
Incremental Management of Oversubscribed
Vehicle Schedules in Dynamic Dial-A-Ride Problems

Zachary B. Rubinstein, Stephen F. Smith, and Laura Barbulescu
The Robotics Institute

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{zbr,sfs,laurabar}@cs.cmu.edu

Abstract

In this paper, we consider the problem of feasibly in-
tegrating new pick-up and delivery requests into exist-
ing vehicle itineraries in a dynamic, dial-a-ride problem
(DARP) setting. Generalizing from previous work in
oversubscribed task scheduling, we define a controlled
iterative repair search procedure for finding an alterna-
tive set of vehicle itineraries in which the overall so-
lution has been feasibly extended to include newly re-
ceived requests. We first evaluate the performance of
this technique on a set of DARP feasibility benchmark
problems from the literature. We then consider its use
on a real-world DARP problem, where it is necessary
to accommodate all requests and constraints must be
relaxed when a request cannot be feasibly integrated.
For this latter analysis, we introduce a constraint relax-
ation post processing step and consider the performance
impact of using our controlled iterative search over the
current greedy search approach.

Introduction
Many practical planning and scheduling problems are dy-
namic, where new requests arrive over time and must be con-
tinually integrated into currently executing plans and sched-
ules. In such environments, it is generally undesirable (and
usually computationally infeasible) to regenerate a new so-
lution to accommodate each new request, due to a combina-
tion of problem scale, the pace at which new requests arrive
and execution events unfold, and the need to maintain stabil-
ity in executing processes. This is the case in the dynamic
pick-up and delivery scheduling problem that motivates our
research. In this domain, advance reservations permit the
construction of day-ahead schedules, but both same-day re-
quests and other execution events (traffic congestion, trip
cancelations, vehicle breakdowns, etc.) require dispatchers
to constantly integrate and re-integrate requests into the cur-
rent schedule.

Iterative, repair-based search techniques offer one ap-
proach to incrementally revising and improving plans and
schedules as changes to requirements are introduced (e.g.,
(Zweben et al. 1994; Chien et al. 2000; Cesta, Oddi, and
Smith 2000). They have also been effectively applied to

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a closely related problem, that of maximizing the num-
ber of tasks that can be performed in oversubscribed prob-
lem settings (i.e., where resource demand exceeds capacity).
One particular iterative repair search procedure, TaskSwap
(Kramer and Smith 2003; 2004), is particularly relevant to
the problem of incrementally accommodating new requests
over time. TaskSwap, which operates similarly to ejection-
chain algorithms (Lim and Zhang 2007; Nagata and BrŁysy
2009), conducts a controlled search around the ”footprint”
of a currently unscheduled task (request), temporally retract-
ing conflicting tasks to allow placement of the new task, and
then attempting to feasibly reinsert all retracted tasks else-
where in the schedule. If all requested tasks make it back
in, then the schedule is feasibly extended. TaskSwap has
been successfully applied to large-scale mission scheduling
problems (Kramer, Barbulescu, and Smith 2007).

One assumption made by TaskSwap is that tasks are
atomic and self-contained. This implies that resources (or
resource capacity) can be allocated fully to a given task for
its duration and then freed up for use independently by other
tasks. Unfortunately, this assumption does not hold for pick-
up and delivery problems, where a given request decom-
poses into a pick-up, drop-off task sequence with interven-
ing travel, and depending on vehicle capacity constraints, it
is possible (and often advantageous) to interleave execution
of the pick-ups and drop-offs of several requests.

In this paper, we extend the original TaskSwap procedure
for use in problem domains with non-atomic requests whose
constituent tasks can be interleaved if resource capacity con-
straints allow. We focus specifically on dynamic Dial-a-
Ride (DARP) problems, and we evaluate our new procedure,
which we call Generalized Task Swap (GTS), in this context.
First we consider performance on a set of synthetic bench-
mark problems that have been previously studied in the liter-
ature, and show the ability of GTS to solve difficult feasibil-
ity problems. We then consider its use on a real-world para-
transit scheduling problem, where it is necessary to accom-
modate all requests and constraints must be relaxed when a
request cannot be feasibly integrated. For this latter analysis,
we introduce a constraint relaxation post-processing step to
GTS, and show that GTS is able to significantly reduce the
total delay necessary to accommodate all requests over the
current greedy search approach.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1809

Dial-a-Ride Problem (DARP)
Dial-a-Ride Problems have been extensively studied in the
literature; for an in-depth review of DARPs see (Cordeau
and Laporte 2007). The objective in a DARP is to design
vehicle itineraries to satisfy requests for travel between pick-
up and drop-off locations at specified times. A request con-
sists of pick-up and drop-off locations, time windows within
which the pick-up and the drop-off must be completed, and
the number and types of passengers, e.g., one ambulatory
and one wheelchair passenger. The time window for a drop-
off may be specified in absolute times or relative to when
the pick-up occurs. For example, a common way to specify
the latest time a drop-off can occur is to provide a maximum
time that a passenger can ride in a vehicle. DARPs require
models both for vehicle types that describe their capabilities,
including the number and types of passengers they can carry
and, possibly, their speeds, and for computing the travel du-
ration between two locations. As input, DARPs are given a
set of requests and a specific set of vehicles. A solution for
a DARP is a set of vehicle itineraries, i.e., timelines for each
vehicle consisting of a series of pick-up and drop-off tasks
corresponding to the given requests and the requisite travel
between those tasks. The resulting itineraries form the over-
all schedule.

DARPs may be oversubscribed, i.e., not all requests can
be serviced within their constraints, in which case the con-
straints may be relaxed in order to help accommodate the
extra requests. There often are optimizing objectives for
DARPs, such as minimizing cost by minimizing the num-
ber of vehicles used while allowing some level of constraint
relaxation, or maximizing service quality by determining
the minimal number of vehicles to satisfy the requests with-
out relaxing constraints. Formally, there are two classes of
DARPs, static and dynamic. In a static DARP, all the re-
quests and the available vehicle are known up front. In a dy-
namic DARP, the requests are serviced as they arrive and the
available vehicles can be increased. Most real-world DARPs
are hybrids, with a majority of the requests but not all being
known up front and there mostly being a static number of
available vehicles with extra ones available at a cost. In this
paper, we focus on hybrid DARPs and the problem of incre-
mentally adding new requests to an existing schedule.

Generalized Task Swap (GTS)
Generalized Task Swap (GTS) is an iterative improvement
algorithm based on TaskSwap that attempts to insert new re-
quests into an existing schedule. The basic intuition behind
both TaskSwap and GTS is that, by reallocating scheduled
requests whose tasks overlap in time with those in the new
request, sufficient resource capacity can be freed up to ac-
commodate the new request. GTS differs from TaskSwap in
that it operates on more complex resource capacity requests.

Fundamental to both TaskSwap and GTS is the determina-
tion of conflict sets - alternative sets of requests that could be
retracted to make room on the timeline for the new request.
The original TaskSwap procedure assumes that each request
consists of a single task whose duration depends solely on
the resource assigned. Under this assumption, where there

are no dependencies with any other tasks assigned to the
same resource, identification of conflict sets is straightfor-
ward. A new request may be assigned to a given resource
if there is a contiguous block of time on the resource within
the temporal bounds of the request with sufficient capacity
to service it. The conflict sets then are those sets of currently
scheduled requests that overlap with the new request and
collectively consume enough capacity to prevent the new re-
quest from being supported. To find these conflict sets for
a given resource, it is sufficient to simply scan the capacity
profile of the resource for periods where available capac-
ity is less than required and then extract possible subsets of
tasks scheduled within these periods that could provide this
capacity.

GTS relaxes the assumption that a request must be a sin-
gle, self-contained task. Instead, it assumes that requests
can have more complex structure, consisting of a sequence
of located tasks (e.g., pick-ups and drop-offs) whose execu-
tion may require intervening travel. In addition to typical
window and duration constraints associated with constituent
tasks, there can also be temporal dependencies (e.g., max-
imum temporal separation constraints) between successive
tasks in a given request. It may also be possible to inter-
leave the execution of constituent tasks with those of other
requests (e.g., capitalizing on shared ride time) if resource
capacity constraints allow.

The constraints and interdependencies associated with
satisfying such requests add significant complexity to the de-
termination of conflict sets. Indeed, two major issues make
it difficult to decide which requests to retract such that a new
request’s tasks can be inserted. First, to figure out the over-
lapping scheduled tasks, one needs to consider the time de-
pendencies between each of the new request’s tasks when
scheduled and the previous/next tasks on the timeline (since
this determines, for example, how early the task can start de-
pending on what is scheduled before it). Second, as overlap-
ping tasks get retracted, timebounds of and travel durations
between some of the remaining scheduled tasks change;
short of actually retracting the tasks, one would have to com-
pute an approximation of the effect of the retraction on the
remaining scheduled tasks (and therefore on the available
capacity). Instead, GTS systematically retracts subsets of
the requests that overlap with the new request and collects
those that allow for the new request to be inserted. To en-
force all the complex temporal constraints, GTS takes ad-
vantage of an underlying simple temporal network (Dechter,
Meiri, and Pearl 1991), which maintains consistency among
constraints by detecting violations in the network as new
constraints are added.

In order to determine if a new request can be inserted on a
timeline, GTS must have, as a prerequisite, a search proce-
dure for inserting a request, i.e., the tasks corresponding to
the request, onto a resource timeline such that all constraints
are satisfied. GTS makes use of an underlying insertion pro-
cedure that generates all feasible slots, i.e., times between
tasks on the timelines in which a new task can be inserted
while satisfying all constraints, and picks the best ones ac-
cording to an insertion heuristic (an example is provided be-
low).

1810

Algorithm 1 GTS(request-to-insert, resource-timelines,
max-moves)

1: protected← (request-to-insert)
2: retracted← (request-to-insert)
3: num-moves← 0
4: while (new-request← pop(retracted)) ∧ (num-moves <

max-moves) do
5: if ¬insert(new-request,resource-timelines) then
6: conflict-sets← ()
7: for timeline in resource-timelines do
8: conflict-sets← conflict-sets∪ compute-conflict-

sets(new-request,timeline,protected)
9: if conflict-sets then

10: conflict-set← select-best(conflict-sets)
11: timeline← timeline(first(conflict-set))
12: for request in pop(conflict-set) do
13: retract(request)
14: push(request,protected)
15: push(request,retracted)
16: insert(new-request,timeline)
17: num-moves← num-moves + 1
18: else
19: undo()
20: return false
21: return true

Algorithm 1 shows the flow of GTS. At the top level, it
is an iteration that attempts to insert new requests. The it-
eration terminates if there are no more requests to insert, if
a request cannot be inserted, or if the number of requests
moved has exceeded a threshold. GTS is successful in in-
serting the new request if the first case is true, otherwise it
fails. The iteration begins with the retracted requests being
initialized with the new request. Within the iteration, the in-
sertion procedure is applied to the first retracted request to
see if it can be inserted. If it can, then that iteration ends
and the next retracted request is processed. If it cannot be
inserted, then the conflict sets are computed in lines 7 and
8 and, in line 10, the best conflict set is selected using a re-
traction heuristic (an example is provided below). In line 11,
the timeline that contains the tasks of the requests in the best
conflict set are saved for inserting the new request once the
conflicting ones are retracted. Then, in lines 12 through 15,
the requests in the set are retracted and added to the retracted
list and the protected list, which is used to prevent a request
from being relocated more than once per invocation of GTS
(how the protected list is used is described below). In lines
16 and 17, the new request is inserted on the saved timeline
from which the requests were retracted, and the counter for
the number of moved requests is incremented by one. The
next iteration then starts with the next retracted request to
process. If GTS fails to insert the new request, then all the
relocated requests are undone in line 19, returning them to
their original positions on their original timelines.

Algorithm 2 shows the details of how the conflict sets are
computed. In lines 3 and 4, the set of requests overlapping in
time with the new request is computed by iterating through

Algorithm 2 compute-conflict-sets(new-request, timeline,
protected)

1: conflict-sets← ()
2: overlap-requests← ()
3: for tasks in new-request do
4: overlap-requests ← overlap-requests ∪ compute-

overlap-requests(task,timeline)
5: overlap-requests← overlap-requests \ protected
6: for i← 1 to |overlap-requests| do
7: conflict-set← ()
8: for j← i to |overlap-requests| do
9: push(overlap-requests[j],conflict-set)

10: retract(overlap-requests[j])
11: if insert(new-request,timeline) then
12: push(conflict-set,conflict-sets)
13: break {return from the innermost loop}
14: undo()
15: return conflict-sets

the constituent tasks of the new request and, for each one,
uniquely collecting the requests on the timeline that have
tasks that overlap with it. Tasks overlap if their time win-
dows, i.e., the intervals from the earliest start time to the lat-
est finish time for each task, intersect. In the case of the new
request, the time window is determined by the temporal con-
straints that came with the request. To prevent the protected
requests from being relocated, they are removed from the
overlapping requests. In lines 6 through 13, the conflict sets
are generated by enumerating subsets of the overlapping re-
quests and testing them by retracting them and seeing if the
new request can be inserted. If it can, the set is collected.
The subsets of overlapping requests are generated by, first,
testing all overlapping requests, then all but the first, fol-
lowed by all but the first and second, and so on until there
are no more overlapping requests. Note that, to keep this
enumeration computationally efficient, it is not exhaustive.
After each set is tested, all retractions and insertions are un-
done, i.e., all requests are returned to their original state be-
fore the test. After all sets are tried, the collected conflict
sets are returned.

GTS improves on TaskSwap by providing a more gen-
eral method for computing conflict sets. TaskSwap takes
advantage of a specific problem structure to efficiently gen-
erate conflict sets, but its method cannot be applied to more
general problem structures where plan solutions for requests
may have arbitrary structures consisting of multiple, possi-
bly interleaving tasks and time dependencies between suc-
cessive tasks. GTS’s method of mapping over all of a re-
quest’s tasks and actually retracting and inserting to test if a
set of overlapping requests are in the conflict sets can be ap-
plied to these more complex domains, extending the benefits
of task swapping to a broader class of problems.

Insertion and Retraction Heuristics
As indicated above, GTS relies on core procedures for in-
serting and retracting requests that requires choices over sets
of alternatives (feasible slots in the insertion case, conflict

1811

sets in the retraction case). To make these choices efficiently
we consider alternative insertion and retraction heuristics.

For DARPs, the insertion heuristic provides estimates for
the value of pairs of slots if the new request’s pick-up and
drop-off tasks were inserted into them. The two insertion
heuristics we designed and implemented for this domain are
the following:
• Minimum Additional Travel Duration - the amount of time

that had to be added to the vehicle timeline to insert the
pick-up and drop-off tasks is calculated for each pair of
slots and the one with the lowest value is selected. The in-
tuition behind this heuristics is that minimizing the travel
time on the timeline should result in more slack being
available for future requests.

• Minimum Total Tardiness - The cumulative tardiness re-
sulting when inserting a request’s pick-up and drop-off
tasks into a pair of slots is calculated for each pair of slots
and the one with the minimum tardiness is selected. Tar-
diness for both pick-up and drop-off tasks is computed
by taking the difference between its earliest scheduled
start time and its earliest possible start time. For drop-off
tasks that do not have explicit time windows, the earliest
possible start time is the earliest possible finish time of
the pick-up plus the direct transit time from the pick-up
location to the drop-off location. If two pairs have the
same tardiness, then minimum additional travel duration
is used to determine the best pair. The intuition behind
this heuristic is that it will result in better service quality
for the requests at the cost of efficiently using the timeline.
However, as will be demonstrated in the evaluation sec-
tion, it appears to result both in good service quality and in
efficient use of the timelines. We believe that this perfor-
mance is due to this heuristic tending to insert a request’s
tasks early in their possible windows, allowing them more
flexibility to slide later as new requests are inserted.
The retraction heuristic we developed for using GTS on

DARPs, is Minimum Conflicts, which selects the set of re-
quests that have the fewest members. In the case of ties,
the set that results in the minimum additional travel duration
when the new trip is inserted is selected. The motivation
behind this heuristic is that, by minimizing the number of
retracted requests, there will be fewer of them and, conse-
quently, it will tend to be easier to reassign them.

We evaluated these heuristics and the performance of GTS
on DARPs, both on a set of benchmark problems and on
a set of real-world problems. To produce an initial sched-
ule for these experiments, we implemented a greedy basic
scheduler (GBS) that iteratively invokes the same insertion
procedure as GTS on a set of unscheduled requests. The ex-
periments and their outcomes are described in the following
section.

Basic Evaluation
To both validate the design and calibrate the performance
of our new GTS algorithm, we analyze the results of run-
ning it on a benchmark of challenging feasibility DARP in-
stances published by (Cordeau 2006) (problems available at
http://www.hec.ca/chairedistributique/data/darp), that have

been fairly extensively studied in the literature and were
proved feasible/infeasible by sophisticated, extended search
techniques (Berbeglia, Pesant, and Rousseau 2011; Jain and
Van Hentenryck 2011). Because these challenging bench-
mark instances contain infeasible problems, they are also a
good match with the oversubscribed character of our para-
transit target application. The purpose of our empirical study
using the benchmark instances is twofold. First, we use
the GTS performance results for the benchmark instances
to identify the best parameter setting for GTS. Second, we
assess the contribution of running with GTS in terms of both
finding feasible solutions for the feasible instances and de-
creasing the number of unscheduled requests in the solutions
for the other instances.

The problems in the benchmark are randomly generated,
where the coordinates of the pick-up and drop-off nodes are
chosen in the [−10, 10]x[−10, 10] square according to a uni-
form distribution and the depot is located at (0, 0), the time
horizon is up to 12 hours, and the time windows are 15 min-
utes. There are two sets of problems in the benchmark; the
vehicle capacity is 3 for the instances in set a and 6 for the
instances in set b. The maximum ride time (max-ride-time)
is 30 minutes for set a and 45 minutes for set b.

Following the approach of (Berbeglia, Pesant, and
Rousseau 2011), we run our algorithms on the original sets
a (14 problems) and b (13 problems), as well as 3 modi-
fied versions of these instance sets. All the instances have at
least 40 requests each (and at most 96 requests). For the first
modified version, the max-ride-time is decreased to 30 min-
utes (note that this only affects the problems in set b); we
denote this set as the RT=30 set. For the second version of
the two problem sets, the max-ride-time is decreased to 22,
denoted RT=22. Finally, for the third version, the number
of available vehicles is reduced to 75% of its original size,
denoted 75% vehicles.

We designed a factorial experiment where the indepen-
dent variables were the ordering of the requests and the in-
sertion heuristic. We ran GBS by itself and invoked GTS
when there were unscheduled requests after running GBS;
we recorded the number of unscheduled requests after GBS
and then after running GTS. The values used for the ordering
of the requests were: unsorted, earliest-start-time first (EST-
first) and most-constrained first (most-constr-first). We de-
fined most-constr-first based on the minimum duration of
the request (the duration of the transit from its pick-up lo-
cation to the drop-off location), where longer min-duration
requests are more constrained. We considered the two
insertion heuristics, Minimum Additional Travel Duration
(min-added-duration) and Minimum Total Tardiness (min-
tardiness). The dependent variables in our experiment were
the number of instances for which a feasible solution has
not been found and the number of unscheduled requests per
instance.

The best overall results (minimizing the number of in-
stances with unscheduled requests) are produced by the GTS
runs with min-tardiness and EST-first. GTS significantly im-
proves the solutions produced by the GBS; Table 1 shows the
average percentage of the unscheduled requests after run-
ning GBS that get scheduled by GTS (columns 4 and 8).

1812

Note that even though GTS assigns the greatest percentage
of unscheduled requests for the unsorted ordering (with both
insertion heuristics), the solutions produced by GBS with
the unsorted order have more unscheduled requests than for
any other ordering, meaning that GTS starts with worse so-
lutions (columns 2 and 6). All the GTS runs found feasible
solutions for all the instances in the Original and RT=30 sets;
all of the unscheduled requests after the GTS runs (columns
3 and 7) were found for the RT=22 and 75%vehicles set.
For the RT=22 set, all the GTS configurations found nine in-
feasible instances, with 13 unscheduled requests. Although
the unsorted order with min-tardiness found solutions with
fewer unscheduled requests for two of the instances in the
75% set, the unsorted order failed to find a feasible solution
for a4-48; therefore in terms of instance feasibility, EST-first
does a better job.

When comparing the number of feasible/infeasible in-
stances produced by the best GTS parameter setting (with
EST-first and min-tardiness) with the results published for
Tabu Search and CP in (Berbeglia, Pesant, and Rousseau
2011), GTS matches the published results for the Original,
RT=30 and RT=22 sets. We report in parentheses in columns
5 and 9 the number of infeasible instances for which the
number of unscheduled requests found by GTS is one, since
for instances proved infeasible, having only one unsched-
uled request is the best solution that can be achieved. For
five out of the nine infeasible instances for RT=22, GTS
finds one unscheduled request (for the other four instances,
the solutions produced by GTS have two unscheduled re-
quests each). For the 75%vehicles problem set, GTS finds
all the feasible solutions except for one, a5-60 (Tabu Search
also did not find a solution for this instance, however CP
did). Similarly to Tabu Search and CP, GTS does not find a
feasible solution for b7-84 – CP could not solve this instance
in the allocated time. The best schedules found for both of
these instances by GTS have one unscheduled request each.
Also, GTS with EST-first and min-tardiness finds a feasible
solution for b8-96; Tabu Search also found a solution for this
instance, however, CP did not.

The results show that the min-tardiness insertion heuris-
tic for the GTS runs is enabled by the EST-first ordering of
the requests to produce the best performance on the bench-
mark instances. We conjecture that min-tardiness is bet-
ter able to preserve the slack in the time windows for the
pick-ups/drop-offs, by scheduling them as early in their
time window as possible and thus mitigating the effect of
time window fragmentation by retaining flexibility in the
time window. In this sense, min-tardiness is similar to the
max-availability insertion heuristic used with TaskSwap in
(Kramer and Smith 2004).

The results also show that even though GTS searches a
rather limited portion of the search space, confined around
the initial solution as built by GBS, with the exception of one
instance in the 75%vehicles set, the results for these feasibil-
ity benchmark problems match the results reported by more
extensive optimization techniques as CP and Tabu Search.
In terms of the CPU time, the runs without GTS took on
average 1.4 seconds, with a minimum of 0.12 seconds and
a maximum of 5.9 seconds. GTS run times varied between

0.9 and 10.3 seconds; the average and median CPU times for
GTS were 1.8 and 2.4 seconds respectively, comparable to
the median CPU times for CP and Tabu Search, which were
1.9 and 1.4 seconds, respectively. While for some instances
GTS is slightly slower, extended CP and Tabu Search run
times were recorded for a number of instances, with a maxi-
mum of 109 seconds for CP and 78 seconds for Tabu Search
(the maximum CPU time for GTS was just 10.3 seconds).

In comparing GTS to CP and Tabu Search, it is impor-
tant to note that GTS addresses two additional objectives.
First, GTS was designed to operate as an incremental search
technique in an environment where schedules are modified
as they execute. To minimize the confusion of humans ex-
ecuting the schedules, the insertions of new requests must
emphasize maintaining schedule stability. GTS minimizes
the number of schedule modifications by moving tasks only
as needed to make room for the unscheduled requests. Sec-
ond, the types of problems to which GTS is applied require
that all requests must be satisfied, even if some constraints
have to be relaxed. GTS, with its underlying STN represen-
tation facilitating constraint relaxation, was designed to be
coupled with relaxation strategies for generating solutions
to oversubscribed problems.

A Real World Paratransit Application
While we evaluated GTS on the benchmark problems, it was
designed to operate within a real-world application for help-
ing paratransit dispatchers manage the allocation of trip re-
quests to vehicles through the myriad of unexpected events
that occur during the day’s execution. This system is be-
ing integrated into the operations at ACCESS Transportation
Systems, the largest paratransit organization in the South-
western Pennsylvania Region.

The ACCESS version of the DARP is more complex than
that in the benchmark problems. The allowable pick-up win-
dow is from ten minutes before the preferred time to twenty
minutes after it. The latest drop-off time is constrained by a
maximum ride-time constraint, which is the larger of twenty
minutes or twice the direct transit time from the pick-up lo-
cation to the drop-off location. No trip can last longer than
two hours. Also, the travel model is more complex in AC-
CESS in that, in addition to distance, it considers the time-
of-day when travel occurs, with travel within rush-hour re-
sulting in longer durations. A problem consists of the set re-
quests for a single day and a configuration of vehicles. The
scale of these problems is much larger than the benchmark
problems, with a typical problem having between 30 and 50
vehicles servicing between 850 and 950 requests.

Relaxation
In the real-world application, GTS is invoked in the context
of already having an existing schedule executing and a new
request has to be added in. In ACCESS, it is not acceptable
to refuse a request, i.e., all requests must be serviced. In the
case where the vehicles are oversubscribed, the service qual-
ity constraints must be relaxed in order to service the new
request. This relaxation introduces delay for the requests.
The dispatcher’s objective is to minimize the amount of re-
laxation/delay that has to be introduced. Naturally, the best

1813

Min-added-dur min-tardiness
Ordering GBS total GTS total % unsch. #infeas. GBS total GTS total % unsch. #infeas.
heur. #unsch. #unsch. sched. inst. #unsch. #unsch. sched. inst.
None 87 32 69% 19(13) 85 29 72% 17(11)
EST 66 34 52% 20(14) 79 31 67% 16(8)
Most-constr 72 39 49% 19(10) 63 40 38% 21(13)

Table 1: Total number of unscheduled requests before and after GTS, average percentage of unscheduled requests assigned by
GTS and total number of infeasible instances after running GTS for the RT=22 and 75%vehicles sets.

case is when a feasible, i.e., non-relaxed, insertion option (a
pair of slots for the pick-up and drop-off tasks) is available
to service the new request. The base insertion procedure
employed by both GTS and GBS is used to find feasible op-
tions that are easy for the dispatcher to implement. If none
are found, then GTS is applied to find a more complex to
implement but still feasible option for the new request. Fi-
nally, if GTS cannot find an option, then the new request’s
constraints, i.e., the latest pick-up and drop-off times, are
incrementally relaxed by a constant amount until an option
can be found using the base insertion procedure. In the ex-
periments we describe below, a key metric is the amount
constraints have to be relaxed in order to accommodate the
delay in the new requests.

Experimental Results
The results in this section were produced for a set of five
days of data, from February 21 to February 25, 2011, pro-
vided to us by a local paratransit company. The company
employs three types of vehicles: sedans (with a capacity of
four ambulatory passengers), shoppers (capacity 14 ambu-
latory passengers), and vans (seating both ambulatory and
wheelchair passengers, with a maximum of 10 ambulatory,
or four ambulatory and three wheelchair passengers). Ta-
ble 2 summarizes the main characteristics of the five days of
data in terms of number of requests received and number of
vehicles available each day to allocate the requests.

Day Reqs. Sedans Shoppers Vans
Day1 844 7 9 15
Day2 827 12 7 15
Day3 902 12 9 15
Day4 797 11 10 14
Day5 884 14 6 16

Table 2: Number of requests and number of vehicles avail-
able for each of the five days.

We ran GBS and GTS for the five days of data. We used
the algorithm settings that produced the best results for the
benchmark problems: the unscheduled requests were sorted
in increasing order of their earliest-start-time for the pick-
ups (EST-first), and min-tardiness was used as the insertion
heuristic. The results show that GTS is able to build feasible
schedules for all five days. Most days the paratransit com-
pany’s vehicle schedule is oversubscribed; since having un-
scheduled requests is not an option, the constraints for such

requests are relaxed until all the requests can be scheduled.
To assess the change in algorithm performance for various
level of oversubscription, we reduced the number of avail-
able vehicles each day to a certain percentage of the original
number (the new number of vehicles is computed by taking
the ceiling of the product of the desired percentage and the
original count for each of the vehicle types).

The runs for 95% showed that all the problems were still
feasibly solved; we proceeded then to reduce the vehicle
count to 90%, 85% and finally 75%. For each run we col-
lected the number of unscheduled requests and the amount
of delay needed to fit these requests in the schedule (in min-
utes). The results are summarized in Tables 3 and 4.

The results show that as resource levels are reduced, some
but not all the requests get scheduled by GTS. For the 90%
resource level, on average 85% of the unscheduled requests
at the end of the GBS run are assigned by GTS. For the 85%
resource level, on average 78% of the unassigned requests
after GBS get scheduled by GTS. Finally, for the 75% re-
source level, on average 53% of the unassigned requests get
scheduled by GTS. In terms of CPU times, when GTS is
applied to the five-day data using the original vehicle con-
figurations described in Table 2, it averages 6.7 seconds for
adding a new request. This performance is well within the
usability constraints for paratransit dispatchers.

As expected, the schedules produced by GBS plus relax-
ation display larger amounts of total delay than the schedules
produced by GTS plus relaxation. Surprisingly, there seems
to be a trend in our results showing that the average delay
per request decreases with the use of GTS (even though af-
ter running GTS there are more scheduled requests in the
schedule).

Orig. 90% 85% 75%
Day GBS GTS GBS GTS GBS GTS GBS GTS
Day1 5 0 15 0 20 2 33 13
Day2 1 0 2 0 5 1 27 14
Day3 1 0 8 1 12 3 31 17
Day4 0 0 13 2 10 1 23 5
Day5 1 0 6 1 15 7 29 19

Table 3: Results for the number of unscheduled requests.

Conclusions
TaskSwap was shown to be an efficient iterative repair
search procedure for a large-scale mission scheduling prob-
lem. Motivated by a real-world DARP, we generalized

1814

Orig. 90% 85% 75%
Day GBS GTS GBS GTS GBS GTS GBS GTS
Day1 252.6 0 988.9 0 1257.9 80.2 1866.1 594.2
Day2 36.9 0 206.6 0 310.2 53.4 2771.3 1248.7
Day3 10.5 0 250.6 54.6 556.8 15.9 2207.4 1035.7
Day4 0 0 265.1 17.8 320.4 6.9 1351.7 246.2
Day5 57.3 0 211.4 52.7 557.5 285.7 1843.3 1238.3

Table 4: Results for the total delay (in minutes).

TaskSwap to handle the complexity of the constraints in
this application. We evaluated the performance of the new
technique (GTS) both on a set of difficult synthetic feasi-
bility benchmark problems and on a set of real-world in-
stances. The results show that: 1) GTS matches the per-
formance results reported by more sophisticated, extended
search techniques on the benchmark instances and 2) for the
real-world instances, GTS significantly improved on the re-
sults of a greedy search approach in terms of both increasing
the number of feasibly scheduled requests and reducing the
total amount of delay.

Acknowledgements
The research described in this paper was funded in part by
a grant from the 2011 Federal Transit Administration (FTA)
New Freedoms Initiative, the Department of Defense Ad-
vance Research Projects Agency (DARPA) under US Army
Award No. W911NF-11-2-0009, and the Robotics Institute
at Carnegie Mellon University. Any opinions findings and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of DARPA and FTA.

References
Berbeglia, G.; Pesant, G.; and Rousseau, L.-M. 2011.
Checking the feasibility of dial-a-ride instances using con-
straint programming. Transportation Science 45:399–412.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative flatten-
ing: A scalable method for solving multi-capacity schedul-
ing problems. In Proceedings of The Seventeenth National
Conference on Artificial Intelligence.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve re-
sponsiveness of planning and scheduling. In Proceedings of
the Fifth International Conference on Artificial Intelligence
Planning and Scheduling, 300–307.
Cordeau, J.-F., and Laporte, G. 2007. The dial-a-ride prob-
lem: models and algorithms. Annals OR 153(1):29–46.
Cordeau, J.-F. 2006. A Branch-and-Cut Algorithm for the
Dial-a-Ride Problem. Operations Research 54(3):573–586.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Jain, S., and Van Hentenryck, P. 2011. Large neighborhood
search for dial-a-ride problems. In Proceedings of the 17th
international conference on Principles and practice of con-

straint programming, CP’11, 400–413. Berlin, Heidelberg:
Springer-Verlag.
Kramer, L. A., and Smith, S. F. 2003. Maximizing flexi-
bility: A retraction heuristic for oversubscribed scheduling
problems. In Gottlob, G., and Walsh, T., eds., IJCAI, 1218–
1223. Morgan Kaufmann.
Kramer, L., and Smith, S. F. 2004. Task swapping for
schedule improvement - a broader analysis. In Proceedings
14th International Conference on Automated Planning and
Scheduling (ICAPS 04).
Kramer, L.; Barbulescu, L.; and Smith, S. F. 2007. Un-
derstanding performance tradeoffs in algorithms for solving
oversubscribed scheduling problems. In Proceedings 22nd
Conference of the Association for the Advancement of Arti-
ficial Intelligence (AAAI-07).
Lim, A., and Zhang, X. 2007. A two-stage heuristic with
ejection pools and generalized ejection chains for the vehicle
routing problem with time windows. INFORMS Journal on
Computing 19(3):443–457.
Nagata, Y., and BrŁysy, O. 2009. A powerful route mini-
mization heuristic for the vehicle routing problem with time
windows. Operations Research Letters 37(5):333–338.
Zweben, M.; Daun, B.; Davis, E.; and Deale, M. 1994.
Scheduling and Rescheduling with Iterative Repair. Morgan
Kaufmann Publishers. chapter 8.

1815

