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Abstract

Optimal solutions to Stochastic Shortest Path Problems
(SSPs) usually require that there exists at least one pol-
icy that reaches the goal with probability 1 from the
initial state. This condition is very strong and prevents
from solving many interesting problems, for instance
where all possible policies reach some dead-end states
with a positive probability. We introduce a more general
and richer dual optimization criterion, which minimizes
the average (undiscounted) cost of only paths leading to
the goal among all policies that maximize the probabil-
ity to reach the goal. We present policy update equations
in the form of dynamic programming for this new dual
criterion, which are different from the standard Bellman
equations. We demonstrate that our equations converge
in infinite horizon without any condition on the struc-
ture of the problem or on its policies, which actually
extends the class of SSPs that can be solved. We ex-
perimentally show that our dual criterion provides well-
founded solutions to SSPs that can not be solved by the
standard criterion, and that using a discount factor with
the latter certainly provides solution policies but which
are not optimal considering our well-founded criterion.

Introduction
Research on probabilistic planning has essentially focused
on either maximizing the probability to reach the goal from
an initial state (Kolobov et al. 2011; Teichteil-Königsbuch,
Kuter, and Infantes 2010; Puterman 1994) or minimizing the
average accumulated costs if there exists a policy that reach
the goal with probability 1, named proper policy (Bert-
sekas and Tsitsiklis 1996; Bonet and Geffner 2005; 2003;
Kolobov, Mausam, and Weld 2010; Kolobov et al. 2011;
Yoon et al. 2010). Yet, to the best of our knowledge, no ap-
proaches optimize both the probability to reach the goal, and
minimize the average accumulated costs at the same time
in a proper theoretical framework. Moreover, if the maxi-
mum probability to reach the goal is strictly less than 1 for a
given problem, i.e. if there does not exist proper policies, it
is possible to minimize the average discounted accumulated
costs (Teichteil-Königsbuch, Vidal, and Infantes 2011), but
a drawback of this approach is that costs of paths that do
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not reach the goal are uselessly (and regrettably) taken into
account when optimizing average accumulated costs.

In this paper, we first propose a new infinite-horizon dual
optimization criterion, which selects policies that minimize
the average (undiscounted) accumulated costs of only paths
that reach the goal among all policies that maximize the
probability to reach the goal. This dual criterion is often
considered as an important evaluation metrics (Younes et
al. 2005), but, to the best of our knowledge, no theoretical
nor practical means exist to optimize these metrics hand-in-
hand. We provide an illustrative example with both goal and
dead-end states, which highlight the benefits of our dual cri-
terion with regards to previous approaches. Second, we pro-
pose update equations for evaluating this dual criterion for
any stationary policy, and prove that these equations always
converge to finite-values as the reasoning horizon tends to
+∞, without any assumption on the structure of the problem
considered or its policies (contrary to previous approaches).

However, in practice, constructing optimal stationary
policies for this dual criterion appears to be especially diffi-
cult in the general case, i.e. with positive or negative costs.
Thus, we provide optimality equations for our dual crite-
rion in the case where all costs are positive. These equations
are different from the standard Bellman equations, but: (i)
their time complexity is also polynomial in the number of
states and actions of the problem, and (ii) they provide the
same optimal policies as SSPs for problems where SSP as-
sumptions hold. Finally, we experimentally demonstrate on
the basis of various benchmarks, that existing approaches,
which optimize either the probability to reach the goal or
the average accumulated costs over all reachable paths (not
only the ones that reach goal), do not need to provide opti-
mal policies in the sense of our dual criterion.

Goal-oriented Markov Decision Processes. We consider
probabilistic planning problems defined as goal-oriented
Markov Decision Processes (MDPs), which are tuples
〈S,A, T, c,G〉 such that (Bertsekas and Tsitsiklis 1996): S
is the finite set of states ;G is the finite set of goal states ;A is
the finite set of actions ; T : S×A×S → [0; 1] is a transition
function such that, for any (s, a, s′) ∈ S × A × S and time
step t ∈ N, T (s, a, s′) = Pr(st+1 = s′ | st = s, at = a) ;
c : S × A × S → R is the cost function such that, for any
(s, a, s′) ∈ S × A× S, c(s, a, s′) is the cost paid when go-
ing from state s to state s′ and executing action a. We do not
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assume positive costs in the general case. We assume that
any goal state g ∈ G is absorbing (T (g, a, g) = 1, ∀a ∈ A),
and pays no cost (c(g, a, g) = 0, ∀a ∈ A). We note app :
S → 2A the function that gives the set of actions applica-
ble in a given state. A solution of a goal-oriented MDP is a
policy π : S → A that optimizes a given criterion, usually
the probability to reach the goal from any initial state, or the
average accumulated costs paid from any initial state.
Stochastic Shortest Path Problems. Efficient methods
for solving goal-oriented MDPs are available if two assump-
tions are met (Bertsekas and Tsitsiklis 1996): (i) there exists
at least one policy π that reaches the goal with probability 1,
named proper policy, and (ii) all improper policies accumu-
late infinite expected cost. Assumption (ii) means that all cy-
cles in the transition graph, which do not lead to goal states,
have positive costs. Problems that meet these assumptions
are called Stochastic Shortest Path problems (SSPs). Meth-
ods for solving SSPs compute the fixed point C∗ of the fol-
lowing Bellman equation, which is the optimal achievable
accumulated cost averaged over all paths starting in any ini-
tial state s, named total cost criterion or cost-to-go function:

C∗(s) = min
a∈app(s)

∑
s′∈S

T (s, a, s′) (c(s, a, s′) + C∗(s′)) (1)

If the assumptions of SSPs do not hold, for instance in
the presence of dead-end states1 reachable with a positive
probability by executing all possible policies, the previ-
ous equation may have no solution. Yet, it can be slightly
modified by multiplying C∗(s′) by a fixed discount factor
0 < γ < 1, giving rise to the discounted cost criterion C∗γ ,
which is proved to always have a solution (Puterman 1994).
Some works (e.g. (Teichteil-Königsbuch, Vidal, and Infantes
2011)) proposed efficient methods to optimize goal MDPs in
presence of dead-ends, using the discounted cost criterion,
but we will show in the next that such approaches may be
not appropriate in some cases with complex cost structures.

Stochastic Safest and Shortest Path Problems
The traditional criterion used in SSPs is not well-founded
when there is no proper policy. Indeed, in this case, it may
diverge because it may sum an infinite number of costs over
the paths that do not reach the goal. If discounted, it con-
verges but: 1) it may produce policies that do not maximize
the probability to reach the goal (because costs of paths that
do not reach the goal may attract the policy), and 2) it is even
not optimal considering the costs averaged only over the
paths that reach the goal. We think that the only proper way
to optimize the probability to reach the goal on one hand,
and the accumulated costs averaged over only the paths that
reach the goal on the other hand, is to separate these two
concurrent criteria in two different, but parallel, evaluation
and optimization schemes.
Goal-probability and goal-cost functions. For a given
state s ∈ S, policy π ∈ AS , and n ∈ N, we note PG,πn (s) the
probability of reaching the goal G in at most n time steps by

1A dead-end state is a state from which no path can reach the
goal with a positive probability, whatever the policy executed.

executing π from s. This function is named goal-probability
function in at most n time steps (steps-to-go). In the finite-
horizon case, π is a series of policies (π0, · · · , πH−1), H ∈
N, where πk is the policy executed at step-to-go k. We also
note CG,πn (s) the (undiscounted) costs accumulated by ex-
ecuting π from s, averaged only over the paths that reach
the goal G with a positive probability. We name it goal-cost
function in at most n time steps (steps-to-go). Importantly,
this latter function is different from the value function tradi-
tionally used in MDPs, since the latter is averaged over all
paths starting in s (not only the ones reaching the goal).
Infinite horizon dual optimization criterion. Interest-
ingly, we will prove in this paper that PG,πn and CG,πn both
converge to finite values as horizon H (or time steps n) tend
to +∞, for any goal-oriented MDPs, stationary policy π,
and without any condition on the MDP structure. Note that
this powerful property is specific to our goal-probability and
goal-cost functions; it does not hold for standard MDP cri-
teria, for which convergence is usually conditioned on char-
acteristics of the underlying controlled Markov chain, or on
some discount factor, as discussed before.

Based on goal-probability and goal-cost metrics, we de-
fine Stochastic Safest and Shortest Path problems (S3Ps for
short), which are goal-oriented MDPs where, for all s ∈ S,
we aim at finding a policy π∗(s) that minimizes the accumu-
lated costs averaged over the paths that reach the goal from
s, among all policies that maximize the probability to reach
the goal:

π∗(s) ∈ argmin
π:∀s′∈S,π(s′)∈argmaxπ′∈AS P

G,π′
∞ (s′)

CG,π∞ (s) (2)

S3Ps include the former traditional Stochastic Shortest
Path problems (S2Ps for short): S2P ⊂ S3P. It is worth
noting that S3Ps also include the single-criterion recently
proposed by (Kolobov et al. 2011), where the authors pro-
posed the largest known class of goal-oriented MDP prob-
lems, named GSSPs, to optimize either average accumu-
lated costs among only proper policies but with general re-
wards, or the goal-probability function. But GSSPs do not
allow for dual optimization of these two criteria, contrary
to us (remind that we also deal with general costs — or re-
wards). Then, the class of goal MDPs for which optimal so-
lutions exist (i.e. are well-founded) is now extended further:
S2P ⊂ GSSP ⊂ S3P.
Illustrative example. Obviously, eq. 2 shows that S3P op-
timal policies are the same as SSP optimal policies if there
exists a policy reaching the goal with probability 1 (assump-
tion (i) of SSPs) and if such SSP optimal policies are well-
founded (equivalent to assumption (ii)). The later assump-
tion may be violated for two different reasons: either the
SSP cost-to-go criterion has an infinite value in some ini-
tial states, or it has finite values but these values can not be
obtained from Bellman equation (eq. 1).

Figure 1 illustrates a goal-oriented MDP for which neither
assumptions (i) nor (ii) of SSPs are met, but for which the
cost-to-go function used in SSPs is finite (i.e. it can not be
obtained using eq. 1). There are 4 possible policies, depend-
ing on whether action a1 or a2 or a3 or aI are chosen in the
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Figure 1: S3P without proper policy. I is the initial state, G
the goal, d a dead-end state, and s an intermediate state.
initial state I . Let name them respectively π1, π2, π3 and π4.
Starting in I , policies π1 and π2 lead to G (resp. d) with the
same probability 0.9 + 0.1× 0.5 = 0.95 (resp. 0.05). Policy
π3 leads to G (resp. d) with probability 0.1 × 0.5 = 0.05
(resp. 0.95). Action aI is absorbing and does not lead at all
to G. Thus, the maximum goal-probability policies are π1

and π2. However, minimizing the standard cost-to-go crite-
rion will choose policy π3. Indeed, using eq. 1, the cost-to-
go value of s is 1, so that the cost-to-go value of π1 in I is
Cπ1(I) = 0.9×(1+0)+0.1×(1+1) = 1.1, the one of π2 is
Cπ2(I) = 0.9×(2+0)+0.1×(2+1) = 2.1, and the one of
π3 isCπ3(I) = 0.1×(−1+1)+0.9×(−1+0) = −0.9. Pol-
icy π4 has an infinite value and will be discarded. It means
that the standard cost-to-go criterion used in SSP, in this
case, does not select the maximum goal-probability policy.

Yet, if we first optimize the goal-probability function as
defined before, we will select policies π1 and π2. By ex-
ecuting policy π1 (resp. π2) from I , there are only two
paths to the goal: one with probability 0.9 and total cost 1
(resp. 2), the other with probability 0.05 and total cost 2
(resp. 3). The accumulated probability of these paths is 0.95,
and can be viewed as a normalization constant of the accu-
mulated cost averaged over these 2 paths. Thus, the goal-
cost function of π1 as defined in this paper, is: 1/0.95 ×
(0.9 × 1 + 0.05 × 2) = 1/0.95 ' 1.05. The one of π2 is:
1/0.95×(0.9×2+0.05×3) = 1.95/0.95 ' 1.85. Thus, π1

is the optimal S3P policy, whose goal-cost function is equal
to 1.05. The standard cost-to-go function used in SSPs has a
higher value for π1, because it also averages over the path to
the dead-end state d: 0.9× 1 + 0.05× 2 + 0.05× 2 = 1.1.

Finally, imagine that immediate cost of action ad is 1 (in-
stead of 0). In this case, the cost-to-go value used in SSPs
diverges to +∞ from all states, i.e. it is not well-founded.
Yet, the reader can check that previous calculations for S3P
policies are still valid and yield the same goal-probability
and goal-cost functions, and optimal policy π1. One may
ask whether discounting the cost-to-go function, so that it
has now a finite value, will provide the same optimal pol-
icy as for S3Ps. As proved later in the experiment section of
this paper, the answer is negative for problems with complex
cost structures.

Evaluating finite-horizon policies for S3Ps
We present in this section a theorem for evaluating finite-
horizon policies, which is fundamental to study mathemat-

ical properties of the goal-probability and goal-cost func-
tions. We could prove that PG,πn can be computed via a
translation of the original MDP into an MDP where all re-
wards are equal to 0 except the ones of direct transitions to
the goal that are equal to 1 (Kolobov et al. 2011). However,
the goal-cost update equation presented below is not equiv-
alent to standard Bellman evaluation equations for MDPs,
because costs are averaged only over paths that reach the
goal, but not over all paths (as in standard MDPs).
Theorem 1. (Policy evaluation equations for finite-
horizon S3Ps). Let H ∈ N be the finite horizon of the prob-
lem. For any step-to-go 1 6 n < H , any history-dependent
policy π = (π0, · · · , πH−1) and any state s ∈ S:

PG,πn (s) =
∑
s′∈S T (s, πH−n(s), s′)PG,πn−1(s′),with:

PG,π0 (s) = 0,∀s ∈ S \G, and PG,π0 (g) = 1, ∀g ∈ G (3)

If PG,πn (s) > 0, CG,πn (s) is well-defined, and satisfies:

CG,πn (s) =
1

PG,πn (s)

∑
s′∈S T (s, πH−n(s), s′)PG,πn−1(s′)×[

c(s, πH−n(s), s′) + CG,πn−1(s′)
]
,with:

CG,πo (s) = 0, ∀s ∈ S (4)

Proof. Equation 3 is easy to obtained with a reasoning sim-
ilar, but much simpler, to the one used to demonstrate equa-
tion 4. Thus we will only present the demonstration of the
latter. Let ΦG,πn (s) be the set of paths that reach the goal G
in at most n time steps by executing policy π from a state
s. For any φ ∈ ΦG,πn (s), we note |φ| the length of φ until
it reaches the goal, φ(i) the ith state visited in the path for
0 6 i 6 |φ|, and φi the sub-path of φ starting in φ(i).

Calculation of CG,πn is averaged using a conditional prob-
ability distribution, conditioned on the only trajectories that
reach the goal. Thus, it requires to calculate first the update
equation of the following conditional probability (n > 1),
where we note ωG,πs,n the event “execution of π from state
s will yield a path that will reach the goal in at most n
steps-to-go”, only meaningful if PG,πn (s) > 0 (we have
Pr(ωG,πs,n ) = PG,πn (s), and probability conditionings on π
are implicit):

pG,πφ,n = Pr(“executing φ” | ωG,πφ(0),n)

=
Pr(ωG,πφ(0),n | “executing φ”)Pr(“executing φ”)

Pr(ωG,πφ(0),n)

=
Pr(ωG,πφ(1),n−1 | “ex. φ1”)Pr(“φ(0) to φ(1)”)Pr(“ex. φ1”)

PG,πn (φ(0))

= T (φ(0), πH−n(φ(0)), φ(1))
PG,πn−1(φ(1))

PG,πn (φ(0))
×

Pr(ωG,πφ(1),n−1 | φ1)Pr(“ex. φ1”)

PG,πn−1(φ(1))︸ ︷︷ ︸
Pr
(

“ex. φ1”
∣∣∣ωG,π
φ(1),n−1

)
=p

G,π
φ1,n−1

Now, noting c(φ) the accumulated cost over a path φ, we
have for any state s such that PG,πn (s) > 0:
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CG,πn (s) =
∑
φ∈Φ

G,π
n (s)

Pr(“executing φ” | ωG,πs,n ) c(φ)

=
∑
φ∈Φ

G,π
n (s)

pG,πφ,n × (c(s, πH−n(s), φ(1)) + c(φ1))

=
∑
φ∈Φ

G,π
n (s)

T (s, πH−n(s), φ(1))
P
G,π
n−1(φ(1))

P
G,π
n (s)

×

pG,πφ1,n−1 × (c(s, πH−n(s), φ(1)) + c(φ1))

=
1

PG,πn (s)

∑
s′∈S T (s, πH−n(s), s

′)PG,πn−1(s
′)×[

c(s, πH−n(s), s
′) +

∑
φ1∈Φ

G,π
n−1(s′) p

G,π
φ1,n−1 c(φ1)︸ ︷︷ ︸

C
G,π
n−1(s′)

]

The last calculation step is due to the fact that∑
φ1∈ΦG,πn−1(s′) p

G,π
φ1,n−1 = 1.

Division by PG,πn (s) in eq. 4 may be surprising, but it is a
normalization constant of the mean defining the goal-cost
function: indeed, the sum of T (s, πH−n(s), s′)PG,πn−1(s′)

over successor states s′ in eq. 4 is actually equal to PG,πn (s).

Solving infinite horizon S3Ps
This work was primarily motivated by infinite horizon goal-
oriented MDP problems, for which SSP assumptions do not
hold. This is actually the key to understand the intuition be-
hind our dual criterion and why it converges to an infinite-
horizon fixed point. The goal-probability function converges
because: 1) states for which no paths lead to the goal have a
constant 0 value after each update; 2) other states will even-
tually end up in G (with a monotonically increasing proba-
bility) or in one of the former states, ensuring convergence
of the goal-probability function. The goal-cost function con-
verges because: 1) it is not defined for states where no paths
lead to the goal (as intended); 2) costs of other states are
accumulated only along (and averaged only among) paths
that reach the goal, whose transient probabilities converge
to zero when the length of paths tends to +∞, and paying
no cost after reaching the goal. In comparison, the criterion
used in SSPs accumulates costs also along paths that do not
reach the goal (if any), whose costs may diverge to ±∞ in
the general case, suppressing convergence guarantees.

The mathematical foundations of this intuition are actu-
ally quite complex, and rely on the following lemma, which
proves that the transition operator restricted to a stable sub-
set of states in S \ G that reach the goal with a positive
probability for a given stationary policy, is a contraction.
This lemma can be seen as a non-trival generalization of the
contraction property of proper policies’ transition operator
used in SSPs (Bertsekas and Tsitsiklis 1996), which had to
be a contractive mapping over the entire state space.

Lemma 1. Let M be a general goal-oriented MDP, π a
stationary policy, Tπ the transition matrix for policy π, and
for all n ∈ N, X πn = {s ∈ S \G : PG,πn (s) > 0}. Then: (i)
for all s ∈ S, PG,πn (s) converges to a finite value as n tends
to +∞; (ii) there exists X π ⊂ S such that X πn ⊂ X π for all
n ∈ N and Tπ is a contraction over X π .

Proof. (i) A simple mathematical induction using eq. 3
shows that, for any s ∈ S, PG,πn (s) is increasing with n.
As all PG,πn (s) values are bounded by 1, they converge to
some PG,π∞ (s) values for all s ∈ S. (ii) This induction also
shows that: ∀n ∈ N,X πn ⊂ X πn+1 ⊂ S. As S is finite,
there exists X π ∈ S and n0 ∈ N such that for all n ∈ N,
X πn ⊂ X π and for all n > n0, X πn = X π . Thus, for all
s ∈ X π and n > n0, PG,πn (s) > 0. Moreover, as mentioned
before, PG,πn (s) increases with n, so that: for all s ∈ X π ,
PG,π∞ (s) = limn→+∞ PG,πn (s) > 0. Therefore, the proba-
bility that any state in X π is absorbed by the goal state is
positive, meaning that X π is a subset of the transient states
of the Markov chain induced by policy π. Let Wπ be the
sub-matrix of Tπ that maps transient states to themselves
(transitions between transient states). It has been proved that
Wπ is a contraction, i.e. ρ(Wπ) < 1, where ρ(Wπ) is
the largest absolute eigenvalue of Wπ (see Proposition A.3
in (Puterman 1994)). Now, by reordering transient states in
such a way that states in X π appears first, we can write Wπ

into the form: Wπ =

(
Tπ|Xπ Aπ

0 Bπ

)
. Indeed, if the bottom

left sub-matrix were not zero, we could go from a state s̃
not in X π ∪ G to a state in X π with a positive probability,
from which we could then reach the goal state by definition
of X π: it means that there would exist n1 ∈ N such that
PG,πn1

(s̃) > 0, which contradicts the fact that PG,πn (s) = 0
for all state s 6∈ X π ∪ G and n ∈ N. Finally, thanks to the
previous form of Wπ , we have: ρ(Tπ|Xπ ) 6 ρ(Wπ) < 1, i.e.
Tπ is a contraction over X π .

Policy evaluation in infinite horizon for S3Ps. Thanks
to this helpful lemma, we can now demonstrate the con-
vergence of policy evaluation and policy optimization equa-
tions. Like in standard MDPs, we introduce an update opera-
tor to prove convergence. For a given n ∈ N∗ and stationary
policy π, we note Lπn the following operator, defined over
functions J : S → R:

(LπnJ)(s) =
∑
s′∈S

T (s, π(s), s′)[PG,πn−1(s
′)c(s, π(s), s′) + J(s′)]

where PG,πn−1 is recursively defined as in Theorem 1.

Theorem 2. LetM be a general goal-oriented MDP, and π
any stationary policy forM. Evaluation equations of Theo-
rem 1 converge to finite values PG,π∞ (s) andCG,π∞ (s) for any
s ∈ S (by convention,CG,πn (s) = 0 if PG,πn (s) = 0, n ∈ N).

Proof. As shown by Lemma 1, convergence of the goal-
probability series of functions is independent from the goal-
cost functions. Noting X πn = {s ∈ S \ G : PG,πn (s) > 0},
this lemma also proves that there exists X π ⊂ S such that
X πn ⊂ X π for all n ∈ N and Tπ is a contraction over X π .

We can notice from equation 4 that, for all n ∈ N,
CG,πn (s) = 0 for all s ∈ G. For states s ∈ S \ (G ∪ X π),
PG,πn (s) = 0 for all n ∈ N (because X πn ⊂ X π for all
n ∈ N), so that PG,πn (s) is not defined but constantly equal
to zero by convention. Therefore, operator Lπn, restricted to
operate over the subspace of functions Γ = {J : S →
R ; J(s) = 0, s ∈ S \ X π}, is equivalent to update equa-
tion 4, meaning that the latter converges only and only if Lπn
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converges over Γ. We will actually demonstrate that Lπn is a
contraction over Γ ; for all J1 and J2 in Γ, and s ∈ X π , we
have:

|(LπnJ1)(s)− (LπnJ2)(s)| 6 maxs∈Xπ |(LπnJ1)(s)− (LπnJ2)(s)|
= maxs∈Xπ

∣∣∑
s′∈Xπ T

π
|Xπ (s, s

′)(J1(s
′)− J2(s

′))
∣∣

= ‖Tπ|Xπ (J1 − J2)‖Xπ 6 ‖Tπ|Xπ‖ · ‖J1 − J2‖Xπ

Thus: ‖(LπnJ1) − (LπnJ2)‖Xπ 6 ‖Tπ|Xπ‖ · ‖J1 − J2‖Xπ
Moreover, by definition of Γ: ‖(LπnJ1)− (LπnJ2)‖

S\Xπ = 0.
As Tπ|Xπ is a contraction, Lπn is a contraction over Γ, for all
n ∈ N∗, and its contraction constant and Γ do not depend on
n. Therefore, by (generalized) Banach fixed point theorem,
any suite Jn of functions in Γ such that Jn+1 = LπnJn con-
verges to a unique fixed point J∞ = PG,π∞ CG,π∞ ∈ Γ.

Policy optimization in infinite horizon for S3Ps. We
have just proved that, for any stationary policy π ∈ AS , the
goal-probability and goal-cost functions are well-founded
(i.e. have finite values) in infinite horizon, and that they can
be iteratively computed from equations 3 and 4. Therefore,
as the number of states and actions is finite, and thus the
number of stationary policies is finite, we can immediately
establish the following proposition, which proves that any
S3P problem in infinite horizon has a solution with finite
goal-probability and goal-cost functions.

Proposition 1. Let M be a general goal-oriented MDP.
(I) There exists an optimal stationary policy π∗ that min-
imizes the infinite-horizon goal-cost function among all
policies that maximize the infinite-horizon goal-probability
function, ie π∗ is solution of eq. 2. (II) Goal-probability
PG,π

∗

∞ and goal-cost CG,π
∗

∞ functions have finite values.

This proposition is very general; in particular, it allows
practitioners to tackle annoying goal-oriented MDP prob-
lems where assumption (i) of SSP holds, but not (ii). Re-
call that assumption (ii) means that the MDP’s transition
graph does not contain cycles with non positive costs com-
posed of states not connected to the goal, which ensures that
the cost-to-go criterion used in SSPs is well-founded (no
such negative-cost cycles) and can be optimized using dy-
namic programming (no such zero-cost cycles). Both sub-
conditions are not assumed in S3Ps, because the goal-cost
function is considered only over transient states that reach
the goal with a positive probability (i.e. not over cycles
composed of states that do not reach the goal). In practice,
it means that S3Ps now allow practitioners to solve short-
est path problems with negative-cost loops, or also without
proper policies.

However, even if Proposition 1 guarantees the existence of
optimal stationary policies for every S3P problems, it does
not mean that such policies are easily computable in prac-
tice. In other terms, there does not necessarily exist practical
algorithmic means to optimize PG,π

∗

∞ and CG,π
∗

∞ in the gen-
eral case. The reason is quite tricky and identical to a similar
issue that occurs when optimizing the total cost criterion of
MDPs in the general case (see (Dawen 1986) and chapters 7
and 10 of (Puterman 1994) for details), or more specifically
when optimizing SSPs with zero-cost cycles composed of

states that do not reach the goal. In our context, the goal-
probability value of stationary policies obtained when con-
vergence is reached, may be surprisingly different from the
optimized limit probability. Consider for instance the exam-
ple depicted in Figure 1: once the optimal goal-probability
function is obtained (0.95), applying action aI from I brings
in one (additional) step the same optimal goal-probability as
actions a1 and a2 in two steps (1×0.95 = 0.95), but station-
ary policy π4 = (aI , aI , · · · ) has a zero goal-probability.
Thus, as optimizing the goal-probability function does not
bring stationary policies whose goal-probability values are
equal to the optimized goal-probability function, the goal-
cost function (which depends on the goal-probability func-
tion, see equation 4) does not need to converge.

Fortunately, we have been able to provide different update
equations presented below, which are proved to converge
to optimal stationary policies, provided all transitions from
non-goal states have strictly positive costs. The intuition be-
hind these equations is as follows: once the optimal goal-
probability function has converged, the iterative optimiza-
tion of goal-cost functions indirectly selects stationary poli-
cies whose goal-probability function equals the optimal one,
by rejecting other policies that necessarily have higher goal-
cost functions. Indeed, by theoretically analysing the follow-
ing optimization schema, we can see that all policies whose
goal-probability is less than the optimal one would have an
infinite goal-cost, so that they are automatically discarded by
minimizing the goal-cost function. The actual mathematical
proof of the following theorem is quite complex and obvi-
ously too long to be presented in this paper.
Theorem 3. Let M be a goal-oriented MDP such that all
transitions from non-goal states have strictly positive costs.
Let P ∗n : S → [0; 1] be the series of functions defined as:

P ∗n(s) = maxa∈app(s)
∑
s′∈S T (s, a, s′)P ∗n−1(s′),with:

P ∗0 (s) = 0,∀s ∈ S \G;P ∗0 (g) = 1,∀g ∈ G (5)

Functions P ∗n converge to a finite-values function P ∗∞.
Let C∗n : S → R+ be the series of functions defined as:
C∗n(s) = 0 if P ∗∞(s) = 0, otherwise if P ∗∞(s) > 0:

C∗n(s) = min
a∈app(s):

∑
s′∈S T (s,a,s′)P∗∞(s′)=P∗∞(s)

1

P ∗∞(s)
×∑

s′∈S T (s, a, s′)P ∗∞(s′)
[
c(s, a, s′) + C∗n−1(s′)

]
,with:

C∗o (s) = 0,∀s ∈ S (6)

Functions C∗n converge to a finite-values function C∗∞ and
any stationary policy π∗ obtained from the previous equa-
tion when convergence is reached, is optimal for S3Ps.

The proof of this theorem also establishes that the con-
vergence rate of the optimal goal-probability and goal-cost
functions depends on a contraction constant, which is equal
to the spectral radius of Tπ|Xπ∗ (see Lemma 1). For a given
convergence precision ε > 0, eq. 5 and 6 converge in finite
time, and the worst-case time complexity of this iterative
schema is polynomial in the number of states and actions,
like the Bellman equations for standard SSPs. We imple-
mented the optimization schema of Theorem 3 in an algo-
rithm named GPCI (Goal-Probability and -Cost Iteration).
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Experimental evaluation
The aim of this section is to provide experimental evidence
that policies, which minimize the standard accumulated cost
criterion of MDPs, are not necessarily optimal S3P policies
for problems where there does not exist policies that reach
the goal with probability 1 (proper policies). To check this
assumption, we evaluate the goal-probability and goal-cost
function of policies optimized for the standard accumulated
cost criterion, using evaluation equations of Theorem 1 un-
til convergence (proved in Theorem 2). We then compare
the goal-probability and goal-cost functions at a given ini-
tial state with the ones optimized by our algorithm GPCI
(which implements Theorem 3). We tested two optimal algo-
rithms for the standard accumulated cost criterion of MDPs:
VI (Puterman 1994), which has the same time complex-
ity as GPCI, and LRTDP (Bonet and Geffner 2003), which
is a popular heuristic search algorithm for MDPs. We also
compare with a non-optimal but efficient algorithm: RFF
(Teichteil-Königsbuch, Kuter, and Infantes 2010), which at-
tempts to maximize goal-probability and minimize goal-cost
functions without theoretical guarantees.

Interestingly, we will see for some probabilistically hard
problems that GPCI, which does not rely on heuristic
search, is more efficient than all of these algorithms (addi-
tionally to being S3P optimal). Note that past International
Planning Competitions (IPCs) partly ranked planners based
on their goal-probability and goal-cost functions (Younes et
al. 2005), for which we are the first — to the best of our
knowledge — to provide practical and theoretically opti-
mal computation means. Results are summarized in Figure
2 for various domains detailed below. For each domain, we
present results obtained for a particular problem, because (i)
we got exactly the same relative results for all problems of
each domain that could be solved by all algorithms, and (ii)
the purpose of these tests is obviously not to compare how
many problems each algorithm can solve. The largest tested
benchmark has 247 states. For VI and GPCI, we use the
knowledge of the initial state to beforehand prune states that
are not reachable from the initial state, whatever the policy.

blocksworld and rectangle-tireworld domains. These
domains come from the IPC. For both domains, there ac-
tually exists proper policies, so that policies optimized for
SSPs have finite cost-to-go functions and are thus well-
founded. In other terms, we can safely run VI and LRTDP
without discount factor, using the total cost criterion of SSPs
(Bertsekas and Tsitsiklis 1996). As expected, we can see that
GPCI, VI and LRTDP, all find a policy that reaches the goal
with probability 1, and with the same goal-cost function (see
Figure 2). RFF is efficient in terms of computation time, but
its goal-cost function is far from optimal.

triangle-tireworld and exploding-blocksworld domains.
These domains also come from the IPC, but unlike the pre-
vious ones, there does not exist proper policies (for triangle-
tireworld, the maximum goal-probability is very slightly
less than 1). Thus, the total cost criterion used in SSPs is
not well-founded, so that VI and LRTDP never converge
(checked in our experiments but not presented in the paper).
The only other infinite-horizon criterion that can be used

with these algorithms so that they converge without chang-
ing the cost structure of the problems, is the discounted cost
criterion, which discounts all costs by a factor 0 < γ < 1
(Puterman 1994; Teichteil-Königsbuch, Vidal, and Infantes
2011). In our experiments, for triangle-tireworld, the maxi-
mum goal-probability and minimum goal-cost functions we
could get using VI and LRTDP with the discounted cost-
to-go criterion, were obtained with any γ > 0.95. For
exploding-blocksworld, we had to set γ > 0.3. As shown
in Figure 2, VI and LRTDP are able to find the same S3P
optimal policies as GPCI: indeed, in these domains, there
exists a constant α > 0 such that all states that do not reach
the goal have the same α/(1− γ) accumulated cost, so that
there exists a minimum value of γ ensuring that minimiz-
ing the cost function (over all paths, even the ones that do
not reach the goal) will favor policies that also maximize the
goal-probability function. The goal-cost function will then
be optimal because all states that do not reach the goal (i.e.
they belong to paths that do not lead to the goal) have the
same discounted accumulated cost, which is thus neutral for
goal-cost optimization. Yet, note that the minimum discount
factor that achieves S3P optimality can not be known in ad-
vance. Concerning RFF, it is not S3P optimal since it does
not even find optimal goal-probabilities.
grid domains. As shown in the previous experiments, the
cost structure of IPC domains is too simple to highlight sit-
uations where (i) no proper policies exist so that the total
cost criterion used in SSPs is unusable, and (ii) the dis-
counted cost-to-go criterion can not provide S3P optimal
policies for any value of γ. For this purpose, we propose
the grid domain presented in Figure 3, for which we give
two variants grid-I and grid-II. An agent has to move
from an initial state to a goal state using 5 available actions
that cost 1 each: up, down, right, left, stay. In the
grid-I variant, all doors can close with probability 0.25
and then never open; when doors D1 and D2 (resp. D3 and
D4) close, an additional cost of 1 (resp. 3) is added to all
future unit moves, so that dead-end states pay different costs
depending on where the agent comes from. Clearly, there
is a hard tradeoff between maximizing the goal-probability
(which requires to choose the less risky and more direct
way through doors D3 and D4), and minimizing the accu-
mulated costs (which would require to go through doors
D1 and D2 in prevision of doors closing). This is a pit-
fall for existing approaches that consider only the standard
discounted cost-to-go criterion, which they minimize over
all paths (even the ones that do not reach the goal). In our
experiments, we had to use γ > 0.99 to get maximum
goal-probability and minimum goal-cost values, but Figure
2 shows that neither VI nor LRTDP are able to find opti-
mal goal-probability functions found by GPCI. Even RFF
has a better goal-probability function than the former two.
As goal-probability functions are worse, goal-cost functions
are not comparable because they are averaged over differ-
ent paths that have a lower probability to reach the goal.
In the grid-II variant, doors do not close but make the
goal disappear (no more reachable) with probability 0.25
when each door is crossed. Additional costs are paid for all
future moves like in the first variant. In this variant, paths
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Figure 2: Comparison of goal probability (left plot), goal cost (centre plot), and computation time (right plot), of different algo-
rithms for various domains: blocksworld (BW), rectangle-tireworld (RTW), triangle-tireworld (TTW),
exploding-blocksworld (EBW), grid-I (G1), grid-II (G2).

through doors D2 and D1, or D3 and D4, have the same
goal-probability values. Figure 2 shows that VI and LRTDP
(and also RFF) find the optimal goal-probability function,
but they have a very high goal-cost function compared with
the optimal one found by GPCI. The reason is that VI and
LRTDP take into account all reachable paths during cost
minimization, even the ones that do not reach the goal: those
paths not reaching the goal have a lower cost if the agent
goes through doors D1 and D2 and the treasure disappears.
Yet, paths through doors D3 and D4 have the same goal-
probability but a lower cost as long as the treasure does not
disappear. Moreover, Figure 2 also shows that GPCI has the
lowest computation time for the grid domains, because it
does not lose time to optimize costs of paths that do not
reach the goal (which even LRTDP and RFF do).

Conclusion
To the best of our knowledge, we provide the first math-
ematical and algorithmic framework to solve goal-oriented
MDPs by optimizing both the probability to reach the goal,
which does not need to be equal to 1, and the accumulated
costs averaged only over paths that reach the goal. These
metrics are widely used to evaluate planners or policies per-
formances. We experimentally proved that the standard total
or discounted cost criteria used in MDPs do not necessarily
provide optimal performances for these metrics, contrary to
our approach, especially for problems that have a complex
cost structure.

The next step will consist in designing efficient heuristic
search algorithms for these metrics on the basis of the the-

Figure 3: Grid world domain

oretical material presented in this paper, as well as domain-
independent heuristics for the goal-probability and goal-cost
functions. We think that this approach is promising, since the
rather simple optimal algorithm proposed in this paper for
optimizing S3Ps, GPCI, already outperforms heuristic algo-
rithms for SSPs like LRTDP, in terms of computation time
on some domains with complex cost structure.
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