
Searching for Optimal Off-Line Exploration Paths in
Grid Environments for a Robot with Limited Visibility

Alberto Quattrini Li and Francesco Amigoni
Politecnico di Milano

Piazza Leonardo da Vinci 32
20133 Milano, Italy

Nicola Basilico
University of California, Merced

5200 North Lake Rd
Merced, CA 95343, USA

Abstract

Robotic exploration is an on-line problem in which
autonomous mobile robots incrementally discover and
map the physical structure of initially unknown environ-
ments. Usually, the performance of exploration strate-
gies used to decide where to go next is not compared
against the optimal performance obtainable in the test
environments, because the latter is generally unknown.
In this paper, we present a method to calculate an ap-
proximation of the optimal (shortest) exploration path
in an arbitrary environment. We consider a mobile robot
with limited visibility, discretize a two-dimensional en-
vironment with a regular grid, and formulate a search
problem for finding the optimal exploration path in the
grid, which is solved using A*. Experimental results
show the viability of our approach for realistically large
environments and its potential for better assessing the
performance of on-line exploration strategies.

Robotic exploration for map building is a fundamental task
in which autonomous mobile robots use their onboard sen-
sors to incrementally discover the physical structure of ini-
tially unknown environments (Thrun 2002). The mainstream
approach follows a Next Best View (NBV) process, i.e., a re-
peated greedy selection of the next best observation location,
according to an exploration strategy (Stachniss and Burgard
2003; Gonzáles-Baños and Latombe 2002; Tovar et al. 2006;
Basilico and Amigoni 2011). At each step, a NBV system
considers a number of candidate locations on the frontier
between the known free space and the unexplored part of
the environment, evaluates them using a utility function, and
selects the best one. Current experimental evaluation of ex-
ploration strategies is almost exclusively based on relative
comparisons between their performance in some test envi-
ronments (Amigoni 2008; Lee and Recce 1997). As a con-
sequence, it is difficult to assess how much room for im-
provement on-line exploration strategies have. A more com-
plete evaluation should involve an absolute comparison be-
tween the performance of (on-line) exploration strategies
and the optimal (off-line) performance in the test environ-
ments, based on the competitive ratio. In general, the com-
petitive ratio of an on-line algorithm a is Pa

Po
, where Pa is

the performance of a in an environment and Po is the per-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

formance of the optimal off-line algorithm that knows the
environment in advance (Ghosh and Kleinl 2010). To al-
low calculating the competitive ratio for on-line exploration
strategies used in autonomous mobile robotics, in this paper
we address the problem of finding the optimal exploration
path for test environments, when the optimality criterion is
the travelled distance.

The problem of finding a shortest continuous exploration
tour (a closed path starting and ending at the same point) for
arbitrary two-dimensional polygonal environments has been
shown to be NP-hard even in the case the robot has time-
continuous perceptions (Arkin, Fekete, and Mitchell 2000).
In this paper, we provide a method for calculating an ap-
proximation of the shortest continuous exploration path for
mapping a given environment. More precisely, we consider
a single robot with a limited range sensor moving in an ar-
bitrary two-dimensional environment and performing time-
discrete perceptions (i.e., at discrete points along a path).
We assume to know the environment and we discretize it
by using a two-dimensional fine-grained regular grid. Then,
we formulate a search problem to calculate the shortest dis-
crete exploration path in the grid, which can be solved using
A*. Extensive experimental activities show the viability of
our approach for realistically large environments. We also
introduce some speedup techniques that reduce the compu-
tational time required to find the shortest exploration path
in a grid, slightly penalizing the solution quality. With the
availability of the optimal exploration paths, we show how
to calculate the competitive ratio for the on-line exploration
strategies considered in (Amigoni 2008).

Related Work
The problem of calculating an exploration path is an instance
of the area coverage problem, in which a robot equipped
with a covering tool with limited range has to completely
cover an unknown planar environment (Choset 2001). As
said, finding an optimal off-line area covering tour for the
robot (i.e., a closed path that returns to the starting point such
that every non-obstacle point of the environment is covered)
is NP-hard for arbitrary polygonal environments (Arkin,
Fekete, and Mitchell 2000). Hence, a number of approxima-
tion algorithms have been developed. For example, Arkin,
Fekete, and Mitchell (2000) propose an algorithm that con-
structs a tour of length at most 2.5 times the length of the

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2060

optimal tour in a time O(n log n), where n is the number
of edges of the polygonal environment. The provably com-
plete coverage methods that approximate the environment
with cells of same size and shape reported in (Choset 2001)
are not guaranteed to produce shortest coverage paths, as
for example the wavefront propagation method of (Zelin-
sky et al. 1993). The method in (Gabriely and Rimon 2001)
uses an optimality criterion that is not related to the length
of the path but to avoid repetitive coverage. Moreover, for
the above methods, the cell size is the sensor footprint and
the robot has time-continuous perceptions, so they cannot be
applied to the problem we consider in this paper.

Finding an optimal covering tour reduces to finding an op-
timal watchman tour when the sensors of the robot have infi-
nite range. The optimal watchman tour is the shortest closed
path inside a polygon P such that every point of P is vis-
ible from some point along the path. Also finding the op-
timal watchman tour is NP-hard for general polygons (Ur-
rutia 2000). However, some algorithms can solve the opti-
mal watchman tour problem in polynomial time for simple
polygons (Chin and Ntafos 1991). In addition to infinite vis-
ibility, the above algorithms address the problem of finding
optimal watchman tours, while in our problem we are look-
ing for optimal exploration paths.

To the best of our knowledge, we are not aware of any al-
gorithm that solves the problem of finding shortest off-line
exploration paths in grid environments for a robot with lim-
ited and time-discrete visibility.

Optimal Exploration Problem
Assumptions and Problem Statement
We assume a single autonomous mobile robot moving in
an arbitrary two-dimensional environment. The environment
is represented by a finite grid, whose cells are identical
squares. Each cell can be either free or occupied (by ob-
stacles). Hence, the grid E representing the environment is
partitioned in sets of cells Ef and Eo containing the free
and the occupied cells, respectively. The free space Ef and
the obstacles Eo can have any form. In the following, with
a slight notation overload, we use the same symbol q to in-
dicate both the cell q ∈ E and the position of its center in
a global reference frame. Since we are interested in calcu-
lating the optimal exploration path, we assume that the en-
vironment is static and completely known in advance, so we
can formulate an off-line problem.

The robot is considered as a point (this assumption is
without loss of generality if obstacles are “grown” to ac-
count for the real size of the robot, as usual in path plan-
ning (LaValle 2006)). The robot starts in the center of a free
cell and its basic movements are from the center of its cur-
rent cell to the center of another free cell. We assume that
the grid is 8-connected. The robot is equipped with a 360◦

range sensor with a finite range r. With such a sensor, we
can ignore the orientation of the robot and consider only its
position on the grid. We consider a laser range finder sen-
sor that perceives the state of any cell whose center can
be connected to the position of the robot with a straight
line segment of maximum length r and crossing only free

cells (without passing between occupied cells that share a
vertex). We assume that the perception of the robot is dis-
crete: the robot perceives the surrounding environment and
updates the map only when in the next position and not con-
tinuously while moving (time-discrete perception is often
assumed by on-line exploration algorithms (Amigoni 2008;
Amigoni and Caglioti 2010; Gonzáles-Baños and Latombe
2002; Tovar et al. 2006; Tovey and Koenig 2003)). More pre-
cisely, the robot operates according to the following steps:
(a) it perceives the surrounding environment, (b) it integrates
the perceived data within a map representing the environ-
ment known so far, (c) it reaches the next position and starts
again from (a). Since we are interested in optimal explo-
ration, we assume that the movements and the perceptions
of the robot are error-free (i.e., deterministic). As a conse-
quence, the robot perfectly knows its position in the envi-
ronment.

The problem we address in this paper is the following.
Given an environment represented by a grid E, given a robot
with a laser range finder sensor with range r, and given an
initial position q0 for the robot in E, find an optimal se-
quence of positions (centers of cells) Q = 〈q0, q1, . . . , qn〉
the robot should reach such that every free cell q ∈ Ef is
perceived by the robot from at least a position qi ∈ Q. The
optimal exploration path for the robot is the sequence Q
that minimizes the travelled distance, namely the quantity∑

i=0,1,...,n−1 d(qi, qi+1), where d(qi, qi+1) is the length of
the shortest path lying in Ef connecting qi to qi+1.

Formulation of the Search Problem
To solve the optimal exploration problem, we formulate
a corresponding search problem, following a classical ap-
proach in Artificial Intelligence (Russell and Norvig 2010,
Chapter 3). A state s in our search problem formulation is a
pair (q,M) composed of the current position q of the robot
in the environment and the map M ⊆ E built so far during
exploration.

• Initial state. The initial state s0 = (q0,M0) is represented
by the initial position of the robot q0 in the environment
E and by the initial map M0, which contains the cells of
E perceived from q0.
• Actions. From a state s = (q,M), applicable actions for

the robot are to move to free cells q′ ∈M reachable from
q and perceive the environment surrounding q′. A free cell
q′ is reachable from q when there is a safe path (within M
and not colliding with any obstacle) between q and q′ can
be found. The path is calculated using a wavefront prop-
agation algorithm on M (LaValle 2006, Chapter 8), con-
sidering cost 1 for vertical and horizontal movements and
cost
√
2 for diagonal movements (recall that we consider

8-connected grids). In principle, from a state s = (q,M),
there are as many actions as many reachable free cells q′
in the current map M . However, to limit the number of
these actions (and the branching factor of the search tree
used to calculate a solution), we consider only reachable
free cells q′ that are on the boundary between known and
unknown parts of the map M . This assumption can affect
optimality, for example at the end of a corridor, where

2061

the robot does not need to reach the boundary to perceive
the remaining part of the environment. An open issue is
finding a non-trivial bound on the penalty on optimality
introduced by this assumption.

• Transition function. The new state resulting from per-
forming applicable action “move to q′” in state s =
(q,M) is s′ = (q′,M ′), where M ′ is the map M updated
with the new perception in q′.

• Goal test. A state s = (q,M) is a goal state when M is
a complete map of the free space of the environment E,
namely when all the free cells of Ef are present in M .
(Interior of obstacles are invisible to the robot and cannot
be considered to detect termination.)

• Step cost. The step cost for going from a state s = (q,M)
to a successor state s′ = (q′,M ′) is cd = d(q, q′).

A solution to the above search problem is a finite sequence
of states S = 〈s0, s1, . . . , sn〉 such that s0 is the initial
state and sn is a state that satisfies the goal test. An optimal
solution is a solution with minimum cost. From a solution
S = 〈s0 = (q0,M0), s1 = (q1,M1), . . . , sn = (qn,Mn)〉
of the search problem it is trivial to extract a solution Q =
〈q0, q1, . . . , qn〉 to the optimal exploration problem.

It is worth explicitly noting that searching for an optimal
exploration path is different from searching for an optimal
path between two points in an unknown environment (e.g.,
using algorithms like D* (LaValle 2006, Chapter 12), Learn-
ing Real-Time A* (Russell and Norvig 2010, Chapter 4),
and PHA* (Felner et al. 2004)). First, in our problem, we
don’t know a priori the position of the robot at the end of
exploration. Hence, we cannot operate in a state space in
which each state is a position (cell) of the robot in the envi-
ronment, but we need a more complex representation of state
that accounts also for the portion of the environment discov-
ered so far. Second, our approach is off-line and the robot
should not physically move between positions (states).

Solution of the Search Problem
In principle, we can use any search algorithm to solve the
problem formulated in the previous section. By some pre-
liminary experiments, we obtained that A* performs slightly
better than branch and bound on the environments of Fig-
ure 1 and so, although this issue deserves further investi-
gation, we decided to use A* in our experimental activity.
In order to apply informed strategies like A*, we need an
heuristic function that, given a state s, returns the estimated
cost of a solution from s. For the travelled distance, heuris-
tic function hd(s), with s = (q,M), is calculated as the
difference between the distance of the farthest unexplored
free cell of E and the range of the sensor (multiplied by

√
2

to account for the fact that all the area of a cell, including its
diagonal, is perceived at once):

hd(s) = max
q′∈Ef

d(q, q′)− r
√
2. (1)

The idea is that, in order to completely map the free space
of environment E, the robot has (at least) to perceive the
farthest cell of Ef . It is easy to show that the above heuristic

function is admissible and that, as a consequence, solving
the search problem with A* guarantees to find an optimal
solution (Russell and Norvig 2010, Chapter 3).

The worst-case computational complexity of our A*-
based approach is exponential in the number of perceptions
needed to completely map an environment (i.e., in n). How-
ever, as the results of the next section show, our approach
can find optimal exploration paths for realistically large en-
vironments in reasonable time. In the attempt to improve
the efficiency of our approach, we introduce a number of
speedup techniques that are expected to reduce the computa-
tional effort, at the expense of worsening the quality (length)
of solutions. Their effectiveness will be evaluated in the ex-
perimental activity.

Footprint sensor. The laser range finder sensor model
can be substituted by a (less realistic) footprint sensor that
perceives the state (free or occupied) of any cell whose cen-
ter lies within the circle centred in the robot with radius r.

Weaker goal test. We can consider a weaker version of
the goal test for which a state s = (q,M) is a goal state
when M contains a fraction G of the cells in Ef . In our
experiments, we will use G = 0.85, 0.90, 0.95. (This is of
interest for rescue applications for which knowing the gen-
eral structure of the environment would suffice.) Of course,
if G = 1.00, the weaker goal test is equivalent to the original
goal test. With a weaker goal test, the heuristic function (1)
becomes:

hd(s) =

(
max
q′∈Ef

d(q, q′)− r
√
2

)
·max

(
0, G− |M |

|Ef |

)
(2)

Clustering boundary cells. Adjacent boundary cells in
the current map M are grouped in clusters, according to the
8-adjacency of the grid. Then, for each cluster, the cell be-
longing to the cluster that is closest to the centroid of the
cluster is selected as representative of the cluster. More pre-
cisely, for a cluster C with h boundary cells p1, p2, . . . , ph
the representative cell c is selected as

c = arg min
pi∈C

d

(
pi,

∑
i=1,2,...,h pi

h

)
,

where the sum is over the vector representation of positions
pi. In this way, only cells representative of clusters of bound-
ary cells in M are considered for generating actions in a state
s = (q,M), drastically reducing the number of these actions
and the branching factor of the search tree.

Eliminating small clusters. When applying clustering
of boundary cells, we can avoid to consider small clusters,
namely clusters that contain less than k boundary cells. The
idea behind eliminating small clusters is that their contribu-
tion to the exploration of the environment is small. If small
clusters are eliminated, then the search algorithm could be
prevented from finding any solution when some free cells of
E are visible only by reaching a small cluster.

Experimental Activity
Extensive simulated experiments have been conducted in
the three environments, called indoor, openspace, and ob-

2062

(a) indoor (b) openspace (c) obstacles

Figure 1: The three environments (points represent different initial positions for the robot)

DISTANCE
CELL SIZE r = 20 r = 25 r = 30

G = 85%
1 674.8 (56.0)∗(2) 575.4 (49.6) 503.1 (49.4)
2 670.3 (50.4) 586.3 (44.6) 494.7 (43.6)
4 657.9 (55.9) 571.3 (38.2) 522.8 (47.2)

G = 90%
1 762.8 (45.2)∗(2) 636.5 (53.4) 570.5 (57.2)
2 751.2 (51.1)∗(1) 666.0 (51.4) 560.4 (50.4)
4 744.1 (48.8) 638.7 (44.0) 585.9 (46.1)

G = 95%
1 831.4 (56.3)∗(6) 715.3 (54.8) 648.5 (57.4)
2 820.9 (47.7)∗(2) 746.3 (65.1) 633.8 (59.3)
4 861.7 (76.7)∗(2) 729.6 (52.8) 663.1 (46.3)

Table 1: Results (average and standard deviation) for the
indoor environment (∗(#): # of runs terminated due to the
timeout)

stacles, reported in Figure 1 (boundaries of environments
are considered as obstacles), which are the same considered
in (Amigoni 2008). The line segment reported in the fig-
ure measures 30 units, so the size of the environments is
approximately 350 unit × 250 unit. If we consider a unit
equivalent to 0.1 m (which is reasonable, given the cell size
and the sensor range values discussed below), we can say
that the size of environments is realistically large. The envi-
ronments have been discretized in square grids, using three
different resolutions. We considered three cell sizes, corre-
sponding to edges of 1, 2, and 4 units, from the highest to the
lowest resolution. We considered three values for the sensor
range r, namely 20, 25, and 30 units, and three values for
the weaker goal test G, namely 0.85, 0.90, and 0.95. For an
environment, we call setting a combination of cell size, r,
and G. For each setting and for each initial position (shown
as points in Figure 1), we ran our approach to find the opti-
mal exploration path (implemented in C++) using cd as cost
function. We set a timeout of 5 hours for each run. For the
runs that found a solution within the timeout, we measured
the travelled distance (length) of the solution.

Table 1 reports experimental results for the indoor envi-
ronment. In all experiments we considered the footprint sen-
sor and the clustering of boundary cells. The values reported
in each entry are the average and the standard deviation (in
parentheses) over the 10 initial positions for the correspond-
ing setting. We also report the number of runs that have not
terminated within the timeout. An example of a generated
optimal exploration path is shown in Figure 2.

Figure 2: Optimal exploration path for the initial position 1
of the indoor environment (cell size = 4, G = 0.85, and r =
30), black cells are unknown, light grey cells are obstacles,
white cells are free, dark grey cells are the positions from
where the robot perceives the environment, and red cells are
the path

From Table 1, it emerges that the travelled distance de-
creases when the sensor range r increases. Unsurprisingly, a
robot with a wider sensor can explore the environment more
efficiently. Another expected behavior is that the travelled
distance increases when the robot is required to explore an
increasingly larger fraction G of the environment. The varia-
tion of the quality of the solution with respect to the cell size
does not show any strong pattern. This can be explained by
noting that, when changing the cell size, the positions of the
cell centers change in the environment, changing the possi-
ble discrete paths the robot can follow and the set of cells
the robot perceives for a given r.

Computational time for finding solutions varies greatly
with the setting. For example, finding the optimal explo-
ration path requires an average time of 0.33 seconds for cell
size = 4, r = 30, and G = 0.85, while 6 out of 10 runs
do not terminate within 5 hours and the remaining 4 runs
terminate in 4132.30 seconds on average for cell size = 1,
r = 20, and G = 0.95 (on a computer equipped with a
1.60 GHz i7-720QM processor and 8 GB RAM). In gen-
eral, computational time increases when cell size decreases,
r decreases, and G increases (data are not shown here due
to space constraints). Figure 3 shows that the computational

2063

Figure 3: Computational time to find the optimal exploration
path for different initial positions and G (cell size = 4 and
r = 25)

time required for finding the optimal exploration path highly
depends on the initial position in the environment (results
are similar for other settings). In particular, position 8 is in
the middle of the top corridor of the indoor environment and,
from there, the search for the optimal exploration path is ex-
pensive because it has to follow two main branches, corre-
sponding to going first right and then left, or vice versa. On
the other hand, position 1 is at the bottom of the left vertical
corridor and searching for an optimal exploration path from
there basically amounts to perform a “focused” depth-first
search, which is very fast.

Figure 3 reports also the time for G = 1.00. Note that the
heuristic function (1) used for G = 1.00 dominates (is not
smaller than) the heuristic function (2) used for G < 1.00.
Being both admissible, a basic property of A* (namely, dom-
inant heuristic functions never expand more nodes than the
dominated ones) explains why the computation time for ini-
tial position 8 is larger for G = 0.95 than for G = 1.00. For
the same setting of Figure 3, Figure 4 shows that the trav-
elled distance of the optimal solution grows almost linearly
with G, up to G = 1.00. Moreover, the travelled distance re-
quired to explore the indoor environment is about the same
independently of initial positions (as also evidenced by the
small standard deviations of Table 1).

We now experimentally evaluate the impact of the
speedup techniques introduced in the previous section. In
all the above experiments, we have used the footprint sen-
sor. As expected, using the more realistic laser range finder
sensor increases the computational time (see Figure 5 for an
example relative to a setting). However, rather surprisingly,
the solution quality obtained with the less realistic footprint
sensor is very similar to that obtained with the more realistic
sensor model, as shown in Figure 6. While, in principle, us-
ing the footprint sensor can cause a large difference in cost
with respect to the laser range finder sensor (e.g., with two
narrow parallel corridors, when moving along one of them,
the footprint sensor could perceive also the other one), this
does not happen in our test environments. These results pro-

Figure 4: Optimal travelled distance for different initial po-
sitions and G (setting is the same of Figure 3)

Figure 5: Computational time for finding the optimal explo-
ration path for different initial positions and sensor models
(cell size = 4, G = 0.85, and r = 20)

vide an a posteriori justification of the use of the footprint
sensor in generating data in Table 1.

In the experiments of Table 1, we have also used the clus-
tering of boundary cells. Without this clustering, the cost of
computing a solution explodes and our algorithm does not
find any solution within the timeout, even for simple set-
tings. For example, for cell size = 4, r = 30, and G = 0.85,
the algorithm with clustering terminates in an average time
of 0.37 seconds, generating about 2, 000 nodes, while the
algorithm without clustering terminates at the timeout for
every initial position, after having generated about 500, 000
nodes.

Eliminating small clusters provides a consistent reduction
of computational time, without affecting too much the so-
lution quality (data are not shown here due to space con-
straints).

Tables 2 and 3 report experimental results for openspace
and obstacles environments, respectively. Also in these ex-
periments we have considered the footprint sensor and the
clustering of boundary cells. Moreover, we have eliminated

2064

Figure 6: Optimal travelled distance for different initial po-
sitions and sensor models (setting is the same of Figure 5)

DISTANCE
CELL SIZE r = 20 r = 25 r = 30

G = 85% 2 3388.9 (249.8)∗(2)+(2) 2351.1 (186.1)+(1) 1627.1 (112.6)
4 3091.1 (217 2)+(1) 2328.6 (200.0)+(1) 1764.3 (102.4)

G = 90% 2 3732.1 (195.1)∗(3)+(2) 2558 2 (181.0)+(1) 1808.4 (155.9)
4 3384.0 (182.3)+(1)∗(1) 2530.4 (190.5)+(1) 1945.9 (107.3)

G = 95% 2 4856.9 (643.0)∗(3)+(5) 2913 5 (133.1)∗(2)+(2) 2119.8 (146 2)
4 4103.9 (565.7)+(2)∗(2) 2893 5 (339.2)∗(1)+(2) 2218.1 (105.6)

Table 2: Results (average and standard deviation) for the
openspace environment (∗(#): # of runs terminated due to
the timeout, +(#): # of runs terminated due to empty fron-
tier)

clusters smaller than k = 80 cells and k = 16 cells for
the openspace and the obstacles environments, respectively.
These values have been empirically set considering that
clusters are larger in the openspace environment. Employ-
ing this last method, some runs terminate without a solu-
tion because of empty frontier, namely because there are no
available destination positions. These runs are reported in
the tables together with runs that terminate due to the time-
out. As expected, runs terminating because of empty fron-
tier are more frequent in the openspace environment, where
we used a larger k, and for larger values of G, for which
a larger amount of environment has to be discovered. Note
that, for the openspace and the obstacles environments, we
do not report results for cell size = 1 because too many runs
terminate at the timeout and corresponding averages are not
significant. All the above considerations relative to the in-
door environment hold also for the openspace and obstacles
environments.

Discussion
In general, experimental results show that our approach can
be applied to calculate the optimal exploration path in real-
istically large environments. Moreover, the approach offers
the possibility of trading-off between solution quality and
computational time by tuning cell size and G and by adopt-
ing the speedup techniques.

Since the environments of Figure 1 are the same used
in (Amigoni 2008) to experimentally compare some on-

DISTANCE
CELL SIZE r = 20 r = 25 r = 30

G = 85% 2 633.9 (25.1) 564.0 (19.6)∗(1) 451.1 (9.5)
4 631.8 (25.1) 531.2 (19.9) 458.4 (14.9)

G = 90% 2 746.6 (48.1) 636.8 (38.9)∗(1) 501.7 (19.3)
4 721.1 (42.0) 601.1 (22.9) 518.7 (17.5)

G = 95% 2 885.6 (68.7)∗(3)+(3) 735.5 (61.7)∗(1) 581.1 (34.0)
4 859.5 (66.3)∗(2)+(0) 702.2 (24.4) 595.5 (17.6)

Table 3: Results (average and standard deviation) for the ob-
stacles environment (∗(#): # of runs terminated due to the
timeout, +(#): # of runs terminated due to empty frontier)

Figure 7: Performance (travelled distance) and competitive
ratios C of some on-line exploration strategies

line exploration strategies for robots with limited and time-
discrete visibility, we can calculate the competitive ratio
for these strategies. Actually, we calculate an approximated
competitive ratio using the approximation of the optimal ex-
ploration path returned by our approach. Figure 7 shows the
results relative to the indoor environment with r = 20 and
G = 0.95. It can be noted that on-line exploration strate-
gies GB-L (Gonzáles-Baños and Latombe 2002) and A-C-
G (Amigoni and Caglioti 2010) show near-optimal perfor-
mance. This finding is one of the original contributions that
our approach enables. Note that, in real environments that
are not known in advance, our approach can be applied to
calculate the competitive ratio of on-line exploration strate-
gies a posteriori, when the environments are mapped.

By calculating the competitive ratio for practical on-
line exploration strategies employed in autonomous mobile
robotics, we contribute to bridge the gap with theoretically-
defined exploration strategies, see (Albers, Kursawe, and
Schuierer 2008; Tovey and Koenig 2003) and the sur-
veys (Ghosh and Kleinl 2010; Isler 2001). The former ones
decide where to go on the basis of the current knowledge
of the environment, while the latter ones are defined by be-
haviors independent of the specific environment. Theoretical
results often present bounds on the competitiveness of on-
line exploration strategies in classes of environments. For
instance, while Tovey and Koenig (2003) consider generic
graph environments, Albers, Kursawe, and Schuierer (2008)
present bounds on the competitiveness of some on-line ex-
ploration strategies for grid environments. However, their re-
sults are not directly comparable with ours, since they con-
sider a robot with visibility limited to the current node (cell).

Finally, one might wonder about the difference between
the optimal discrete exploration paths found with our ap-
proach and the optimal continuous exploration paths for the

2065

same environments. The fact that the travelled distance does
not change much when cell size decreases (see Tables 1-3)
makes us confident that our approximation is much smaller
than the 2.5 bound of (Arkin, Fekete, and Mitchell 2000),
but with a higher worst-case computational complexity (at
least in the environments of Figure 1). However, the problem
remains basically open and requires further investigation.
Some hints could come from the results in (Nash, Koenig,
and Tovey 2010), which show that the shortest discrete path
between two points calculated in a two-dimensional grid is
about 8% longer than the corresponding shortest continuous
path.

Conclusions
In this paper we have presented a method for finding the op-
timal (shortest) off-line exploration path in a grid environ-
ment for a single robot with limited and time-discrete vis-
ibility. Our approach models the optimal exploration prob-
lem as a search problem and finds the solution using A*. We
have also presented a number of speedup techniques to find
a lower quality solution in a shorter time. Extensive experi-
mental activities showed that the proposed approach can find
optimal exploration paths in environments of realistic size.
Although the main motivation of this work is the attempt of
providing a better experimental evaluation of on-line explo-
ration strategies for autonomous mobile robots, our results
could be useful also for rescue applications. Assume that an
unknown number of victims with no a priori information on
their distribution are spread in a known environment. The
problem of calculating the shortest path to find all of them
reduces to the problem of finding the shortest path covering
the free space with the robot’s sensor, that basically is the
problem we study.

Further work could develop better heuristic functions, for
example using the solutions obtained with larger cell sizes
as heuristics for finding solutions with smaller cell sizes.
Moreover, the use of search algorithms different from A*,
starting with branch and bound, could be investigated and a
broader set of test environments could be considered. Possi-
ble extensions of our approach include multiple robots and
moving from grid environments to more general graph en-
vironments. Finally, using our approach to improve on-line
exploration strategies is a long-term goal.

References
Albers, S.; Kursawe, K.; and Schuierer, S. 2008. Explor-
ing unknown environments with obstacles. Algorithmica
32:123–143.
Amigoni, F., and Caglioti, V. 2010. An information-based
exploration strategy for environment mapping with mobile
robots. Robotics and Autonomous Systems 5(58):684–699.
Amigoni, F. 2008. Experimental evaluation of some explo-
ration strategies for mobile robots. In Proc. ICRA, 2818–
2823.
Arkin, E.; Fekete, S.; and Mitchell, J. 2000. Approximation
algorithms for lawn mowing and milling. Computational
Geometry - Theory and Applications 17(1-2):25–50.

Basilico, N., and Amigoni, F. 2011. Exploration strate-
gies based on multi-criteria decision making for searching
environments in rescue operations. Autonomous Robots
31(4):401–417.
Chin, W., and Ntafos, S. 1991. Shortest watchman routes
in simple polygons. Discrete and Computational Geometry
6:9–31.
Choset, H. 2001. Coverage for robotics: A survey of recent
results. Annals of Mathematics and Artificial Intelligence
31(1-4):113–126.
Felner, A.; Stern, R.; Ben-Yair, A.; Kraus, S.; and Ne-
tanyahu, N. 2004. PHA*: Finding the shortest path with
A* in an unkown physical environment. Journal of Artifi-
cial Intelligence Research 21:631–670.
Gabriely, Y., and Rimon, E. 2001. Spanning-tree based
coverage of continuous areas by a mobile robot. Annals of
Mathematics and Artificial Intelligence 31:77–98.
Ghosh, S., and Kleinl, R. 2010. Online algorithms for
searching and exploration in the plane. Computer Science
Review 4(4):189–201.
Gonzáles-Baños, H., and Latombe, J.-C. 2002. Navigation
strategies for exploring indoor environments. International
Journal of Robotics Research 21(10-11):829–848.
Isler, V. 2001. Theoretical robot exploration. Technical
report, Computer and Information Science, University of
Pennsylvania.
LaValle, S. 2006. Planning Algorithms. Cambridge Univer-
sity Press.
Lee, D., and Recce, M. 1997. Quantitative evaluation of
the exploration strategies of a mobile robot. International
Journal of Robotics Research 16(4):413–447.
Nash, A.; Koenig, S.; and Tovey, C. 2010. Lazy Theta*:
Any-angle path planning and path length analysis in 3D. In
Proc. AAAI.
Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Pearson.
Stachniss, C., and Burgard, W. 2003. Exploring unknown
environments with mobile robots using coverage maps. In
Proc. IJCAI, 1127–1134.
Thrun, S. 2002. Robotic mapping: A survey. In Exploring
Artificial Intelligence in the New Millenium. Morgan Kauf-
mann. 1–35.
Tovar, B.; Munoz, L.; Murrieta-Cid, R.; Alencastre, M.;
Monroy, R.; and Hutchinson, S. 2006. Planning explo-
ration strategies for simultaneous localization and mapping.
Robotics and Autonomous Systems 54(4):314–331.
Tovey, C., and Koenig, S. 2003. Improved analysis of greedy
mapping. In Proc. IROS, 3251–3257.
Urrutia, J. 2000. Art gallery and illumination problems.
In Sack, J.-R., and Urrutia, J., eds., Handbook of Computa-
tional Geometry. North-Holland. 973–1027.
Zelinsky, A.; Jarvis, R.; Byrne, J.; and Yuta, S. 1993. Plan-
ning paths of complete coverage for an unstructured envi-
ronment by a mobile robot. In Proc. ICAR, 533–538.

2066

