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Abstract

We resolve a several-years old open question in visibility-
based pursuit evasion: how many pursuers are needed to cap-
ture an evader in an arbitrary polygonal environment with
obstacles? The evader is assumed to be adversarial, moves
with the same maximum speed as pursuers, and is “sensed”
by a pursuer only when it lies in line-of-sight of that pursuer.
The players move in discrete time steps, and the capture oc-
curs when a pursuer reaches the position of the evader on its
move. Our main result is that O(

√
h + logn) pursuers can

always win the game with a deterministic search strategy in
any polygon with n vertices and h obstacles (holes). In or-
der to achieve this bound, however, we argue that the envi-
ronment must satisfy a minimum feature size property, which
essentially requires the minimum distance between any two
vertices to be of the same order as the speed of the players.
Without the minimum feature size assumption, we show that
Ω(

√
n/ logn) pursuers are needed in the worst-case even for

simply-connected (hole-free) polygons of n vertices! This re-
veals an unexpected subtlety that seems to have been over-
looked in previous work claiming that O(logn) pursuers can
always win in simply-connected n-gons. Our lower bound
also shows that capturing an evader is inherently more diffi-
cult than just “seeing” it because O(logn) pursuers are prov-
ably sufficient for line-of-sight detection even against an ar-
bitrarily fast evader in simple n-gons.

Introduction
Pursuit evasion games arise in applications ranging from
military strategy to trajectory tracking, search-and-rescue,
monitoring, surveillance and so on (Alspach 2004; Chung,
Hollinger, and Isler 2011; Fomin and Thilikos 2008). In the
last few decades, they have spawned a significant body of re-
search in graph searching, differential games, robotics, con-
trol theory and geometric algorithms (Alexander, Bishop,
and Ghrist 2006; Bopardikar, Bullo, and Hespanha 2007;
Isaacs 1965; LaPaugh 1993; Parsons 1976; Suzuki and Ya-
mashita 1992). The general problem addressed in this pa-
per relates to pursuit evasion in continuous space under a
visibility-based model of sensing (Suzuki and Yamashita
1992).
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In particular, we have an environment modeled as a poly-
gon P , possibly containing obstacles. We use h to denote
the number of obstacles, a mnemonic for “holes” in the
polygon, and n to denote the total number of vertices in
the environment, including the obstacles. A team of pur-
suers {p1, p2, . . . , pk} is tasked to locate and catch a mobile
evader e, and the fundamental question we seek to answer
is this: how many pursuers are always sufficient to catch the
evader, no matter what strategy it follows? Specifically, as a
function of n and h, what is the smallest number k of pur-
suers that guarantees a win for the pursuers in any polygon
of n vertices and h holes.

The history of pursuit-evasion games in geometric envi-
ronments is long, and can be traced to the celebrated “Lion-
and-Man” problem, attributed to Rado in 1930s: if a man
and a lion are confined to a closed arena, and both have
equal maximum speeds, can the lion catch the man? Sur-
prisingly, the man can evade the lion indefinitely as shown
by Besicovitch (Littlewood 1986)—the lion fails to reach the
man in any finite time although it can get arbitrarily close
to him. If we allow the capture to occur when the lion gets
within distance ε of the man, then the lion wins inO(r log r

ε )
time (Alonso 1992), where r is the radius of the circle,
and the maximum movement speed is one. An interested
reader may consult (Bopardikar, Bullo, and Hespanha 2008;
Chung, Hollinger, and Isler 2011; Kopparty and Ravis-
hankar 2005; Sgall 2001) for several other variations of the
problem.

The distinguishing feature of our work is the complex-
ity of the geometric environment, in particular, the presence
of obstacles that impede visibility and produce many differ-
ent homotopy classes of escape paths for the evader. Indeed,
even for the lion-and-man game, the only algorithmic work
exploring the effect of obstacles is by Karnad and Isler (Kar-
nad and Isler 2009), which considers the presence of a single
circular obstacle. Because of its adversarial nature, pursuit
evasion is also studied as a form of differential games and
solved using the Hamilton-Jacobi-Isaacs equation. Unfortu-
nately, the resulting system of differential equations is in-
tractable for all but the simplest of the environments, and
unsuited for the complex, multiply-connected environments
we consider.

The most relevant work to our research is the paper by
Guibas et al. (Guibas et al. 1999), which introduced a formal
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framework and analysis of visibility-based pursuit in com-
plex polygonal environments. In order to make the problem
tractable, however, Guibas et al. make one crucial simplify-
ing assumption: evader loses if it is “seen” by any pursuer.
That is, the pursuers need to only detect the presence of the
evader, and not physically catch it. With this weaker require-
ment of “capture,” Guibas et al. manage to prove several in-
teresting combinatorial bounds, including that Θ(log n) pur-
suers in a simply-connected polygon, and Θ(

√
h + log n)

pursuers in a polygon with h holes (obstacles), are always
sufficient and sometimes necessary. In fact, these bounds
hold even if the evader can move arbitrarily faster than the
pursuers.

In the intervening twelve or so years, there has been lit-
tle progress on extending these “detection” of evader bounds
to physical “capture” of the evader. In fact, there are only a
handful of small results to speak of. First, Isler et al. (Isler,
Kannan, and Khanna 2005) show that in simply-connected
polygons, two pursuers can capture the evader in expected
polynomial time using a randomized strategy. A determin-
istic version of their strategy works with O(log n) pursuers.
Recently, and almost simultaneously, two groups (Bhadau-
ria and Isler 2011) and (Klein and Suri 2011) proved that if
the location of the evader is always known to the pursuers,
e.g., using an ubiquitous camera network, then 3 pursuers
are enough to win the game. Without these extreme con-
ditions of unfair advantage to the pursuers, no non-trivial
upper bound on the number of pursuers necessary to win
the game is known. The main result of this paper is to re-
solve this question, and in the process uncover a mathemat-
ical subtlety that has been overlooked by previous work. In
particular, our paper makes the following contributions.

Statement of Results
We first prove a general lower bound of Ω(

√
n/ log n) for

the number of pursuers needed in the worst-case to catch an
equally fast evader in simply-connected (hole-free) polygons
of n vertices. This lower bound reveals an inconsistency
with the existing upper bound of O(log n) pursuers for the
same problem (Isler, Kannan, and Khanna 2005). In trying
to reconcile this inconsistency, we discovered that the pre-
vious upper bound makes some implicit assumptions about
the geometry of the environment, in particular the speed of
the players relative to the size of the environment. Our lower
bound shows that one needs to be careful about features of
the environment and not just the equality of the speed of the
evader and the pursuers.

We then show that a minimum feature size property of
the environment is sufficient to yield significantly better and
natural upper bounds for the capture problem. The mini-
mum feature size of a polygonal environment is the min-
imum distance between any two vertices (using the short-
est path metric in free space). We normalize the maximum
speed of the players to one, and require that the minimum
feature size of the environment to be at least one. We feel
that this condition naturally occurs in physical systems,
and its violation is the source of the Ω(

√
n/ log n) lower

bound mentioned earlier. With this assumption, we show

that O(
√
h + log n) pursuers are always sufficient to catch

the evader in a multiply-connected polygon of n vertices and
h obstacles (holes). When the polygon is simply-connected
(hole-free), this yields an O(log n) bound for the number
of pursuers. The pursuers’ winning strategy is deterministic,
and succeeds in polynomial time.

Preliminaries
Our pursuit evasion problem is set in a two-dimensional
closed polygonal environment P , with a total of n vertices
and h holes (where n includes the vertices of the holes). A
team of pursuers {p1, p2, . . . , pk} is tasked to locate and
catch an evader e. The evader and the pursuers have the
same maximum speed, which we assume to be one with-
out loss of generality. Abusing the notation slightly, we also
denote the current positions of the players as pi and e. The
players’ sensing model is based on line-of-sight visibility:
a pursuer can see the evader only if the latter is in the pur-
suer’s line of sight. That is, a pursuer p sees the evader e
only if the line segment (p, e) does not intersect the bound-
ary of the environment. The pursuers are assumed to operate
in a global communication model so that they can coordi-
nate their moves, and share their knowledge of the evader’s
location.

The players take alternate turns, where all the pursuers
can move simultaneously on their turn. In each turn, a player
can move to any position that is within distance one of its
current location, under the shortest path metric, in the free
space (the region of the polygonal environment not occu-
pied by holes). We assume that all the players know the
environment, and the pursuers do not know the strategies
or the future moves of the evader, although the evader may
have complete information about pursuers’ strategies. The
pursuers win if after a finite amount of time, some pursuer
becomes collocated with the evader. The evader wins if it
can evade indefinitely. The fundamental question we seek to
answer is this: what is the minimum value of k, the number
of pursuers, that guarantees a win for the pursuers?

We begin by establishing a lower bound that shows the
difficulty of capturing the evader in the general case, and
then introduce a natural geometric condition for the envi-
ronment, called the minimum feature size, which allows us
to prove significantly better upper bounds.

A General Lower Bound
Without any restrictions on the environment or the speed of
the players, except that pursuers and evader have the same
maximum speed, we prove the following lower bound.

Theorem 1. There exist simply-connected (hole-free) poly-
gons with n vertices that require at least Ω(

√
n/ log n) pur-

suers to catch an equally fast evader.

Proof. We give an explicit construction that forces the
claimed number of pursuers. Our polygons correspond to
complete binary trees in which an n-node tree is mapped to a
simple polygon of at most 12n vertices. Each edge of the tree
T maps to a “corridor with a bend,” which we call an edge
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corridor, and each vertex maps to a vertex corridor that in-
terconnects the edge corridors of its incident edges. Figure 1
shows the construction for a binary trees with 4 leaves. We
now show that this polygon can always be constructed such
that the vertex corridors are no longer than edge corridors,
thereby ensuring that the length of a shortest path between
any two points in the polygon is at most 4 log n—such a path
visits at most 2 log n edge and vertex corridors each. We ini-
tially construct the polygon so that each edge corridor has
length 1, while the vertex corridors get progressively longer
at higher levels of the tree. Since the number of nodes at each
level is halved, the length of the vertex corridor doubles. Be-
cause the tree has height log n, the longest vertex corridor (at
the root) level has length Θ(n), and so the polygon can be
embedded on a O(n)×O(log n) size grid. Next, to achieve
the property that vertex corridors are shorter than edge cor-
ridors, we apply a scaling transform along the y-axis so that
all edge corridors are stretched by a factor L, where L is
the length of the longest vertex corridor before the scaling.
Finally, we scale the entire polygon down to make the edge
corridors one unit long, thus ensuring that the shortest path
between any two points of the polygon has length at most
4 log n.

(a) (b)

Figure 1: (a) A binary tree; (b) the corresponding polygon.
We now argue that this construction requires

Ω(
√
n/ log n) pursuers to catch the evader, by pre-

senting an evader strategy that avoids its capture with fewer
pursuers. Suppose that a certain number of pursuers, say
p, each with maximum speed 4 log n, are sufficient to win
against the evader, who also has the maximum speed of
4 log n. Let us first consider the line-of-sight visibility
of any pursuer. A pursuer in a vertex corridor can only
see within that corridor plus at most three edge corridors
incident to that vertex corridor. A pursuer in an edge
corridor can see that corridor plus at most one incident
vertex corridor. Therefore, the p pursuers collectively have
visibility of at most p vertex corridors and their 3p adjacent
edge corridors. An evader located in any other corridor is
invisible to the pursuers.

We now reason about evader’s strategy by considering
how the pursuers’ positions partition the tree T . Consider
deleting from the tree T the p vertices and their 3p adja-
cent edges corresponding to the corridors visible to the pur-
suers. This partitions the tree into at most 2p+ 1 connected
components—each deletion splits one component into three,
thus increasing the component count by 2. By the pigeon-
hole principle, the largest component (call it C) must have
at least n−p

2p+1 nodes, and at least b n−p
2(2p+1)c non-leaf nodes

(corridors); the bound on non-leaf node holds because we
have a binary tree. The evader’s strategy is to move into

this largest component C on its next move. Since C is
pursuer-free, the entire component must be searched to lo-
cate and capture the evader. Each edge corridor has length
one, any pursuer moving at maximum speed can search at
most 4 logn+ 1 < 5 logn nodes (the pursuer may be closer
than one to the first corridor searched, so we give that one
for free), and so the p pursuers collectively can search at
most 5p log n nodes of C.1 Thus, for the pursuers to capture
the evader on their move, the following inequality must be
satisfied:

5p·log n ≥ b n− p
2(2p+ 1)

c−1 >
n− p

5p
>

n− n/2
5p

=
n

10p
,

which leads to p ≥ ( n
50 logn )1/2. (We have made no attempt

to optimize the constant factor in our proof, and instead fo-
cused on a quick derivation of the asymptotic bound.) Since
the polygon corresponding to a n-node tree has at most 12n
vertices, we conclude that in the worst-case capturing an
evader in a simply-connected n-gon requires Ω(

√
n/ log n)

pursuers.

Remark: Our lower bound seems to contradict a result
of (Isler, Kannan, and Khanna 2005) that O(log n) pursuers
can always capture an equally fast evader. (Strictly speaking,
their result claims win for just two pursuers using a random-
ized strategy. However, the randomization is used only for
locating the evader, and so their solution can be made de-
terministic by performing localization using O(log n) pur-
suers (Guibas et al. 1999).) The source of the contradiction
is that Isler et al. implicitly assume that the environment
is much larger than the speed of the players. In “practice”
this is an eminently reasonable assumption—their choice of
speed or “step size” is an attempt to discretely approximate
the “continuous motion” of players. However, mathemati-
cally, this is unsatisfactory because precisely what properties
of the environment are needed is not made clear. In concrete
terms, their “proof” that each vertex of the polygon is the
“blocking vertex” at most once is not valid in general, with
the polygon of our lower bound construction (Fig. 1) being
a particular counter-example.

In the remainder of the paper, we show that a simple ge-
ometric condition on the environment, which we call the
minimum feature size condition, allows us to circumvent the
lower bound of Theorem 1. In particular, we show that if
the environment is a simply-connected n-gon with mini-
mum feature size, then O(log n) pursuers can always win
the game. Our main result, however, is to settle the com-
plexity of pursuit evasion in polygonal environments with
holes, where no non-trivial bound was previously known.

Upper Bounds For Environments with
Minimum Feature Size

We begin with a definition of the minimum feature size.

1In fact, our estimate is conservative because the edges cor-
responding to leaves must be searched too—however, it does not
change the asymptotics of the lower bound.
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(a) (b)

(c) (d)

Figure 2: (a) A triangulation; (b) its dual graph; (c) the con-
tracted dual; (d) illustration of the recursive strategy—two
separating triangles (shaded) break the environment into 3
connected regions, each with at most 1 obstacle.

Definition 1. Minimum Feature Size: The minimum fea-
ture size of a (multiply-connected) polygon P is the mini-
mum distance between any two vertices, where the distance
is measured by the shortest path within the polygon.

We will assume that the minimum feature size of the en-
vironment is lower bounded by the maximum speed of the
players: i.e., the environment has minimum feature size of
at least one. One can check that the polygon used in our
lower bound (Figure 1) violates the minimum feature size:
the players’ maximum speed is 4 lognwhile the edges form-
ing the corridors or bends are closer than even 1.

The High Level Pursuit Strategy
We begin with a high-level description of the pursuers’
winning strategy. For ease of reference, we will split the
pursuers into three categories: guards, searchers, and a
catcher. The search is based on a divide-and-conquer strat-
egy that recursively partitions the environment, installing
some pursuers to guard the “separating triangles,” until the
search reaches simply-connected regions, at which point the
searchers locate the evader and the catcher captures it. In
particular, the strategy has the following main steps.

Algorithm RecursivePursuit
1. Compute a triangulation of the environment P .
2. Contract the dual of triangulation to an O(h) size graph
G.

3. Use the Planar Separator Theorem on G to identify
O(
√
h) triangles that partition P into two sub-polygons,

each containing at most 2h/3 holes.
4. Guard each “separating triangle” with a constant number

of pursuers so that the evader cannot move across the par-
tition without being captured.

5. Recursively search one side of partition, then the other.
6. The recursion stops when the sub-polygon has no holes.

Then, use our algorithm SimplePursuit to search for, and
capture, the evader.

The remainder of this section describes the details of this
strategy, but let us briefly discuss the complexity bound for

this strategy. A polygon with n vertices, and any number of
holes, can be triangulated in O(n log n) time (de Berg et al.
1997). We reduce this O(n) size triangulation graph to an
O(h) size planar graph by repeatedly contracting each graph
vertex of degree 2, and deleting every vertex of degree one.
(See Figure 2.) In the end, each surviving vertex has degree
3, and Euler’s formula for planar graph implies that G has h
faces, at most 2h− 2 vertices, and at most 3h− 3 edges.

We use this graph G to recursively divide the environ-
ment into two parts, so that each part has a constant fraction
of the holes. In the base case we reach simply-connected
sub-polygons of P . Specifically, we use the following well-
known Planar Separator Theorem (Lipton and Tarjan 1977;
Djidjev 1982).

Lemma 1. (Djidjev 1982) Every planar graph G = (V,E)
on n vertices admits a partition of the vertices into three sets
A, S, and B, such that neither A nor B has more than 2n/3

vertices, S has at most
√

6n vertices, and there are no edges
with one endpoint in A and the other endpoint in B. The set
of vertices S is called a separator of G.

Using this separator theorem, we can partition G into two
parts, each containing at most 2h/3 nodes, by deleting a set
of O(

√
h) nodes. In the geometric space, this separator cor-

responds to a set ofO(
√
h) triangles that divide the environ-

ment P into two parts, each containing at most 2h/3 holes.
(See Figure 2(d).)

Our main technical result, which is described in the re-
mainder of this section, is to show (i) how to guard each of
the separating triangles with a constant number of pursuers
to prevent the evader from escaping across the partition, and
(ii) how to search and capture the evader in the terminal
case of a hole-free sub-polygon. With those pieces in place,
it is now easy to see that the number of pursuers needed is
O(
√
h + log n), as follows. We will show that the algo-

rithm SimplePursuit needs only O(log n) guards to search,
and one additional pursuer to capture the evader when it
is found. Altogether, these O(log n) pursuers are reused
throughout the divide and conquer strategy, so they form
only an additive term. The primary demand for the pursuers
is in the form of guards, which are placed at the separat-
ing triangles throughout the divide-and-conquer. Their count
has the following recurrence: T (h) = T (2h/3) + c

√
h,

where c is a constant. This well-known recurrence solves to
T (h) = O(

√
h), easily proved by induction, and so the total

number of pursuers used by the algorithm isO(
√
h+logn).

Geometry of Guarding and Capture: Preliminaries
We begin with some technical preliminaries that form
the basis of our geometric pursuit strategies and analysis.
Throughout, we use the notation d(a, b) for the free-space
distance between two positions a and b. That is, given two
points a and b in the environment, d(a, b) is the length of the
shortest obstacle-avoiding path between them. By normal-
ization, we assume that the maximum speed of the players
is one—that is, a player can move from position a to b in the
environment in one move only if d(a, b) ≤ 1. The following
lemma gives a technical condition under which a pursuer is
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able to capture the evader.
Lemma 2. Consider a free space line segment ab containing
a pursuer p. If a move by the evader, from position e to e′,
crosses the segment ab at a point x that is closer to p than to
e, then p can capture the evader on its next move.

Proof. We first observe that the condition of the crossing
point x implies that the evader’s final position is within dis-
tance one from p. This follows from the triangle inequality:
d(p, e′) ≤ d(p, x) + d(x, e′) ≤ d(e, e′) ≤ 1. If e′ is visible
to p, then the capture is clearly trivial, so let’s assume that
the final position e′ is not visible to p.

Figure 3: The proof of Lemma 2.
Let ev be the last position during the move when the

evader is visible to p, which is necessarily further along
than x on the evader’s path. Using the triangle inequality
again, we conclude that d(p, ev) ≤ d(e, ev). The line seg-
ment pev must contain a vertex of the environment, call it
v, blocking p’s visibility past the point ev (see Figure 3).
We claim that the shortest path homotopic to (p, x, ev, e

′) is
(p, v, e′), that is, it consists of a single vertex v. This follows
from our minimum feature size assumption. Since the path
(p, x, ev, e

′) has length at most 1, the shortest path of the
same homotopy also has length at most one, and the mini-
mum feature size forbids two vertices with shortest path dis-
tance less than one. Thus, v is visible from both p and e′, and
d(p, v) + d(v, e′) ≤ 1. The pursuer p, therefore, can capture
by first moving to v and then to e′ in a single move. This
completes the proof.

The key idea in the pursuers’ strategy is to guard sepa-
rating triangles, as outlined earlier. Unfortunately, triangles
can be long and skinny, which makes guarding them against
an adversarial evader difficult. We, therefore, employ a more
complex and indirect strategy, which involves covering the
triangles with easier-to-guard shapes, namely, squares. As a
first step towards this goal, we define a trap to be an area
within the environment, guarded by a constant number of
pursuers, that cannot be “crossed” by the evader without be-
ing captured. Our next lemma shows that squares are feasi-
ble traps. In order to explain the main idea cleanly, we first
focus on a square region in isolation, without worrying about
the vertices or edges of the polygonal environment P . De-
fine a crossing path as a sequence of moves by the evader in
which it enters the square from one side and exits through a
different side.2

2If the evader “peeks” in through a side and later retracts
through the same side, then that does not qualify as a crossing path.

Lemma 3. Consider a square-shaped region R lying en-
tirely in the free space of the environment P . Four guards,
initially placed one at each corner, can guarantee that any
crossing path of the evader leads to its capture.

(a) (b)
Figure 4: Illustrating the proof of Lemma 3.

Proof. The proof is elementary but technical, highlighting
the subtle geometry of continuous space adversarial pur-
suit. Due to space limitation, we describe the main idea
of the proof, omitting technical details to the full version
of the paper. Without loss of generality, assume that the
evader enters the square R from the bottom edge, namely
ad. Let pa, pb, pc, pd, respectively, denote the guards origi-
nally placed at the four corners a, b, c, d. The pursuers pa and
pd will guard the edges ab and cd, respectively, and the re-
maining two pursuers guard the edge bc. See Figure 4(a). To
guard the edge ab, the pursuer pa always moves to a defen-
sive position on its turn, which we call the projection of the
evader on ab. The projection, denoted πe(ab), is the point on
ab that is closest to e′, namely, the foot of the perpendicular
from e′ to ab. By maintaining this position, pa always satis-
fies the condition of Lemma 2, ensuring e’s capture if it were
to cross ab. The same argument holds for pd and the edge cd.
The remaining case of bc turns out to be more complicated
because neither pb nor pc may be near the projection point
if the square’s side length bc is much larger than player’s
speed. We show that by coordinating their moves carefully
to track the evader, the two pursuers pb, pc can also prevent
crossing of bc.

Using the feasibility of a square-shaped trap, we next
complete our goal of guarding the triangles by the following
two steps: (1) cover each side of the triangle with a constant
number of square traps, and (2) carefully choose a particular
triangulation that permits such a covering by squares even in
the presence of obstacle boundaries. This is the topic of the
next subsection.

Triangle Covering by Squares and Constrained
Delaunay Triangulation
We show that each side of the triangle can be covered with
either one square, or two squares whose convex hull is a trap
in the shape of a pentagon. We call such a trap placement
a cover. The side of the triangle is either itself a side of the
cover or its diagonal. This trap has the property that unless
the evader re-crosses the same side of the triangle, any at-
tempt to exit the trap will result in a crossing path, and the
evader’s capture.
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(a) (b) (c)

Figure 5: Illustrating the proofs of Lemmas 4 and 5.

Lemma 4. Consider a triangle 4 ≡ 4abc whose circum-
circle does not contain any vertices or edges of the polygo-
nal environment P . Then, a side of 4 can be covered using
at most two free space squares.

Proof. We denote the circumcircle of the triangle by C, and
let r be its radius. Without loss of generality, we explain how
to cover the side ab of 4. In a circle of radius r, the largest
inscribed square has side length r

√
2. Thus, if |ab| ≤ r

√
2,

we can erect a square on ab as its side lying entirely within
C. This square is the cover of ab; see Figure 5(a).

On the other hand, if |ab| > r
√

2, we cover ab by com-
bining two squares, as shown in Figure 5(b). Consider the
perpendicular bisector of ab, and the two segments h and h′
into which ab divides the bisector. Since the bisector cannot
be longer than the diameter of C, either h or h′ must have
length at most r. Without loss of generality, suppose that h
is the shorter one. Then, the two right triangles created by
ab and h have hypotenuses, call them l and l′, of length at
most r

√
2, and so we can place two squares, one with l as a

side and one with l′ as a side. The convex hull of these two
squares (which is itself a square when ab is the diameter, and
otherwise a pentagon) is a trap that covers ab.

In general, a polygonal environment (even one without
holes) cannot be triangulated to achieve the condition re-
quired by the preceding lemma, namely, triangles whose cir-
cumcircles do not intersect obstacle boundaries. We, there-
fore, need to settle for something weaker, but sufficient
for our need. We need the concept of a Constrained De-
launay Triangulation (CDT) from computational geome-
try (Shewchuk 1999). Specifically, a constrained Delaunay
triangulation of a polygon (with holes) is a triangulation in
which (1) every edge of the polygon appears as an edge of
the triangulation, (2) the circumcircle of any triangle does
not contain any visible vertex of the polygon in its interior.
The visibility is defined as line-of-sight. Figure 5(c) shows
an example. We show in the following lemma that the exclu-
sion of “visible vertices” from the circumcircle of a triangle
is sufficient to cover each side of the triangles.

Lemma 5. Consider a triangle 4 ≡ 4abc whose circum-
circle does not contain any visible vertices of the polygonal
environment P . Then, any side of4 can be covered using at
most 16 guards.

Proof. The proof basically shows that because of the CDT
property, the only vertices that lie in the circumcircleC must
be invisible from 4, and therefore we do not need to guard

the portions of a covering square that are invisible. Due to
page limitation, we omit the mostly technical, but conceptu-
ally straightforward, details of the proof.

The Algorithm SimplePursuit
Capturing entails two distinct tasks: localizing the evader’s
position, and physically arriving at that location. The lower
bound of our Theorem 1 shows that with sufficient speed,
the evader can continuously nullify the pursuers localization
efforts. However, if the pursuers maintain full visibility of
the evader, then the situation is essentially equivalent to the
un-obstructed game of lion and man. This was formalized
by Isler et al, and we cite their result.
Lemma 6. (Isler, Kannan, and Khanna 2005) In an n vertex
hole-free polygon P , if a pursuer p knows the location of an
evader at all times, then it can capture e inO(n ·diam(P )2)
moves.

Thus the key problem for us is to show that pursuers can
maintain full visibility of the evader when we invoke the final
step of SimplePursuit. The following algorithm describes the
main steps of SimplePursuit, called on a simply-connected
environment P .

Algorithm SimplePursuit
1. Compute a constrained Delaunay triangulation (CDT) of

the environment P .
2. Choose a node of the dual graph (separating triangle) to

partition P into two or more sub-polygons, each contain-
ing at most n/2 triangles.

3. Place at most 6 squares, with at most 8 guards each, to
guard the “separating triangle” so that the evader cannot
move across the partition without being captured.

4. Locate the evader, then recursively pursue the evader in
the sub-polygon containing it.

5. The recursion stops when e lies in a triangle surrounded
by guarded triangles, at which point capture it using
Lemma 6.

We now prove the following result.
Theorem 2. Given a simply-connected polygon P of n ver-
tices with minimum feature size, O(log n) pursuers can al-
ways capture the evader in O(n · diam(P ) + diam(P )2)
worst-case number of moves.

Proof. This polygon-halving recursive strategy requires a
total of log n triangles to be guarded, each requiring a con-
stant number of guards. The terminal case of the search oc-
curs when the evader is confined to a single triangle sur-
rounded by three guarded triangles. Each trap is convex
(square or pentagon), and the guards can see the entire trap
they guard as well as the triangle they cover. Further, the
number of vertices in the terminal sub-polygon is a constant,
its diameter is at most 2 · diam(P ), and so by Lemma 6 the
capture takes O(diam(P )2) number of moves. Throughout
the divide-and-conquer, we have log n localization searches,
but the number of vertices in the sub-polygons shrink by half
each time, giving a telescopic sum of

∑logn
i=1

c·n
2i diam(P ) =

O(n · diam(P )). The theorem follows.
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Analysis of RecursivePursuit
We now have all the machinery in place to complete the
proof that the algorithm RecursivePursuit successfully cap-
tures the evader in a polygonal environment with obsta-
cles. We will need a technical lemma that extends the lo-
calization algorithm of Guibas et al. (Guibas et al. 1999) to
regions within multiply-connected environments.3 (Due to
space limitation, we omit its technical, but simple, proof.)
Lemma 7. Let P be a multiply-connected polygonal envi-
ronment with n vertices, and suppose the evader is confined
to remain inside a simply-connected polygonal subspace S
of P , bound by k vertices. Then, using O(log k) pursuers,
we can locate the evader within S in O(k · diam(P )) num-
ber of moves.

We are now ready to state and prove the main result of our
paper.
Theorem 3. Let P be a polygonal environment with n ver-
tices and h disjoint obstacles (holes), satisfying the mini-
mum feature size. Then,O(

√
h+log n) pursuers are always

sufficient to simultaneously locate and capture an equally
fast evader inO(n·diam(P )+diam(P )2) number of moves.

Proof. The recursive algorithm searches a total of h hole-
free regions. These regions are disjoint, except sharing of
the separating triangles’ traps. If the ith hole-free region
has ni vertices, where

∑
i ni = O(n), then by Lemma 7,

searching it takes O(ni · diam(P )) moves, which sum to
O(n ·diam(P )). The total time needed to position guards at
all the separating triangles is O(h · diam(P )), because each
pursuer needs to move at most O(diam(P )) distance. When
the evader is finally confined to a hole-free sub-polygon,
the capture is guaranteed to occur in O(n · diam(P ) +
diam(P )2) number of moves as shown by Theorem 2. This
completes the proof.

Closing Remarks
We have shown that O(

√
h + log n) pursuers can always

capture an equally fast evader in any polygon with n ver-
tices and h obstacles (holes). This matches the best bound
known for just detecting an evader (a simpler problem) in the
visibility-based pursuit. Our research also revealed an unex-
pected subtlety of the capture problem, relating the players’
speed to the minimum feature size of the environment, which
had not been realized in the previous work. Further, we
show that capturing the evader is provably harder than de-
tecting because capturing without the minimum feature size
requires Ω(

√
n/ log n) pursuers (in simply-connected poly-

gons) while detection can be achieved with just O(log n)
pursuers, even against an arbitrarily fast evader (Guibas et
al. 1999).

3The technical claim of this lemma is that the localization can
be accomplished in time proportional to the diameter of the orig-
inal environment, namely, diam(P ), even if the subspace S can
have significantly larger diameter. Though counter-intuitive, in a
multiply-connected polygon, a sub-polygon can have a larger di-
ameter than the original polygon.
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