We also include the well-established Least Com-
mitting First (lcf) paradigm, a generalization of POCL strate-
gies, which prefers those modifications that address flaws for
which the smallest number of alternative solutions is avail-
able. HotSpot strategies examine plan components that are
affected by multiple flaws, thereby quantifying to which ex-
tent solving one deficiency may interfere with the solution
options for coupled components (Schattenberg, Bidot, and
Biundo 2007). The Direct Uniform HotSpot (du-HotSpot)
strategy avoids addressing flaws that refer to HotSpot plan
components, and the Direct Adaptive HotSpot (da) strategy
does so by increasing problem-specific weights on binary
combinations of flaw types that occur in the plan. Finally,
the HotZone strategy takes structural connections between
HotSpots into account and tries to avoid modifications that
deal with these clusters.

Benchmark Problem Set
We conducted our experiments on three well-established
planning domains plus a domain taken from an ongoing
research project. Satellite is a benchmark from the Inter-
national Planning Competition (IPC) for non-hierarchical
planning. The hierarchical encoding of this domain regards
the original primitive operators as implementations of ab-
stract observation tasks. The domain model consists of
3 abstract and 5 primitive tasks, and includes 8 methods.
WoodWorking, also originally defined for the IPC in a non-
hierarchical manner, specifies the processing of raw wood
into smooth and varnished product parts. It uses 13 primi-
tive tasks, 6 abstract tasks, and 14 methods. UM-Translog is
a hierarchical planning domain that supports transportation
and logistics. It shows 21 abstract and 48 primitive tasks as
well as 51 methods. In addition to that, we also employed
the so-called SmartPhone domain, a new hierarchical plan-
ning domain that is concerned with the operation of a smart
phone by a human user, e.g., sending messages and creat-
ing contacts or appointments. SmartPhone is a rather large
domain with a deep decomposition hierarchy, containing 50
abstract, 87 primitive tasks, and 94 methods.

1767

Table 1: These results show the impact of the deployed modification ordering functions on the planning process. While
SHOP and UMCP denote strategy function combinations that simulate the respective search procedures, all other strategy
implementations use fmf as the plan ordering function. The columns labeled with red show the time in seconds needed to
solve the problem if our domain reduction technique (Elkawkagy, Schattenberg, and Biundo 2010) is used, whereas columns
labeled with org show the time needed to solve the original (unreduced) problem, respectively. All times include time for
pre-processing. All values are the arithmetic means over three runs. Dashes indicate that no solution was found within a limit
of 150 minutes. The best result for a given problem is emphasized bold, the second best bold and italic.

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(a) UM-Translog: the problems differ in number and kind of locations and/or number of parcels to transport.

#1 #2 #3 #4 #5 #6 #7
org red org red org red org red org red org red org red

1878 225 198 173 3020 209 598 470 187 118 5047 1278 267 322
473 196 255 117 498 224 549 527 149 121 – – 171 137
243 180 221 135 447 184 512 434 121 111 – 1172 190 122
1772 212 593 112 370 205 1592 420 657 109 – 1162 1002 140
3311 255 754 123 1670 248 1659 464 716 162 – 1128 925 151
846 226 839 148 991 238 1712 487 583 340 4921 1318 1755 122
952 244 278 114 994 229 529 474 187 122 4893 1263 215 127
2056 1048 984 262 2199 1806 1889 976 696 295 – – 876 235
2414 1958 350 257 – 2030 4695 2077 589 352 – 2560 578 352
1319 775 859 460 987 1090 1904 1304 692 224 – – 391 258
1735 353 283 241 1911 274 – – 5874 4012 – 4005 911 190

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(b) WoodWorking domain: the problems define variations
of parts to be processed.

#1 #2 #3 #4 #5
org red org red org red org red org red

2067 350 – – – – – – – –
– – – – – 418 – – – –

96 55 2396 1815 171 159 732 184 564 197
82 50 669 245 614 98 1561 1395 2109 1245

881 433 – 1259 – 362 – – – –
1359 403 – – – 367 1935 1514 – 893
228 133 3207 2936 259 125 618 356 892 218
415 298 – 1275 – 2457 – 2256 – 512
113 85 968 828 355 110 328 357 573 201

– – – – – – – – – –
– – – – – – – – – 3578

(c) SmartPhone domain: assisting the user in
managing different daily-life tasks.

#1 #2 #3
org red org red org red

63 40 – 159 8455 6827
65 33 490 212 – –
50 30 134 53 – 465
65 50 392 173 – –
60 50 181 53 – 680
98 76 1632 327 – 697
80 30 256 115 – –
107 52 235 148 – –
45 43 – 203 1747 1041
52 46 638 166 – 3421
95 73 – – – –

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(d) Satellite domain: a column labeled with “x — y — z” stands for a problem instance with
x observations, y satellites, and z different modes.

1 — 1 — 1 1 — 2 — 1 2 — 1 — 1 2 — 1 — 2 2 — 2 — 1 2 — 2 — 2
org red org red org red org red org red org red

95 93 154 77 1551 1338 – 4069 – 701 – –
76 64 142 62 – 4764 – – – 1338 – 1114
89 80 209 208 767 652 458 400 802 785 3307 362
86 85 54 43 1024 969 2617 2569 960 813 – 1228

132 86 151 140 – 5804 2816 251 – – – 965
102 80 191 99 – – 2636 2553 – – – 161
91 91 51 41 2035 1336 4150 1894 1215 1097 2517 1270
74 60 62 53 2608 2856 – – 1756 1579 4484 175
69 67 85 78 2136 1131 – 1131 6850 6841 – –

107 49 270 150 – – – – – – – –
66 67 113 111 270 264 – – – 1780 – –

1768

Evaluation of Experimental Results

Tab. 1 shows the time required to solve the problems in
our benchmark set for solving the original planning prob-
lem specification and the problem posed in a reduced do-
main model (Elkawkagy, Schattenberg, and Biundo 2010),
respectively. By doing so, we evaluate the search guidance
power of our landmark-aware strategies in relation to the do-
main reduction preprocessing technique.

In the UM-Translog domain (cf. Tab. 1a), at least one of
our landmark-aware strategies belongs to the two best per-
forming search strategies in all problem instances, at which
lm1 is clearly dominating the other landmark-based strate-
gies; in fact, in 6 of 14 cases it has the best performance, and
in 11 of 14 cases it is one of the two best strategies. This is
quite surprising, because the landmark table does not reveal
any information about causal dependencies on the primitive
task level and the strategies hence cannot provide a focused
guidance. A well-informed selection of the decomposition
refinements obviously compensates for poor choices on the
causality issues.

Our strategies show a similar behavior in the WoodWork-
ing domain (cf. Tab. 1b): In all problems but one either lm1

or lm∗1 is the best of the evaluated strategies. The similarity
of the results to the ones in the UM-Translog domain is not
surprising to us, as the depths of their decomposition hierar-
chies are similar.

The SmartPhone domain (cf. Tab. 1c) is the domain with
the deepest decomposition hierarchy. It therefore carries the
most information that is exploitable for landmarks, which
results in well-informed landmark-aware strategies. Not
surprisingly, in all but one problem instances one of our
landmark-aware strategies performed best or second-best; in
half of the instances, they performed best and second-best.
The best result achieved lm1, which was the best strategy in
four of five instances and the second-best in another one.

On the Satellite domain (cf. Tab. 1d) our landmark-aware
strategies do not clearly dominate any other strategy. Ob-
viously, there is hardly any landmark information available
due to the very shallow decomposition hierarchy in this do-
main. However, no other strategy in this domain dominated
any landmark-aware strategy; thus, all evaluated strategies
can be regarded as equally good.

An interesting facet of almost all problem instances
(even among different domains) is that while the strategies
lm∗1/lm∗2 are the better informed heuristics they repeatedly
perform worse than lm1/lm2. The same anomaly occurs
when comparing lm2/lm∗2 with the more abstract but also
more successful lm1/lm∗1. We suppose these phenomena re-
sult from two sources: First, the random choice of ground
candidates for the lifted task instances is relatively unreli-
able. This effect gets amplified by traversing along the land-
mark closures and into the primitive task level. Second, the
most important choice points are on the early decomposition
levels, i.e., once a method has been chosen for implement-
ing an abstract task, this refinement puts more constraints on
the remaining decisions than the strategy can infer from the
feasibility analysis underlying the landmark table.

6 Conclusion
We introduced four novel search strategies for hierarchical
planning which base their heuristic guidance on landmark
information. We ran experiments on several benchmark
domains and compared their performance with the perfor-
mance of standard search heuristics from the literature. The
results show that our landmark-aware strategies outperform
the established ones on almost all problems with a deep de-
composition hierarchy.

Acknowledgements
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proc. of ECP 2001, 157–
168.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. of ECAI 2010, volume
215, 329–334. IOS Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proc. of ECAI 2010,
volume 215, 229–234. IOS Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of AIPS 1994, 249–254. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. of ICAPS 2009, 162–169. AAAI Press.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic
hierarchical planning: Optimal and online algorithms. In
Proc. of ICAPS 2008, 222–231. AAAI Press.
McCluskey, T. L. 2000. Object transition sequences: A
new form of abstraction for HTN planners. In Proc. of AIPS
2000, 216–225. AAAI Press.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proc. of ECP 2001, 37–48.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On
the construction and evaluation of flexible plan-refinement
strategies. In Proc. of KI 2007, 367–381. Springer.
Tsuneto, R.; Nau, D. S.; and Hendler, J. A. 1997. Plan-
refinement strategies and search-space size. In Proc. of ECP
1997, volume 1348, 414–426. Springer.
Zhu, L., and Givan, R. 2004. Heuristic planning via
roadmap deduction. In IPC-4 Booklet, 64–66.

1769

