
Efficient Optimization of Control Libraries

Debadeepta Dey, Tian Yu Liu, Boris Sofman and J. Andrew Bagnell
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

A popular approach to high dimensional control prob-
lems in robotics uses a library of candidate “maneuvers”
or “trajectories”. The library is either evaluated on a
fixed number of candidate choices at runtime (e.g. path
set selection for planning) or by iterating through a se-
quence of feasible choices until success is achieved (e.g.
grasp selection). The performance of the library relies
heavily on the content and order of the sequence of
candidates. We propose a provably efficient method to
optimize such libraries, leveraging recent advances in
optimizing sub-modular functions of sequences. This
approach is demonstrated on two important problems:
mobile robot navigation and manipulator grasp set selec-
tion. In the first case, performance can be improved by
choosing a subset of candidates which optimizes the met-
ric under consideration (cost of traversal). In the second
case, performance can be optimized by minimizing the
depth in the list that is searched before a successful can-
didate is found. Our method can be used in both on-line
and batch settings with provable performance guarantees,
and can be run in an anytime manner to handle real-time
constraints.

Introduction
Many approaches to high dimensional robotics control prob-
lems such as grasp selection for manipulation (Berenson et al.
2007; Goldfeder et al. 2009) and trajectory set generation for
autonomous mobile robot navigation (Green and Kelly 2006)
use a library of candidate “maneuvers” or “trajectories”. Such
libraries effectively discretize a large control space and enable
tasks to be completed with reasonable performance while still
respecting computational constraints. The library is used by
evaluating a fixed number of candidate maneuvers at runtime
or iterating through a sequence of choices until success is
achieved. Performance of the library depends heavily on the
content and order of the sequence of candidates.

Control libraries have been successfully used in planning
for both humanoids (Stolle and Atkeson 2006) and UAVs
(Frazzoli, Dahleh, and Feron 2000). Frazzoli et al. show for
a planning task, a feasible trajectory can be quickly gener-
ated using a concatenation of stored trajectories in the library.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This has the additional advantage that the entire concate-
nated result is dynamically feasible if each element in the
control library is feasible. In grasp pose selection, libraries
usually contain different grasp poses as elements. To choose
the best pose, each element is evaluated for force closure
and stability, and the one with the highest score is chosen
for execution.(Berenson et al. 2007; Saut and Sidobre 1918;
Chinellato et al. 2003; Ciocarlie and Allen 2008).

A fundamental open question is how such control libraries
should be constructed and organized in order to maximize
performance on the task at hand while minimizing search
time.

This class of problems can be framed as list optimization
problems where the ordering of the list heavily influences
both performance and computation time (Sofman, Bagnell,
and Stentz 2010). In the grasp selection example the system
is searching for the first successful grasp in a list of candidate
grasps, performance is dependent on the depth in the list that
has to be searched before a successful answer can be found.
In the trajectory set generation example the system comes up
with a subset of trajectories such that the computed cost of
traversal of the robot is minimized.

We show that list optimization problems exhibit the prop-
erty of monotone sequence submodularity (Fujishige 2005;
Streeter and Golovin 2008). We take advantage of recent
advances in submodular sequence function optimization by
(Streeter and Golovin 2008) to propose an approach to high-
dimensional robotics control problems that leverages the
online and submodular nature of list optimization. These re-
sults establish algorithms that are near-optimal (within known
NP-hard approximation bounds) in both a fixed-design and
no-regret sense. Such results may be somewhat unsatisfactory
for the control problem we address as we are concerned about
performance on future data and thus we consider two batch
settings: static optimality, where we consider a distribution
over training examples that are independently and identically
distributed (i.i.d), and a form of dynamic optimality where
the distribution of examples is influenced by the execution
of the control libraries. We show that online-to-batch conver-
sions (Cesa-Bianchi, Conconi, and Gentile 2004) combined
with the advances in online submodular function maximiza-
tion enable us to effectively optimize these control libraries
with guarantees.

For the trajectory sequence selection problem, we show

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1983

that our approach exceeds the performance of the current state
of the art by achieving lower cost of traversal in a real-world
path planning scenario (Green and Kelly 2006). For grasp
selection (related to the MIN-SUM SUBMODULAR COVER
problem) we show that we can adaptively reorganize a list of
grasps such that the depth traversed in the list until a success-
ful grasp is found is minimized. Although our approach in
both cases is online in nature, it can operate in an offline mode
where the system is trained using prior collected data and
then used for future queries without incorporating additional
performance feedback.

Review of Submodularity and Maximization
of Submodular functions

A function f : S → [0, 1] is monotone submodular for any
sequence S ∈ S where S is the set of all sequences if it
satisfies the following two properties:

• (Monoticity) for any sequence S1, S2 ∈ S, f(S1) ≤
f(S1 ⊕ S2) and f(S2) ≤ f(S1 ⊕ S2)

• (Submodularity) for any sequence S1, S2 ∈ S, f(S1) and
any action a ∈ V×R>0, f(S1⊕S2⊕〈a〉)−f(S1⊕S2) ≤
f(S1 ⊕ 〈a〉)− f(S1)

where ⊕ means order dependent concatenation of lists, V
is the set of all available actions and R>0 is the set of non-
negative real numbers denoting the cost of each action in
V .

In the online setting α-regret is defined as the difference in
the performance of an algorithm and α times the performance
of the best expert in retrospect. (Streeter and Golovin 2008)
provide algorithms for maximization of submodular func-
tions whose α-regret (regret with respect to proven NP-hard
bounds) approaches zero as a function of time.

We review here the relevant parts of the online submodular
function maximization approach as detailed by (Streeter and
Golovin 2008). Throughout this paper subscripts denote time
steps while superscripts denote the slot number. Assume we
have a list of feasible control actions A, a sequence of tasks
f1...T , and a list of actions of length N that we maintain and
present for each task. One of the key components of this
approach makes use of the idea of an expert algorithm. Refer
to survey by (Blum 1996). The algorithm runs N distinct
copies of this expert algorithm: E1, E2, . . . , EN , where each
expert algorithm E i maintains a distribution over the set of
possible experts (in this case action choices). Just after task
ft arrives and before the correct sequence of actions to take
for this task is shown, each expert algorithm E i selects a
control action ait. The list order used on task ft is then St =
{a1t , a2t , . . . , aNt }. At the end of step t, the value of the reward
xit for each expert i is made public and is used to update each
expert accordingly.

Application: Mobile robot navigation
Traditionally, path planning for mobile robot navigation is
done in a hierarchical manner with a global planner at the top
driving the robot in the general direction of the goal while a
local planner avoids obstacles while making progress towards
the goal. At every time step the local planner evaluates a set

of feasible control trajectories on the immediate perceived
environment to find the trajectory yielding the least cost of
traversal. The robot then moves along the trajectory, which
has the least sum of cost of traversal and cost-to-goal from
the end of the trajectory. This process is then repeated at each
time step. This set of feasible trajectories is usually computed
offline by sampling from a much larger (possibly infinite) set
of feasible trajectories.

Such library-based model predictive approaches are widely
used in state-of-the-art systems leveraged by most DARPA
Urban Challenge, Grand Challenge teams (including the two
highest placing teams for both) (Urmson and others 2008;
Montemerlo and others 2008; Urmson and others 2006;
Thrun and others 2006) as well as on sophisticated outdoor
vehicles LAGR e.g. (Jackel and others 2006), UPI (Bagnell
et al. 2010), Perceptor (Kelly and others 2006) developed in
the last decade. A particularly effective automatic method for
generating such a library is to generate the set of trajectories
greedily such that the area between the trajectories is maxi-
mized (Green and Kelly 2006). As this method runs offline,
it does not adapt to changing conditions in the environment
nor is it data-driven to perform well on the environments
encountered in practice.

Let cost(ai) be the cost of traversing along trajectory ai.
Let N be the budgeted number of trajectories that can be
evaluated during real-time operation. For a set of trajectories
{a1, a2, ..., aN} sampled from the set of all feasible trajecto-
ries, we define the monotone, submodular function that we
maximize using the lowest-cost path from the set of possible
trajectories as f : S → [0, 1]:

f ≡ No −min(cost(a1), cost(a2), . . . , cost(aN))

No
(1)

where No is the highest cost trajectory that can be expected
for a given cost map.

We present the general algorithm for online selection of
action sequences in Algorithm 1. The inputs to the algorithm
are the number of action primitives N which can be eval-
uated at runtime within the computational constraints and
N copies of experts algorithms, E1, E2, ..., EN , one for each
slot of the sequence of actions desired. The experts algorithm
subroutine can be either Randomized Weighted Majority
(WMR) (Littlestone and Warmuth 1994) (Algorithm 3) or
EXP3 (Auer et al. 2003) (Algorithm 2). T represents the
number of planning steps the robot is expected to carry out.
In lines 1-5 of Algorithm 1 a sequence of trajectories is sam-
pled from the current distribution of weights over trajectories
maintained by each copy of the expert algorithm. Function
ai = sampleActionExperts(E i) samples the distribution
of weights over experts (trajectories) maintained by experts
algorithm copy E i to fill in slot i (Sit) of the sequence without
repeating trajectories selected for slots before the ith slot.
The function sampleActionExperts in the case of EXP3
corresponds to executing lines 1-2 of Algorithm 2. For WMR
this corresponds to executing line 1 of Algorithm 3. Similarly
the function updateWeight corresponds to executing lines
3-6 of Algorithm 2 or lines 3-4 of Algorithm 3.

Function a∗ = evaluateActionSequence(ENV, St)
(line 6) of Algorithm 1 takes as arguments the constructed

1984

sequence of actions Sit and the current environment around
the robot ENV. Actions in the sequence are evaluated on
the environment to find the action which has the least cost of
traversal plus cost to go to the goal which is output as a∗.

Function ENV = getNextEnvironment(a∗,4t) (line
7) takes as arguments the best trajectory found earlier (a∗)
and the time interval (4t) for which that trajectory is to be
traversed. On traversing it for that time interval the robot
reaches the next environment which replaces the previous
environment stored in ENV.

In lines 8-13 each of the expert algorithms weights over all
feasible trajectories are increased if the monotone submodu-
lar function ft is increased by adding trajectory aij at the ith
slot.

As a side note, the learning rate ε for WMR is set to be 1√
T

where T is the number of planning cycles, possibly infinite.
For infinite or unknown planning time this can be set to
1√
t

where t is the current time step. Similarly the mixing

parameter γ for EXP3 is set as min
{
1,
√
|A| ln |A|
(e−1)T

}
. For

each expert algorithm the respective learning rates are set
to the rates proven to be no-regret with respect to the best
expert in the repertoire of experts. T can be infinite as a
ground robot can be run for arbitrary amounts of time with
continuously updated goals. Since the choice of T influences
the learning rate of the approach it is necessary to account
for the possibility of T being infinite.

Note that actions are generic and in the case of mobile
robot navigation are trajectory primitives from the control
library.

WMR may be too expensive for online applications as
it requires the evaluation of every trajectory at every slot,
whether executed or not. EXP3, by contrast, learns more
slowly but requires as feedback only the cost of the sequence
of trajectories actually executed, and hence adds negligible
overhead to the use of trajectory libraries. For EXP3 line 9
would loop over only the experts chosen at the current time
step instead of |A|.

We refer to this sequence optimization algorithm (Algo-
rithm 1) in the rest of the paper as SEQOPT.

SEQOPT: the approach detailed is an online algorithm
which produces a sequence which converges to a greedily
sequence with time. The greedy sequence achieves at least
1−1/e of the value of the optimal list (Feige 1998). Therefore
SEQOPT is a zero α-regret (for α = 1−1/e here) algorithm.
This implies that its α-regret goes to 0 at a rate of O(1/

√
T)

for T interactions with the environment.
We are also interested in its performance with respect to

future data and hence consider notions of near-optimality
with respect to distributions of environments. We define a
statically optimal sequence of trajectories Sso ∈ S as:

Sso = argmax
S

Ed(ENV)[f(ENV, S)] (2)

where d(ENV) is a distribution of environments that are
randomly sampled. The trajectory sequence S is evaluated
at each location. A statically near-optimal trajectory se-
quence Sso thus approximately maximizes the expectation

Require: number of trajectories N , experts algorithms
subroutine copies (Algorithms 2 or 3) E1, E2, . . . , EN

1: for t = 1 to T do
2: for i = 1 to N do
3: ai = sampleActionExperts(E i)
4: Sit ← ai

5: end for
6: a∗ = evaluateActionSequence(ENV, St)
7: ENV = getNextEnvironment(a∗,4t)
8: for i = 1 to N do
9: for j = 1 to |A| do

10: rewardij = ft(S
〈i−1〉
t ⊕ aij)− ft(S

〈i−1〉
t)

11: wij ← updateWeight(rewardij , w
i
j)

12: end for
13: end for
14: end for

Algorithm 1: Algorithm for trajectory sequence selection

Require: γ ∈ (0, 1], initialization wj = 1 for
j = 1, . . . , |A|

1: Set pj = (1− γ) wj∑|A|
j=1 wj

+ γ
|A| j = 1, . . . , |A|

2: Randomly sample i according to the probabilities
p1, . . . , p|A|

3: Receive rewardi ∈ [0, 1]
4: for j = 1 to |A| do
5:

ˆrewardj =

{ rewardj
pj

if i == j

0 otherwise

6: wj ← wjexp(
γ ˆrewardj
|A|)

7: end for
Algorithm 2: Experts Algorithm: Exponential-weight algo-
rithm for Exploration and Exploitation (EXP3) (Auer et al.
2003)

(Ed(ENV)[f(ENV, S)]) of Equation 1 over the distribution
of environments ENV, effectively optimizing the one-step
cost of traversal at the locations sampled from the distribution
of the environments.

(Knepper and Mason 2009) note that sequences of trajec-
tories are generally designed for this kind of static planning
paradigm but are used in a dynamic planning paradigm where
the library choice influences the examples seen and that there
is little correlation in performance between good static and
good dynamic performance for a sequence. Our approach
bridges this gap by allowing offline batch training on a fixed
distribution, or allowing samples to be generated by running
the currently sampled library.

We define a weak dynamically optimal trajectory sequence
Swdo ∈ S as:

Swdo = argmax
S

Ed(ENV|π)[f(ENV, S)] (3)

where d(ENV|π) is defined as the distribution of environ-
ments that are induced by the robot following the policy π.
The policy π corresponds to the robot following the least cost

1985

Require: ε ∈ (0, 1], initialization wj = 1 for
j = 1, . . . , |A|

1: Randomly sample j according to the distribution of
weights w1, . . . , w|A|

2: Receive rewards for all experts
reward1, . . . , reward|A|

3: for j = 1 to |A| do
4:

wj =

{
wj(1 + ε)rewardj if rewardj ≥ 0
wj(1− ε)−rewardj if rewardj < 0

5: end for
Algorithm 3: Experts Algorithm: Randomized Weighted
Majority (WMR) (Littlestone and Warmuth 1994)

Figure 1: The cost of traversal of the robot on the cost map of
Fort Hood, TX using trajectory sequences generated by dif-
ferent methods for sequence of 30 trajectories over 1055788
planning cycles in 4396 runs. Constant curvature trajectories
result in the highest cost of traversal followed by Green-Kelly
path sets. Our sequence optimization approach (SEQOPT) us-
ing EXP3 as the experts algorithm subroutine results in the
lowest cost of traversal (8% lower than Green-Kelly) with
negligible overhead.

trajectory within Swdo at each situation encountered. Hence
a weak dynamically optimal trajectory sequence minimizes
the cost of traversal of the robot at all the locations which the
robot encounters as a consequence of executing the policy π.
We define this as weak dynamically optimal as there can be
other trajectory sequences S ∈ S that can minimize the cost
of traversal with respect to the distribution of environments
induced by following the policy π.

Knepper et al (Knepper and Mason 2009) further note
the surprising fact that for a vehicle following a reasonable
policy, averaged over time-steps the distribution of obstacles
encountered ends up heavily weighted to the sides. Good ear-
lier policy choices imply that the space to the immediate front
of the robot is mostly devoid of obstacles. It is effectively
a chicken-egg problem to find such a policy with respect to
its own induced distribution of examples, which we address
here as weak dynamic optimality.

We briefly note the following propositions about the sta-
tistical performance of Algorithm 1. We elide full proofs
to supplement material (Dey et al. 2011), but note that they
follow from recent results of online-to-batch learning (Ross,

(a) Constant Curvature (b) Constant Curvature
Density

(c) Green-Kelly (d) Green-Kelly Density

(e) SEQOPT(EXP3) Dy (f) SEQOPT (EXP3) Dynamic
Density

(g) SEQOPT (EXP3) Static (h) SEQOPT (EXP3) Static
Density

namic

Figure 2: The density of distribution of trajectories learned by
our approach (SEQOPT using EXP3) for the dynamic planning
paradigm in Figure 2e shows that most of the trajectories
are distributed in the front whereas for the static paradigm
they are more spread out to the side. This shows that for the
dynamic case more trajectories should be put in the front of
the robot as obstacles are more likely to occur to the side as
pointed out by (Knepper and Mason 2009)

Figure 3: We used a real-world cost map of Fort Hood, TX
and simulated a robot driving over the map in between ran-
dom goal and start locations using trajectory sequences gen-
erated by different methods for comparision.

Gordon, and Bagnell 2010) combined with the regret guaran-
tees of (Streeter and Golovin 2008) on the objective functions
we present.
Proposition 1. (Approximate Static Optimality) If getNex-
tEnvironment returns independent examples from a distribu-
tion over environments (i.e., the chosen control does not af-
fect the next sample), then for a list S chosen randomly from
those generated throughout the T iterations of Algorithm 1, it
holds that Ed(ENV)[(1− 1/e)f(S∗)− f(S)] ≤ O(ln(1/δ)√

(T)
)

with probability greater then 1− δ.
Proposition 2. (Approximate Weak Dynamic Optimality)
If getNextEnvironment returns examples by forward simu-
lating beginning with a random environment and randomly
choosing a new environment on reaching a goal, then con-
sider the policy πmixture that begins each new trial by choosing
a list randomly from those generated throughout the T iter-
ations of the Algorithm 1. By the no-regret property, such
a mixture policy will be α approximately dynamically op-

1986

Figure 4: As the number of trajectories evaluated per plan-
ning cycle are increased the cost of traversal for trajectory
sequences generated by Green-Kelly and our method drops
and at 80-100 trajectories achieve almost the same cost of
traversal. It is to be noted that our approach decreases the
cost of traversal much faster than Green-Kelly trajectory se-
quences.

timal in expectation up to an additive term O(ln(1/δ)√
T

) with
probability greater then 1 − δ. Further, in the (empirically
typical) case where the distribution over library sequences
converges, the resulting single list is (up to approximation
factor α) weakly dynamically optimal.

Experimental setup
We simulated a robot driving over a real-world cost map
generated for Fort Hood, Texas (Figure 3) with trajectory
sequences generated by using the method devised by (Green
and Kelly 2006) for both constant curvature (Figures 2a, 2b)
and concatenation of trajectories of different curvatures (Fig-
ures 2c, 2d). The cost map and parameters for the local plan-
ner (number of trajectories to evaluate per time step, length
of the trajectories, fraction of trajectory traversed per time
step) were taken to most closely match that of the Crusher
off-road ground vehicle described in (Bagnell et al. 2010).
Please note that for purely visualization purposes, we plot the
density of paths by a kernel density estimation: we put down
a radial-basis-function kernel at points along the trajectories
with some suitable discretization. The sum of these kernels
provides a density estimate at each grid location of the plot.
This is visualized using a color map over the values of the
density estimate.

Results
Dynamic Simulation Figure 1 shows the cost of traversal
of the robot with different trajectory sets against number of
runs. In each run the robot starts from a random location
and ends at the specified goal. 100 goal locations and 50 start
locations for every goal location were randomly selected. The
set of weights for the N copies of experts algorithm EXP3
were carried over through consecutive runs.

The cost of traversal of constant curvature trajectory se-
quences grows at the highest rate followed by Green-Kelly
path set. The lowest cost is achieved by running Algorithm.1
with EXP3 as the experts algorithm subroutine. In 4396 runs
there is a 8% reduction in cost of traversal between Green-
Kelly and SEQOPT. It is to be emphasized that improve-

ment in path planning is obtained with negligible overhead.
Though the complexity of our approach scales linearly in the
number of motion primitives and depth of the library, each
operation is simply a multiplicative update and a sampling
step. In practice it was not possible to evaluate even a single
extra motion primitive in the time overhead that our approach
requires. In 1 ms, 100000 update steps can be performed
using EXP3 as the experts algorithm subroutine.

Static Simulation We also performed a static simulation
where for each of the 100 goal locations the robot was placed
at 500 random poses in the cost map and the cost of traversal
of the selected trajectory a∗ over the next planning cycle was
recorded. SEQOPT with EXP3 and Green-Kelly sequences ob-
tained 0.5% and 0.25% lower cost of traversal than constant
curvature sequences respectively. The performance for all
three methods was essentially at par. This can be explained
by the fact that Green-Kelly trajectory sequences are essen-
tially designed to handle the static case of planning where
trajectories must provide adequate density of coverage in all
directions as the distribution of obstacles is entirely unpre-
dictable in this case.

In the dynamic planning case on the other hand, the situa-
tions the robot encounters are highly correlated and because
the robot is likely to be guided by a global trajectory, a local
planner that tracks that trajectory well will likely benefit from
a higher density of trajectories toward the front as most of the
obstacles will be to the sides of the path. This is evident by
the densities of generated trajectory sequences for each case
as shown in Figure 2. Our approach naturally deals with this
divide between static and dynamic planning paradigms by
adapting the chosen trajectory sequence at all times. A video
demonstration of the algorithm can be found at the following
link:(Video 2012)

Application: Grasp selection for manipulation
Most of the past work on grasp set generation and selection
have focused on automatically producing a successful and sta-
ble grasp for a novel object, and the computational time is of
secondary concern. As a result very few grasp selection algo-
rithms have attempted to optimize the order of consideration
in grasp databases. (Goldfeder et al. 2009) store a library of
precomputed grasps for a wide variety of objects and find the
closest element in the library for each novel object. (Beren-
son et al. 2007) dynamically rank pre-computed grasps by
calculating a grasp-score based on force closure, robot po-
sition, and environmental clearance. (Ratliff, Bagnell, and
Srinivasa 2007) employ imitation learning on demonstrated
grasps to select one in a discretized grasp space. In all of
these cases the entire library of grasps is evaluated for each
new environment or object at run time, and the order of the
entries and their effect on computation are not considered. In
this section we describe our grasp ranking procedure, which
uses result of trajectory planning to reorder a list of grasps,
so that for a majority of environments, only a small subset of
grasp entries near the front of the control library need to be
evaluated.

For a sequence of grasps S ∈ S we define the submodular
monotone grasp selection function f : S → [0, 1] as f ≡

1987

Figure 5: Example grasps from the grasp library sequence.
Each grasp has a different approach direction and finger joint
configuration recorded with respect to the object’s frame
of reference. Our algorithm attempts to re-order the grasp
sequence to quickly cover the space of possible scenarios
with a few grasps at the front of the sequence.

Figure 6: Executing a grasp in both simulation and real hard-
ware. The grasp library ordering is trained in simulation, and
the resulting grasp sequence can be executed in hardware
without modifications.

P (S) where P (S) is the probability of successfully grasping
an object in a given scenario using the sequence of grasps
provided.

For any sequence of grasps S ∈ S we want to minimize
the cost of evaluating the sequence i.e. minimize the depth
in the list that has to be searched until a successful grasp is
found. Thus the cost of a sequence of grasps can be defined
as c =

∑N
i=0 1 − f(S〈i〉) where f(S〈i〉) is the value of the

submodular function f on executing sequence S ∈ S up
to 〈i〉 slots in the sequence. Minimizing c corresponds to
minimizing the depth i in the sequence of grasps that must
be evaluated for a successful grasp to be found. (We assume
that every grasp takes equal time to evaluate)

The same algorithm for trajectory sequence generation
(Algorithm 1) is used here for grasp sequence generation.
Here each expert algorithm Ei maintains a set of weights for
each grasp (expert) in the library. A sequence of grasps is
constructed by sampling without repetition the distribution of
weights for each expert algorithm copy Ei for each position
i in the sequence (lines 1-5). This sequence is evaluated
on the current environment until a successful grasp a∗ is
found (line 6). If the sucessful grasp was found at position
i in the sequence then in expert algorithm Ei the weight
corresponding to the successful grasp id is updated using
SEQOPT with EXP3’s update rule. For WMR all the grasps in
the sequence are evaluated and the weights for every expert
are updated according to lines 9-12.

Experimental setup
We use a trigger-style flashlight as the target object and the
OpenRAVE (Diankov 2010) simulation framework to gener-
ate a multitude of different grasps and environments for each
object. The manipulator model is a Barret WAM arm and
hand with a fixed base. A 3D joystick is used to control the
simulated robot. Since the grasps in our library are generated
by a human operator, we assume they are stable grasps and
the main failure mode is in trajectory planning and obstacle
collision. Bidirectional RRT (Kuffner and LaValle 2000) is
used to generate the trajectory from the manipulator’s current
position to the target grasp position.

The grasp library consisted of 60 grasps and the library was
evaluated on 50 different environments for training, and 50
held out for testing. For an environment/grasp pair the grasp
success is evaluated by the success of Bi-RRT trajectory
generation, and the grasp sequence ordering is updated at
each time-step of training. For testing and during run-time,
the learned sequence was evaluated without further feedback.

We used both EXP3 and WMR with SEQOPT, and com-
pared performance to two other methods of grasp library
ordering: a random grasp ordering, and an ordering of the
grasps by decreasing success rate across all examples in
training (which we call “frequency”). Since this is the first
approach to predicting sequences there are no other reason-
able orderings to compare against. At each time step of the
training process, a random environment was selected from
the training set and each of the four grasp sequence orderings
were evaluated. The cost of evaluating a grasp is either 0 for
a successful grasp while an unsuccessful grasp incurs cost of
0. The search depth for each test case was recorded to com-
pute overall performance. The performance of the two naive
ordering methods does not improve over time because the
frequency method is a single static sequence and the random
method has a uniform distribution over all possible rankings.

Results
The performance of each sequence after training is shown in
Figure 7. We can see a dramatic improvement in the perfor-
mance of SEQOPT over the random and frequency methods.
While random and frequency methods produce a grasp se-
quence that requires an average of about 7 evaluations before
a successful grasp is found, SEQOPT with WMR and EXP3
produce an optimized ordering that require only about 5 eval-
uations which is a ∼ 29% improvement. Since evaluating a
grasp entails planning to the goal and executing the actual
grasp, which can take several seconds, this improvement is
significant. Additionally this improvement comes at negli-
gible cost and in practice it was not possible to evaluate a
single extra grasp in the extra time overhead required for our
approach.

Note that a random ordering has similar performance to
the frequency method. Because similar grasps tend to be
correlated in their success and failure, the grasps in the front
of the frequency ordering tend to be similar. When the first
grasp fails, the next few are likely to fail, increasing average
search depth. The SEQOPT algorithm solves this correlation
problem by ordering the grasp sequence so that the grasps in

1988

Figure 7: Average depth till successful grasp for flashlight
object with 50 test environments. The training data shows
the average search depth achieved at the end of training over
50 training environments. Algorithm 1 (SEQOPT) when run
with EXP3 as the experts algorithm subroutine achieves 20%
reduction over grasp sequences arranged by average rate of
success (Freq.) or a random ordering of the grasp list (Rand.)

the front quickly cover the space of possible configurations .
A video demonstration of the algorithm can be found at the
following link:(Video 2012)

Conclusion
We have shown an efficient method for optimizing perfor-
mance of control libraries and have attempted to answer the
question of how to construct and order such libraries.

We aim to modify the current approach to close the loop
with perception and take account of features in the environ-
ment for grasp sequence generation.

As robots employ increasingly large control libraries to
deal with the diversity and complexity of real environments,
approaches such as the ones presented here will become
crucial to maintaining robust real-time operation.

Acknowledgements
This work was funded by Army Research Laboratories
through R-CTA and Defense Advanced Research Projects
Agency through ARM-D.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. 2003. The
nonstochastic multiarmed bandit problem. SIAM Journal on Com-
puting 32(1):48–77.
Bagnell, J.; Bradley, D.; Silver, D.; Sofman, B.; and Stentz, A. 2010.
Learning for autonomous navigation. Robotics Automation Maga-
zine, IEEE 17(2):74 –84.
Berenson, D.; Diankov, R.; Nishiwaki, K.; Kagami, S.; and Kuffner,
J. 2007. Grasp planning in complex scenes. In IEEE-RAS Hu-
manoids.
Blum, A. 1996. On-line algorithms in machine learning. In In
Proceedings of the Workshop on On-Line Algorithms, Dagstuhl, 306–
325. Springer.
Cesa-Bianchi, N.; Conconi, A.; and Gentile, C. 2004. On the gener-
alization ability of on-line learning algorithms. Information Theory,
IEEE Transactions on 50(9):2050 – 2057.

Chinellato, E.; Fisher, R.; Morales, A.; and del Pobil, A. 2003. Rank-
ing planar grasp configurations for a three-finger hand. In ICRA,
volume 1, 1133–1138. IEEE.
Ciocarlie, M., and Allen, P. 2008. On-line interactive dexterous
grasping. In EuroHaptics, 104.
Dey, D.; Liu, T. Y.; Sofman, B.; and Bagnell, J. A. D. 2011. Efficient
optimization of control libraries. Technical Report CMU-RI-TR-11-
20, Robotics Institute, Pittsburgh, PA.
Diankov, R. 2010. Automated Construction of Robotic Manipulation
Programs. Ph.D. Dissertation, Carnegie Mellon University, Robotics
Institute.
Feige, U. 1998. A threshold of ln n for approximating set cover.
JACM 45(4):634–652.
Frazzoli, E.; Dahleh, M.; and Feron, E. 2000. Robust hybrid control
for autonomous vehicle motion planning. In Decision and Control,
2000., volume 1.
Fujishige, S. 2005. Submodular functions and optimization. Elsevier
Science Ltd.
Goldfeder, C.; Ciocarlie, M.; Peretzman, J.; Dang, H.; and Allen, P.
2009. Data-driven grasping with partial sensor data. In IROS, 1278–
1283. IEEE.
Green, C., and Kelly, A. 2006. Optimal sampling in the space of
paths: Preliminary results. Technical Report CMU-RI-TR-06-51,
Robotics Institute, Pittsburgh, PA.
Jackel, L., et al. 2006. The DARPA LAGR program: Goals, chal-
lenges, methodology, and phase I results. JFR.
Kelly, A., et al. 2006. Toward reliable off road autonomous vehicles
operating in challenging environments. IJRR 25(1):449–483.
Knepper, R., and Mason, M. 2009. Path diversity is only part of the
problem. In ICRA.
Kuffner, J.J., J., and LaValle, S. 2000. Rrt-connect: An efficient
approach to single-query path planning. In ICRA, volume 2, 995
–1001.
Littlestone, N., and Warmuth, M. 1994. The Weighted Majority
Algorithm. INFORMATION AND COMPUTATION 108:212–261.
Montemerlo, M., et al. 2008. Junior: The stanford entry in the urban
challenge. JFR 25(9):569–597.
Ratliff, N.; Bagnell, J.; and Srinivasa, S. 2007. Imitation learning for
locomotion and manipulation. Technical Report CMU-RI-TR-07-45,
Robotics Institute, Pittsburgh, PA.
Ross, S.; Gordon, G.; and Bagnell, J. 2010. No-Regret Reductions
for Imitation Learning and Structured Prediction. Arxiv preprint
arXiv:1011.0686.
Saut, J., and Sidobre, D. 1918. Efficient Models for Grasp Planning
With A Multi-fingered Hand. In Workshop on Grasp Planning and
Task Learning by Imitation, volume 2010.
Sofman, B.; Bagnell, J.; and Stentz, A. 2010. Anytime online novelty
detection for vehicle safeguarding. In ICRA.
Stolle, M., and Atkeson, C. 2006. Policies based on trajectory li-
braries. In ICRA, 3344–3349. IEEE.
Streeter, M., and Golovin, D. 2008. An online algorithm for maxi-
mizing submodular functions. In NIPS, 1577–1584.
Thrun, S., et al. 2006. Stanley: The robot that won the darpa grand
challenge: Research articles. J. Robot. Syst. 23:661–692.
Urmson, C., et al. 2006. A robust approach to high-speed navigation
for unrehearsed desert terrain. JFR 23(1):467–508.
Urmson, C., et al. 2008. Autonomous driving in urban environments:
Boss and the urban challenge. JFR.
Video, A. 2012. http://youtube.com/robotcontrol1.

1989

