
Repeated Sequential Auctions with Dynamic Task Clusters

Bradford Heap and Maurice Pagnucco
ARC Centre of Excellence in Autonomous Systems

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW, 2052, Australia

{bradfordh,morri}@cse.unsw.edu.au

Abstract

Sequential auctions can be used to provide solutions
to the multi-robot task-allocation problem. In this pa-
per we extend previous work on sequential auctions and
propose an algorithm that clusters and auctions uniniti-
ated task clusters repeatedly upon the completion of in-
dividual tasks. We demonstrate empirically that our al-
gorithm results in lower overall team costs than other se-
quential auction algorithms that only assign tasks once.

Introduction
We consider the problem of a team of autonomous mobile
robots operating in a known office-like environment. These
robots may be required to deliver documents between of-
fices, clean up spillages, or act as tour guides to visitors.
In these situations there is a set of tasks to be completed and
we require the robots to distribute these tasks amongst them-
selves in a manner that satisfies a global team objective.

Market-based approaches to distributed task-allocation
have received significant research attention in recent years
(Dias et al. 2006; Koenig, Keskinocak, and Tovey 2010).
An optimal allocation of a set of tasks to robots can be de-
termined by a single-round combinatorial auction. How-
ever, this auction algorithm is NP-Complete and suffers
from high communication and winner determination costs
(Berhault et al. 2003). As an alternative, sequential single-
item auctions (SSI auctions) which allocate tasks over mul-
tiple rounds have been well studied (Lagoudakis et al. 2005;
Koenig et al. 2006). Despite SSI auctions producing team
costs that are generally sub-optimal, they have much lower
communication and winner determination costs which result
in a much faster allocation of tasks. Various improvements
and extensions to SSI auctions have been suggested which
trade off allocation time against overall team costs (Koenig,
Keskinocak, and Tovey 2010).

This paper combines and extends the ideas presented in
two previous works on SSI auction extensions: sequential
auctioning of task clusters (Heap and Pagnucco 2011) and
repeated auctions of uncompleted tasks (Nanjanath and Gini
2010). This previous work has shown that when clusters of
tasks that employ positive inter-task synergies are auctioned

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in lieu of single tasks, the resultant overall team costs can
be lower. Meanwhile work on repeated auctions of uncom-
pleted individual tasks upon the completion of a single task
has shown the robustness of robotic teams in reallocating
tasks when unexpected delays occur while completing tasks
(Nanjanath and Gini 2010). Our idea is, that upon comple-
tion of a single task, all robots create clusters of their unini-
tiated tasks and auction these task clusters with the goal of
improving the minimisation of the overall team objective.

In the remainder of this paper we define the task-
allocation problem in the domain of auction-like algorithms,
we look at related work on task clustering and post-initial
allocation improvements to task-allocation, we describe our
algorithm, provide complexity analysis, and report empiri-
cal results obtained in simulation of robots in an office-like
environment. Our key empirical results show that for every
robot/task combination there is an average improvement of
3.1% – 40.7% compared to the total cost of the original task
allocation and in general the greater the number of robots
and tasks the larger the improvement.

Multi-robot Task-Allocation
We now formalise the definition of the task-allocation prob-
lem in a similar manner to (Koenig et al. 2007). Given a
set of robots R = {r1, . . . , rm} and a set of tasks T =
{t1, . . . , tn}, any tuple 〈Tr1 , . . . , Trm〉 of pairwise disjoint
bundles Tri ⊆ T and Tri ∩ Trj = ∅ for i 6= j, for all
i = 1, . . . ,m, is a partial solution of the task-allocation
problem. This means that robot ri performs the tasks Tri ,
and no task is assigned to more than one robot. To determine
a complete solution to the task-allocation problem we need
to find a partial solution 〈Tr1 . . . Trm〉 with ∪ri∈RTri = T ,
that is, where every task is assigned to exactly one robot.

Multi-robot routing is considered the standard testbed for
the task-allocation problem (Dias et al. 2006). The tasks
represent locations to visit. Robots know their locations and
can calculate the costs to travel between locations. We as-
sume costs are symmetric, λ(i, j) = λ(j, i) and are the same
for all robots. The robot cost λr(Tr) is the minimum cost
for an individual robot r to visit all locations Tr assigned to
it. There can be positive synergies between two tasks where
λri(Tr′∪Tr′′) < λri(Tr′)+λri(Tr′′). Robots can also have
capacity constraints where they have a fixed maximum num-
ber of locations to visit. We wish to find a solution to the

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1997

t1 t2

t3 t4

r1

r2

Figure 1: Exploration Task 4 (Koenig et al. 2006).

task-allocation problem that achieves a team objective. In
this paper we use two common team objectives introduced
in (Tovey et al. 2005):

MiniMax maxr∈Rλr(Tr), that is to minimise the maxi-
mum distance each individual robot travels.

MiniSum
∑
r∈R λr(Tr), that is to minimise the sum of the

paths of all robots in visiting all their assigned locations.

Although SSI auctions guarantee a solution to the task-
allocation problem they do not guarantee that this solu-
tion will be optimal for the team objective. Despite this,
(Lagoudakis et al. 2005) provides us with theoretical guar-
antees on the bounds of the solution in the domain of multi-
robot routing which is the standard testbed of the auction-
based coordination systems.

One problem with standard SSI auctions is when robots
have few allocated tasks they fail to consider many inter-
task synergies when calculating bids. As a result, robots end
up with a bias towards tasks that are nearby; this is particu-
larly apparent during early bidding rounds. An example of
this can be seen in Exploration Task 4 (Koenig et al. 2006)
(Figure 1). If we apply a normal SSI auction to this example,
during the first two bidding rounds t2 is allocated to r1 and
t4 is allocated to r2. During the next two bidding rounds t1
is allocated to r1 and t3 is allocated to r2. This solution is
sub-optimal.

To avoid this initial bias (Heap and Pagnucco 2011) pro-
posed the formation of task clusters prior to the auction pro-
cess. Robots then bid on task clusters rather than single
items. In their empirical experiments they apply K-Means
clustering to form task clusters and their results show that,
on average, sequential auctions with clusters result in lower
overall team costs with a similar runtime to SSI auctions.
Applying this approach to the same example, we form two
clusters c1 = {t1, t3} and c2 = {t2, t4}. The first round of
bidding assigns c2 to r1, and the second round assigns c1 to
r2. This allocation of tasks to robots is the optimal solution.

Another recent auction algorithm using K-Means cluster-
ing has been presented by (Elango, Nachiappan, and Ti-
wari 2011), however, this technique differs from the goals
of sequential-class auctions and instead seeks to evenly bal-
ance tasks across all robots. Furthermore, K-Means cluster-
ing has also been used for coordinating multi-robot explo-
ration (Solanas and Garcia 2004). This research used clus-
tering to partition unexplored space into a number of dis-
joint regions—fixed to the number of robots. After cluster-

1 function SSC-Auction (C̄,Cr, r, R)
2 Input: C̄: the set of clusters to be assigned C
3 Cr: the set of clusters presently assigned
4 r: the robot r
5 R: the set of robots R
6 Output: Cr: the set of clusters assigned to the robot
7 while (C̄ 6= ∅) do
8 /* Bidding Stage */
9 for each cluster c ∈ C̄ do

10 bcr ←CalculateBid(Cr,c);
11 Send(bcr, R) | B ←

⋃
i

Recieve(bcri , R);

12 /* Winner-Determination Stage */
13 (r′, c)← arg min(r′∈R,c∈C̄) B;
14 if r = r′ then
15 Cr ← Cr ∪ {c};
16 C̄ ← C̄\{c};

Figure 2: Sequential Single-Cluster Auctions.

ing, robots are centrally assigned the disjoint region they are
closest to. Through the partitioning of space in this manner
robots are quickly dispersed throughout the entire enviorn-
ment. Recent analysis (Puig, Garcia, and Wu 2011) com-
pared this approach to other state-of-the-art approaches and
demonstrated its effectiveness.

To further refine a task-allocation solution post-initial al-
location (Nanjanath and Gini 2010) present an algorithm
for the repeated auctioning of all uncompleted tasks upon
the completion of each task. In this algorithm, robots will
only exchange tasks if it improves the overall team objec-
tive. Once a task has been exchanged, the robots involved
in the exchange re-plan their paths to minimise the total dis-
tance travelled. Their empirical results show that the final
task-allocation is close to optimal.

An alternative approach to re-allocating tasks is through
task exchanges. A common approach to this is repeated sin-
gle task exchanges (Dias and Stentz 2000). A recent ex-
tension of this is K-Swaps (Zheng and Koenig 2009) which
exchanges many tasks between multiple robots at the same
time. K-Swaps has been experimentally shown to make sig-
nificant improvements to task-allocations, however, the al-
gorithm trades off larger improvements with pronouncedly
increased computational time.

Sequential Single-Cluster (SSC) Auctions
Sequential Single-Cluster (SSC) auctions (Heap and Pag-
nucco 2011) are an extension of SSI auctions and assign
clusters of tasks to robots in multiple bidding rounds. At
the conclusion of each bidding round one previously unas-
signed task cluster is awarded to the robot that bids the least
for it so that the team cost increases the least. Once all task
clusters are allocated all robots complete all tasks allocated
to them in as short a distance possible. Robots do not have
to do all tasks in a cluster sequentially. After a cluster has
been awarded, the tasks within the awarded cluster can be
reordered with tasks from previously allocated clusters.

1998

We formulate the algorithm for SSC auctions in Figure 2.
Each robot runs the algorithm independently of other robots
and, with the exception of supplying the initial list of tasks
and clusters to each robot, there is no centralised controller.
Before the SSC auction algorithm begins, a clustering algo-
rithm is used to allocate all individual tasks into task clusters
with the goal of maximising the positive synergy between
tasks in each cluster. Each task is assigned to one, and only
one cluster, and clusters can be of varying sizes. All robots
are then informed of all tasks and all clusters.

The SSC auction begins and continues while there are
unassigned task clusters (Line 7). The bidding stage (Lines
8-11) consists of the robot calculating bids for every unas-
signed task cluster and submitting these bids to all other
robots. Each bid calculation requires robots to provide a
solution to the travelling repairman problem (Blum et al.
1994). Because this problem is NP-hard, robots often use
the cheapest-insertion and two-opt heuristics (Croes 1958)
to provide a close approximation to the optimal solution.
Each bid is a triple of a robot br, a task cluster bc and a
bid cost bλ, such that, b = 〈br, bc, bλ〉. The function Cal-
culateBid takes the set of previously assigned clusters Cr
and the cluster c being bid on and uses a bidding rule to cal-
culate a bid cost (Line 10). The robots send their bids and
receive all bids from other robots in parallel (Line 11). The
winner-determination stage (Lines 12-16) consists of each
robot choosing the task cluster with the lowest bid from the
set of submitted bids. Ties can be broken in an arbitrary way.
The robot with the winning bid has the winning task cluster
assigned to it. All robots then remove the winning task clus-
ter from the set of unassigned clusters and the next bidding
round begins.

Repeated Auctions with Dynamic Clustering
We now describe our procedure for repeated auctions of task
clusters upon individual task completion. Our algorithm as-
sumes a homogenous set of robots which are supplied with
a map of the enviornment, have perfect localisation, have er-
ror free communication with other robots, and do not break
down. Auctions are run sequentially, that is, if an auction
is running after the completion of a task and a second robot
completes a task, the auction for the second task completion
does not begin until after the first auction is complete. We
also make the assumption that auctions complete as quickly
as possible and the time to complete tasks is much greater
than the time to run an auction to reallocate tasks.

Our alogrithm operates as follows: when a robot com-
pletes a task it signals to all other robots that an auction
for the redistribution of tasks is to begin. All robots then
create clusters of uncompleted tasks, and inform all other
robots of these clusters, excluding the cluster containing the
task they are currently completing. The robots then all run a
SSC-Auction on these clusters. After all clusters have been
distributed via the auction each robot replans its path based
on its new allocation of tasks. While the auction runs each
robot continues to complete its current task.

The algorithm that each robot executes is presented in
Figure 3. All robots are assigned an initial allocation of tasks

1 function RepeatedSSCAuctions (T , r, R, CF)
2 Input: T : the set of Tasks to be completed T
3 r: the robot r
4 R: the set of robots R
5 CF : the factor of clusters to tasks
6 Output: T = ∅: All tasks completed
7 PTr

←MinimisePath(Tr);
8 while T 6= ∅ do
9 if Tr 6= ∅ then

10 DriveToTask(ti ∈ PTr
, r, R) |

Tr ←ListenForAuction(ti ∈ PTr
, Tr, R, CF);

11 else
12 Tr ←ListenForAuction(ti ∈ PTr

, Tr, R, CF);

13 function DriveToTask (t, r, R)
14 Input: t: the task to be completed t
15 r: the robot r to drive
16 R: the set of robots R
17 Output: rl = tl: The robot r located at task t
18 while rl 6= tl do
19 Robot r moves towards task t
20 Signal all robots ri ∈ R to begin auction;
21 Wait for auction to finish;
22 Tr ← Tr\{ti};
23 PTr

←MinimisePath(Tr);

24 function ListenForAuction (t, Tr, r, R, CF)
25 Input: t: the currently initialised task t
26 Tr: the set of Tasks allocated to the robot Tr
27 r: the robot r
28 R: the set of robots R
29 CF : the factor of clusters to tasks
30 Output: Tr: the set of Tasks allocated to the robot Tr
31 Wait for signal to begin auction;
32 Cr ← KMeansClustering(K ← CF ∗ |Tr|, Tr);
33 C̄r ← Cr\{ct ∈ Cr};
34 Send(C̄r, R) | C̄ ←

⋃
i

Recieve(Cri , R);

35 if C̄ 6= ∅ then
36 Cr ← SSC-Auction(C̄, {ct ∈ Cr}, r, R);
37 Tr ← {t ∈ c|c ∈ Cr} ;
38 if rl = tl then
39 Signal Auction Finished;
40 else if Tr 6= ∅ then
41 ListenForAuction(t, Tr, r, R, CF);

Figure 3: Repeated Auctions with Dynamic Clustering.

and a clustering factor which is used to calculateK for clus-
tering tasks. The algorithm runs on all robots until all tasks
are completed. Initially each robot plans a path to complete
all allocated tasks (Line 7). Each robot then drives to the
first task in its path and in parallel listens for a signal to be-
gin an auction (Line 10). However, if a robot has no tasks
currently allocated to it then it just listens for the signal to
begin an auction (Line 12).

The function DriveToTask (Lines 13-23) controls the
movement of the robot towards its current task and signals

1999

r1 r2

r3 r4

t1 t2

t3 t4

t5

t6

t7 t8

t9 t10

t11

t12
t13

t14

t15 t16

t17 t18

t19

t20

t21 t22

t23 t24

Figure 4: Initial Allocations.

r1

r2

r3

r4

t1 t2

t3 t4

t5

t6

t7 t8

t9 t10

t11

t12
t13

t14

t15 t16

t17 t18

t19

t20

t21 t22

t23 t24

Figure 5: Cluster Formation.

r1

r2

r3

r4

t1 t2

t3 t4

t5

t6

t7 t8

t9 t10

t11

t12
t13

t14

t15 t16

t17 t18

t19

t20

t21 t22

t23 t24

C5

C6

C7

C4C2

C8

C3C1

Figure 6: Cluster Auction.

r1

r2

r3

r4

t2

t3 t4

t5

t6

t7 t8

t9 t10

t11
t12

t13
t14

t15 t16

t17 t18

t19

t20

t21 t22

t23 t24

Figure 7: New Allocation.

the start of an auction upon arrival at the task. The robot will
continue travelling towards its current task until it reaches it
(Lines 18-19). Once the robot arrives at its current task it
will signal all robots to begin an auction and wait until the
auction is complete (Lines 20-21). Upon completion of the
auction the robot will remove its current task from its set of
tasks to complete, replan its path (Lines 22-23). The func-
tion then terminates and if the robot still has tasks to com-
plete it will begin travelling to the next task.

The function ListenForAuction (Lines 24-41) sets up and
controls the SSC auction for reallocating the assigned tasks.
Upon the signalling of an auction each robot forms clusters
of tasks using K-Means clustering (Line 32). To determine
K in each auction we multiply the constant cluster factor
CF by the number of currently allocated tasks. The con-
stant cluster factor is a value between 0 and 1 and describes
the ratio of tasks to clusters. In our experiments we typi-
cally use values of 1

2 and 2
3 for CF. This gives us an average

of 2 tasks/cluster and 1.5 tasks/cluster respectively. After the
formation of the task clusters the robot removes the cluster
containing its currently initialised task (Line 33). This sub-
set forms the robot’s contribution to the set of clusters for
auction which is sent to all robots. In parallel the robot re-
cieves a set of clusters from all other robots. These sets are
merged to form the complete set of all clusters for auction
(Line 34). If there are clusters for auction, all robots run
the SSC auction algorithm simultaneously (Line 36). The
robot then resets its allocated tasks with all tasks in the post-
auction cluster set (Line 37). Finally, the robot that signalled
the start of the auction signals the end of the auction (Line
39) and other robots with tasks to complete listen for the
next auction (Line 41).

Figures 4, 5, 6, and 7 provide an example of an auc-
tion using our algorithm with the MiniMax team objec-
tive. We have four robots and 24 tasks. Each robot has
an initial allocation of tasks such that: Tr1 = {t1, . . . , t6},
Tr2 = {t7, . . . , t12}, Tr3 = {t13, . . . , t18} and Tr4 =
{t19, . . . , t24} (Figure 4). Robot r1 signals the start of an
auction after arriving at task t1. At this point r2 is approach-
ing t10, r3 is approaching t15, and r4 is approaching t24.
Each robot with CF = 1

2 then uses K-Means to allocate
its tasks into three task clusters (Figure 5). All robots then
remove the cluster containing their currently initialised task
and exchange their remaining clusters with all robots to form
the clusters for auction C̄ = {C1, . . . , C8}. The SSC auc-
tion then begins (Figure 6). During the first four bidding
rounds C2 is allocated to r1, C3 is allocated to r2, C6 is
allocated to r3, and C7 is allocated to r4. The next four bid-
ding rounds allocate the remaing clusters. C5 is allocated
to r1, C1 is allocated to r2, C8 is allocated to r3, and C4

is allocated to r4. The complete new allocation is shown in
Figure 6.

Algorithm Analysis
We now consider the communication requirements and ex-
pected results of repeated SSC auctions with dynamic clus-
ters and compare this to standard SSI and SSC auctions.

For a distributed SSI auction there are |R| robots and |T |
tasks and all robots are aware of all tasks before the auction.
In each round of the auction every robot has to communi-
cate its bid to every other robot so there are |R|2 messages
per round. In total there are |T | rounds as only one task
is allocated per round. Therefore in total there are |T ||R|2
messages sent in a complete auction.

SSC auctions follow the same bidding and communica-
tion rules as SSI auctions except that robots bid on clus-
ters rather than tasks. All robots are aware of all tasks and
clusters before the auction. Therefore the number of rounds
in the auction is determined by the number of clusters |C|.
Therefore it holds that in total there are |C||R|2 messages
sent in a complete auction. We also note that |C| ≤ |T | so
generally there are less rounds and less communication in a
SSC auction than in a SSI auction.

For repeated SSC auctions with dynamic clusters the
number of messages exchanged in each round remains the
same |R|2. However, at the beginning of each auction all
robots have to exchange their clusters to be auctioned, so
this is an additional |R|2 number of messages exchanged.
There are then |C| rounds per auction. Therefore in total
there are (1 + |C|) ∗ |R|2 messages per auction and there
are at most |T | auctions one for each task completion. We
can conclude that for repeated SSC auctions with dynamic
clusters there are much greater communication requirements
than auctions that only assign tasks once.

We now consider the expected results of each auction al-
gorithm. (Koenig et al. 2006) show that for SSI auctions
solving the multi-robot routing problem the strong lower
bound is a factor of 1.5 away from the optimal and the upper
bound is a factor of 2 away from the optimal.

For SSC auctions we can achieve an optimal solution in
one auction as described earlier for the example scenario in

2000

Figure 8: Simulation of an office-like environment.

Figure 1. However, the worst-case for SSC auctions is much
greater than SSI auctions because there is no requirement
that tasks assigned to clusters obey the triangle inequality.
This means that two clusters can contain tasks that over-
lap each other but are assigned to different robots, result-
ing in a total path length that could be much less if all tasks
were completed by only one robot. However, we conjecture
that this worst-case situation would result in an allocation of
tasks to robots that is no worse than a completely random al-
location. Furthermore, with repeated auctions and dynamic
clusters these worst-case allocations would most likely be
redistributed and replanned before being executed.

Experiments
To test our algorithm we simulate an office-like environ-
ment with 16 rooms each containing four interconnecting
doors that can be independently opened or closed to al-
low or restrict travel between rooms (Figure 8). This en-
viornment has become the de facto standard testbed in re-
cent literature (Koenig et al. 2007; Zheng and Koenig 2009;
Nanjanath and Gini 2010; Heap and Pagnucco 2011) and
therefore it provides a common setting for comparison. In
each experiment, the doors between different rooms and the
hallway are either open or closed. We test on 25 randomly
generated configurations of opened and closed doors with
each robot starting in a different random location. Robots
can only travel between rooms through open doors and they
cannot open or close doors. However, it is guaranteed there
is at least one path between each room and every other room.
In each experiment robots are set a fixed total task fulfilment
capacity constraint of the ratio of the number of tasks to the
number of robots. Robots stop being allocated additional
tasks once these capacities are met. For each configuration
we test with |R| ∈ {4, 6, 8, 10}, |T | ∈ {16, . . . , 60}, and
provide results for both the MiniMax and MiniSum team
objectives.

Each experiment configuration is tested with three differ-
ent initial task allocations: SSI auctions, SSC auctions with
|C| = 1

2 |T |, and SSC auctions with |C| = 2
3 |T |. All three

approaches produce a differing task to robot allocation and
therefore different initial paths and costs. These initial path
costs are included in our results (Tables 1 and 2) and pro-
vide reference for how much repeated auctions improve the
overall team objective. We note that SSI auctions provide
the highest overall initial costs and SSC auctions produce
lower overall initial costs which affirms (Heap and Pagnucco
2011) previous results. We also test each experiment config-
uration with two different clustering factors for calculating
K, CF = 1

2 and CF = 2
3 .

Tables 1 and 2 show the mean results of our experiments
with both the MiniMax and MiniSum team objectives re-
spectively. For both team objectives and in all robot/task
combinations there is a reduction in the final cost compared
to the initial cost for both clustering factors tested. We note
a general pattern in the results of both team objectives that,
as the number of robots increase, the percentage improve-
ment also increases and that this pattern is particularly strong
when SSI auctions are used for the initial allocation. Exper-
iments where SSI auctions are used for initial allocation also
show the largest improvement in the final cost compared to
the initial cost, however, we note that these experiments be-
gin with the highest initial costs. For the MiniMax team
objective the majority of the overall lowest final costs for
each robot/task combination occur when the CF = 2

3 and
these lowest final costs occur evenly across all initial alloca-
tion techniques. However, for the MiniSum team objective
there is a roughly even split between the lowest cost occur-
ring when the CF = 1

2 and CF = 2
3 and the vast majority

of overall lowest final costs occur when the initial allocation
is created with SSI auctions.

Conclusions
In this paper we have described a new algorithm for solving
the multi-robot task allocation problem. Our algorithm uses
repeated auctions to reallocate uncompleted tasks amongst
robots as individual tasks are completed. We provided an
analytical evalution of the communication and the solution
bounds. The results of our empirical experiments demon-
strate this algorithm results in a better final allocation of
tasks to robots than algorithms that only allocate tasks once.

We are currently considering future work including using
different clustering techniques such as self-organising maps,
testing on more complex environments, and forming clus-
ters of robots for bidding rather than individual robot bid-
ding. Furthermore, we plan to use these algorithms within
the RoboCup Rescue Simulation League.

References
Berhault, M.; Huang, H.; Keskinocak, P.; Koenig, S.; El-
maghraby, W.; Griffin, P.; and Kleywegt, A. 2003. Robot
exploration with combinatorial auctions. In Proc. IROS-03,
1957–1962.
Blum, A.; Chalasani, P.; Coppersmith, D.; Pulleyblank, B.;
Raghavan, P.; and Sudan, M. 1994. The minimum latency

2001

Initial Allocation using SSI Initial Allocation using SSC |C| = 1
2 |T | Initial Allocation using SSC |C| = 2

3 |T |
Capacity Robots Tasks Initial Final Cost Final Cost Initial Final Cost Final Cost Initial Final Cost Final Cost

Cost K = 1
2 |Tr| K = 2

3 |Tr| Cost K = 1
2 |Tr| K = 2

3 |Tr| Cost K = 1
2 |Tr| K = 2

3 |Tr|
4 4 16 1227 900 (26.7%) 1006 (18.0%) 1017 926 (8.9%) 882 (13.3%) 939 910 (3.1%) 899 (4.3%)
4 6 24 1206 818 (32.2%) 863 (28.4%) 994 801 (19.4%) 803 (19.2%) 833 794 (4.7%) 782 (6.1%)
4 8 32 1191 803 (32.6%) 825 (30.7%) 892 761 (14.7%) 726 (18.6%) 844 774 (8.3%) 766 (9.2%)
4 10 40 1251 704 (43.7%) 794 (36.5%) 826 695 (15.9%) 693 (16.1%) 759 682 (10.1%) 675 (11.1%)
5 4 20 1365 973 (28.7%) 991 (27.4%) 1097 969 (11.7%) 966 (11.9%) 1028 1005 (2.2%) 967 (5.9%)
5 6 30 1399 858 (38.7%) 825 (41.0%) 1012 887 (12.4%) 884 (12.6%) 931 828 (11.1%) 847 (9.0%)
5 8 40 1356 751 (44.6%) 808 (40.4%) 901 804 (10.8%) 791 (12.2%) 866 781 (9.8%) 766 (11.5%)
5 10 50 1273 695 (45.4%) 705 (44.6%) 824 729 (11.5%) 710 (13.8%) 802 725 (9.6%) 705 (12.1%)
6 4 24 1412 1058 (25.1%) 1055 (25.3%) 1213 1028 (15.3%) 1050 (13.4%) 1035 1010 (2.4%) 1006 (2.8%)
6 6 36 1441 951 (34.0%) 908 (37.0%) 1122 944 (15.9%) 919 (18.1%) 960 893 (7.0%) 858 (10.6%)
6 8 48 1341 805 (40.0%) 805 (40.0%) 998 830 (16.8%) 801 (19.7%) 938 796 (15.1%) 816 (13.0%)
6 10 60 1258 746 (40.7%) 757 (39.8%) 888 747 (15.9%) 717 (19.3%) 886 727 (17.9%) 737 (16.8%)

Table 1: Mean MiniMax Team Objective Results (percentage improvement of final cost compared to initial cost in brackets).

Initial Allocation using SSI Initial Allocation using SSC |C| = 1
2 |T | Initial Allocation using SSC |C| = 2

3 |T |
Capacity Robots Tasks Initial Final Cost Final Cost Initial Final Cost Final Cost Initial Final Cost Final Cost

Cost K = 1
2 |Tr| K = 2

3 |Tr| Cost K = 1
2 |Tr| K = 2

3 |Tr| Cost K = 1
2 |Tr| K = 2

3 |Tr|
4 4 16 2937 2459 (16.3%) 2488 (15.3%) 2713 2472 (8.9%) 2589 (4.6%) 2751 2499 (9.2%) 2487 (9.6%)
4 6 24 3640 2884 (20.8%) 2952 (18.9%) 3289 2879 (12.5%) 3078 (6.4%) 3355 2983 (11.1%) 3028 (9.7%)
4 8 32 4425 3346 (24.4%) 3420 (22.7%) 3882 3467 (10.7%) 3598 (7.3%) 3968 3382 (14.8%) 3534 (10.9%)
4 10 40 4902 3405 (30.5%) 3545 (27.7%) 4135 3550 (14.1%) 3728 (9.8%) 4354 3594 (17.5%) 3718 (14.6%)
5 4 20 3243 2710 (16.4%) 2683 (17.3%) 3002 2785 (7.2%) 2817 (6.2%) 3133 2768 (11.7%) 2835 (9.5%)
5 6 30 4100 3168 (22.7%) 3246 (20.8%) 3830 3322 (13.3%) 3340 (12.8%) 3790 3196 (15.7%) 3252 (14.2%)
5 8 40 4896 3579 (26.9%) 3494 (28.6%) 4382 3750 (14.4%) 3746 (14.5%) 4369 3765 (13.8%) 3788 (13.3%)
5 10 50 5458 3706 (32.1%) 3720 (31.8%) 4667 3902 (16.4%) 3915 (16.1%) 4812 3816 (20.7%) 3778 (21.5%)
6 4 24 3500 2923 (16.5%) 2975 (15.0%) 3488 3075 (11.8%) 3040 (12.8%) 3350 2964 (11.5%) 2910 (13.1%)
6 6 36 4513 3547 (21.4%) 3422 (24.2%) 4130 3597 (12.9%) 3651 (11.6%) 4247 3533 (16.8%) 3504 (17.5%)
6 8 48 5196 3886 (25.2%) 3763 (27.6%) 4842 4005 (17.3%) 3946 (18.5%) 4971 3941 (20.7%) 3949 (20.6%)
6 10 60 5896 4039 (31.5%) 4090 (30.6%) 5306 4205 (20.8%) 4225 (20.4%) 5401 4187 (22.5%) 4183 (22.6%)

Table 2: Mean MiniSum Team Objective Results (percentage improvement of final cost compared to initial cost in brackets).

problem. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, 163–171.
Croes, G. 1958. A method for solving traveling-salesman
problems. Operations Research 6:791–812.
Dias, M., and Stentz, A. 2000. A free market architecture
for distributed control of a multirobot system. Proc. of the
Int’l Conf. on Intelligent Autonomous Systems 115–122.
Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006.
Market-based multirobot coordination: A survey and anal-
ysis. Proceedings of the IEEE 94(7):1257–1270.
Elango, M.; Nachiappan, S.; and Tiwari, M. K. 2011. Bal-
ancing task allocation in multi-robot systems using k-means
clustering and auction based mechanisms. Expert Systems
with Applications 38(6):6486 – 6491.
Heap, B., and Pagnucco, M. 2011. Sequential single-cluster
auctions for robot task allocation. AI 2011 LNAI 7106:412–
421.
Koenig, S.; Tovey, C.; Lagoudakis, M.; Markakis, V.;
Kempe, D.; Keskinocak, P.; Kleywegt, A.; Meyerson, A.;
and Jain, S. 2006. The power of sequential single-item auc-
tions for agent coordination. Proc. AAAI-06.
Koenig, S.; Tovey, C.; Zheng, X.; and Sungur, I. 2007.
Sequential bundle-bid single-sale auction algorithms for de-
centralized control. Proc. IJCAI-07 1359–1365.
Koenig, S.; Keskinocak, P.; and Tovey, C. 2010. Progress

on agent coordination with cooperative auctions. In Proc.
AAAI-10.
Lagoudakis, M.; Markakis, E.; Kempe, D.; Keskinocak, P.;
Kleywegt, A.; Koenig, S.; Tovey, C.; Meyerson, A.; and
Jain, S. 2005. Auction-based multi-robot routing. Proc. Int.
Conf. on Robotics: Science and Systems 343–350.
Nanjanath, M., and Gini, M. 2010. Repeated auctions for
robust task execution by a robot team. Robotics and Au-
tonomous Systems 58(7):900–909.
Puig, D.; Garcia, M.; and Wu, L. 2011. A new global op-
timization strategy for coordinated multi-robot exploration:
Development and comparative evaluation. Robotics and Au-
tonomous Systems.
Solanas, A., and Garcia, M. 2004. Coordinated multi-
robot exploration through unsupervised clustering of un-
known space. In Proc. IROS-04, 717–721.
Tovey, C.; Lagoudakis, M.; Jain, S.; and Koenig, S. 2005.
The generation of bidding rules for auction-based robot co-
ordination. Multi-Robot Systems. From Swarms to Intelli-
gent Automata Volume III 3–14.
Zheng, X., and Koenig, S. 2009. K-swaps: Cooperative
negotiation for solving task-allocation problems. In Proc.
IJCAI-09, 373–379.

2002

