
Symmetric Rendezvous in Planar
Environments with and without Obstacles

Deniz Ozsoyeller
Department of Computer Engineering

Izmir University
Gursel Aksel Blvd No:14

Izmir, Turkey 35350
deniz.ozsoyeller@izmir.edu.tr

Volkan Isler
Department of Computer Science

and Engineering
University of Minnesota

Keller Hall
200 Union St SE

Minneapolis, MN 55455
isler@cs.umn.edu

Andrew Beveridge
Department of Mathematics,

Statistics and Computer Science
Macalester College
1600 Grand Avenue

Saint Paul, MN 55105
abeverid@macalester.edu

Abstract

We study the symmetric rendezvous search problem in which
two robots that are unaware of each other’s locations try to
meet as quickly as possible. In the symmetric version of this
problem, the robots are required to execute the same strat-
egy. First, we present a symmetric rendezvous strategy for the
robots that are initially placed on the open plane and analyze
its competitive performance. We show that the competitive
complexity of our strategy is O(d/R) where d is the initial
distance between the robots and R is the communication ra-
dius. Second, we extend the symmetric rendezvous strategy
for the open plane to unknown environments with polygonal
obstacles. The extended strategy guarantees a complete cov-
erage of the environment. We analyze the strategy for square,
translating robots and show that the competitive ratio of the
extended strategy is O(d/D) where D is the length of the
sides of the robots. In obtaining this result, we also obtain an
upper bound on covering arbitrary polygonal environments
which may be of independent interest.

Introduction
How quickly can two robots who do not know each oth-
ers’ locations meet? This problem is known as rendezvous
search. It has applications in scenarios where two robots
dropped off from a plane may be trying to get together after
deployment. Similarly, robots may need to find each other
after completion of independent tasks.

There are two primary versions of the rendezvous search
problem depending on whether or not the players can ex-
ecute different strategies. In asymmetric rendezvous search,
the players can choose separate roles in advance and execute
distinct strategies. For example, one can wait for the other.
In the second version, called symmetric rendezvous search,
the players must execute the same strategy. Symmetric ren-
dezvous strategies are appealing for robotics applications as
they eliminate the need to implement and maintain a differ-
ent program for each robot.

In this paper, we study the symmetric rendezvous search
problem in planar environments. We start with rendezvous

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the open plane. This version is readily applicable for
robots operating on large open fields or water surface. It can
also be used by robots operating at a constant height (resp.
depth) in the air (resp. underwater). In the second part of the
paper, we show how the strategy can be extended to environ-
ments with (unknown) obstacles.

We prove the performance of our algorithms using com-
petitive analysis. In a given environment, if the robots know
each others’ locations, their optimal strategy would be to
move toward each other along the shortest path between
them. In competitive analysis, one seeks for the worst case
deviation of an online strategy from this optimal offline be-
havior over all possible initial locations in all possible envi-
ronments. This worst case ratio is known as the competitive
ratio.

First, we present a randomized strategy for symmetric
rendezvous on the open plane. While the strategy is rela-
tively simple, its competitive analysis is rather involved. As-
suming that the robots move at unit speed, we show that the
competitive ratio of our strategy for rendezvous in the open
plane is O(d/R) where d is the initial distance between the
robots and R is their communication radius.

Next, we study environments with polygonal obstacles
and design a rendezvous strategy for square robots of edge
length D translating in the environment. The strategy is an
extension of the first strategy in which each robot indepen-
dently performs a modified depth first search on a grid with
cell size D. We prove a competitive ratio of O(d/D) (each
robot maintains a separate grid). In obtaining this result, we
also provide a strategy for covering an unknown polygonal
environment which may be of independent interest. In the
next section, we start with an overview of related work.

Related Work
Various versions of the rendezvous problem on the plane
have been studied. Asymmetric version of the rendezvous
problem in a two dimensional region is studied in (Thomas
and Hulme 1997; Anderson and Fekete 2001; Roy and
Dudek 2001). Asynchronous rendezvous in two dimensional
region is studied in (Flocchini et al. 2001; Souissi, Défago,
and Yamashita 2006; Ganguli, Cortes, and Bullo 2006; Lin,

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2046

Morse, and Anderson 2007; Fang, Morse, and Cao 2008;
Jurek, Leszek, and Pelc 2009; Czyzowicz, Labourel, and
Pelc 2010; Czyzowicz et al. 2010; Collins et al. 2010).
(Thomas and Hulme 1997) simulate the problem of a res-
cue helicopter searching for a lost walker in which the speed
and radius detection of the players are not identical. (An-
derson and Fekete 2001) consider the case where players
know that they are at a distance d apart, but they do not
know the direction in which they should travel. They also
consider a situation in which player-1 knows the initial posi-
tion of player-2, while player-2 is only given information on
the initial distance of player-1. (Roy and Dudek 2001) con-
sider the problem of rendezvous between two robots which
can select potential rendezvous locations, called landmarks
as they explore an unknown environment.

The symmetric version of the rendezvous problem in a
two dimensional region is studied in (Ruckle 2007). They
consider the rendezvous problem with s seekers in a rectan-
gular lattice of locations. Each player knows the distribution
of the seekers at time zero and its own location, but not the
location of any other. The main result for this paper is that
for any dimension of lattice and for any initial distribution
of seekers, there are optimal strategies for the seekers that
converge. (Alpern and Street 2001) study both the asymmet-
ric and symmetric versions of the rendezvous problem with
two players on the n dimensional integer lattice: Two play-
ers who have no common notion of locations or directions.
They are initially placed at nodes whose difference vector
has length 2 and is parallel to some coordinate axis. In each
period they must move to an adjacent node. In our present
work, we present the first results for symmetric rendezvous
with unknown initial location on the plane and in environ-
ments with obstacles.

Our work is also related to the work of (Gabriely and Ri-
mon 2005) who present an online motion planning algorithm
for a mobile robot to find a stationary target in an unknown
environment. Similar to our formulation, their results are for
a robot of size D × D. The robot covers disks of increas-
ing size in each round to find the target. In their model,
they assume that the coverage cost of a free cell and a par-
tially occupied cell are the same. A subroutine of our algo-
rithm extends this strategy and explicitly computes an upper
bound on the cost of covering a partially occupied cell. Other
work on finding stationary targets include search in environ-
ments with m radial corridors (Baezayates, Culberson, and
Rawlins 1993) and rectangular environments (Berman et al.
1996).

Symmetric Rendezvous Search in Planar
Environments

In this section, we study the symmetric rendezvous search
problem with two robots in the plane that is not populated by
obstacles. The robots do not know each other’s locations or
their global positions in the plane. They further do not know
the initial distance between each other. Let the expansion
radius r > 1 be fixed (we determine the optimal choice for
r in the next subsection). The distance between the robots
is d = rk+δ where k ∈ +Z and δ ∈ (0, 1]. We assume that

Figure 1: Overview of the strategy: Each robot flips a coin to
decide whether to move or wait. If heads, the robot follows
concentric circles centered at the robot’s initial location. If
tails, it waits for the distance it must move in current round i
While drawing a circle, the robot sweeps a ring of width 2R
where R is the communication range of the robot.

there is a non-zero communication range R such that the
rendezvous is established if the distance between robots is
less than R.

Algorithm 1 shows our symmetric synchronous ren-
dezvous strategy on the plane. We divide the strategy into
rounds. At the beginning of each round, each robot flips a
coin to determine whether to move or to wait. Algorithm- 2
shows how the robots move if the outcome of the coin toss
is head in round i. A robot covers a disk of radius ri +R in
round i by drawing concentric circles (inward to outward)
centered at the robot’s initial location. The radius of the out-
ermost circle is ri + R. While drawing a circle, the robot
sweeps a ring of width 2R. Therefore, we increase the ra-
dius of the circle a robot draws by 2R until it reaches to the
outermost circle. The robot follows the motion pattern given
in Algorithm 2. The robot first executes line 3 and moves
R units to the north and draws a disk of radius R. Then
it moves 2R units to the north and draws a disk of radius
3R. It follows the same motion pattern until it reaches to
radius (2N + 1)R units to north from its initial location in
round i. Then, it moves (2N+1)R units south to come back
to its initial location. Figure 1 shows the moving pattern of
a robot executing the algorithm. If the outcome is tail, the
robot waits for the distance it must move in current round i to
be in synch with the other robot (see Algorithm- 1, Line 11).
We next prove the competitive ratio of our algorithm.

The Analysis
In this section, we analyze our algorithm’s performance and
find an upper bound on the expected distance traveled by
the robot. We only show the performance of robot-1 in our
analysis. Due to the symmetric strategies, the performance
of the robot-2 is the same. In order to obtain bounds on the
performance of Algorithm 1 (distance competitive-ratio),
we divide its execution into two stages: round i ≤ k and
round i ≥ (k + 1). We give an overview of each stage
before diving into the analysis. Stage-1 is an initialization

2047

Algorithm 1 SP1: Symmetric synchronous rendezvous
strategy on the plane

1: r← 1.225
2: R← 1
3: i← 1
4: head← 0
5: tail← 1
6: waitT ime← 0
7: outcome← random from {0,1}
8: while checkRendezvous() != true do
9: N ←

⌊
ri

2R

⌋
10: if outcome = tail then
11: waitT ime← (2N + 1)R+ 2π(N + 1)2R
12: wait(waitT ime)
13: else if outcome = head then
14: move(R,N)
15: end if
16: i← i + 1
17: outcome← random from {0,1}
18: end while

Algorithm 2 Procedure1: move(R,N)
1: for j = 0 to N do
2: if j = 0 then
3: move R units to north
4: else
5: move 2R units to north
6: end if
7: move in a circle that has a radius (2j + 1)R
8: end for
9: move (2N + 1)R to south

stage whose length depends on the (unknown) initial dis-
tance d = rk+δ . This stage encompasses the early rounds in
which the robots do not move far enough to meet. In Stage-
2, the rendezvous behavior is consistent, so we can compute
the expected travel distance using an infinite sum.

We now introduce the variables used in our analysis. Let
Ri be the event that the algorithm is still active in round i.
Assuming that Ri holds, we define the following: Ai is the
event that robot-1 is moving in round i; Bi is the event that
robot-2 is moving in round i. The event Si will be our proxy
event for success. For i ≤ k, we have P[Si] = 0 because
the robots do not travel far enough to meet. For i > k, we
define Si = (Ai ∧Bi)∨ (Ai ∧Bi). Note that this definition
purposely omits the event that the robots meet while both
are on the move, but the probability of this event is zero,
unless the initial robot configuration obeys an exceptional
geometry. The algorithm is always active in the first round,
thus P[R0] = 1. The probability that the algorithm is still
active in round i is the joint probability of the events that
the robots do not meet in the rounds up to round i. That is,
P[Ri] = P[S0∧· · ·∧Si−1] for i > 0. Furthermore, we have

P[Ri] =

{
1 0 ≤ i ≤ k,

2−i+k k < i.
(1)

To find an upper bound on the expected distance traveled
by the robot, we consider that the rendezvous only occurs
when one robot is moving while the other robot is waiting
and they travel far enough to meet. The algorithm terminates
when the robots meet.

We are now ready to study Algorithm 1. Next two sections
present the analysis of stages 1 and 2 respectively. We prove
the following bound on the algorithm’s distance competitive
ratio, and its time competitive ratio.

Theorem 1. The best choice for the expansion radius of Al-
gorithm 1 is r =

√
1.5 ≈ 1.225. This gives a distance com-

petitive ratio of

7.854
d

R
+ 40.8577

R log d

d
+ 16.0664

R

d
+ 55.3236

The time competitive ratio is twice this bound.

Here, log d denotes the natural logarithm.

Analysis of Stage-1
We compute the expected distance traveled during round
i ≤ k. The robots can not meet in this stage since their
displacement is at most rk < rk+δ . Suppose that event Ai
holds: the robot is active during round i. Let

N =

⌊
ri

2R

⌋
≤ ri

2R
.

Over the course of the round, the robot travels (2N+1)R ≤
ri + R units north before covering this distance again to
return to its initial location. The robot traverses the circum-
ference of each circle of radius (2j + 1)R for 0 ≤ j ≤ N .
The expected distance traveled in this stage is

E[Di | Ai] ≤ 2
(
ri +R

)
+ 2πR

N∑
j=0

(2j + 1)

= 2
(
ri +R

)
+ 2πR(N + 1)2

≤ 2
(
ri +R

)
+
π
(
ri + 2R

)2
2R

=
π

2R
r2i + 2(1 + π)(ri +R). (2)

We now compute the expected distance traveled in this stage.

Lemma 2. The expected distance traveled during Stage-1 is
bounded by

k∑
i=1

E [Di] < d2
(π

4R

) r2

r2 − 1

+ (1 + π)

(
d · r

r − 1
+ (1 + logr d)R

)
.

Proof. Since the robots to do not travel far enough to meet,
every round up to k is performed. In other words, P[Ri]=1
for 0 ≤ i ≤ k. Within a given round, the robot is active half

2048

of the time. Using equation (2), we find that the expected
distance traveled satisfies
k∑
i=0

E [Di] =
k∑
i=0

E[Di|Ri]P[Ri] =
1

2

k∑
i=0

E[Di|Ai]

<
π

4R

k∑
i=0

r2i + (1 + π)

(
k∑
i=0

ri + (k + 1)R

)

=
π

4R
· r

2k+2 − 1

r2 − 1
+ (1 + π)

(
rk+1 − 1

r − 1
+ (k + 1)R

)
< d2

(π

4R

) r2−2δ

r2 − 1
+ (1 + π)

(
d
r1−δ

r − 1
+ (1 + logr d)R

)
,

which is maximized for δ = 0.

Analysis of Stage-2
In this section, we consider rounds i ≥ (k + 1). We sep-
arately calculate the expected distance traveled during un-
successful rounds and the expected distance traveled in the
(final) successful round.
Lemma 3. The expected total distance traveled during un-
successful Stage-2 rounds is bounded by

∞∑
i=k+1

E
[
Di | Si

]
< d2

πr2

8R(2− r2)

+
(1 + π)

2

(
d · r

2− r
+R

)
.

Proof. We bound the expected distance traveled by robot-1;
the calculation for robot-2 is analogous. Assuming that the
algorithm is active in round i, we know that the robots ren-
dezvous precisely when Si = (Ai∧Bi)∨ (Ai∧Bi) occurs.
Furthermore, the distance traveled by robot-1 is nonzero
only when Ai holds. This means that E[Di | Si ∧ Ri] =
E[Di | Ai ∧ Bi ∧ Ri], and E[Di | Si ∧ Ri] = E[Di |
Ai ∧Bi ∧Ri].

Using equations (1) and (2), we find that the total expected
distance traveled in unsuccessful Stage-2 rounds is
∞∑

i=k+1

E[Di | Ai ∧Bi ∧Ri]P[Ai ∧Bi ∧Ri]

<
∞∑

i=k+1

(π

2R
r2i + 2(1 + π)(ri +R)

)(1

2

)i−k+2

=
∞∑
j=0

(π

2R
r2(j+k+1) + 2(1 + π)(rj+k+1 +R)

)(1

2

)j+3

=
πr2k+2

16R

∞∑
j=0

(
r2

2

)j
+

(1 + π)

4

rk+1
∞∑
j=0

(r
2

)j
+ 2R


=

πr2k+2

8R(2− r2)
+

(1 + π)

2

(
rk+1

2− r
+R

)
= d2

πr2−2δ

8R(2− r2)
+

(1 + π)

2

(
d · r

1−δ

2− r
+R

)
,

which is maximized for δ = 0.

Lemma 4. The expected distance traveled during the suc-
cessful round is bounded by

∞∑
j=k+1

E[Dj | Sj] ≤
π

8R
d2 +

1 + 2π

4
(d+R).

Proof. We have Sj = (Aj ∧ Bj) ∨ (Aj ∧ Bi), and only the
eventAj∧Bj contributes to the distance traveled by robot-1.
In a successful round, robot-1 explores a circular area with
radius rk+δ before discovering robot-2. The total distance
traveled by robot-1 is calculated similarly to equation (2),
using ri = rk+δ = d. Independent of j, we have

E[Dj | Aj ∧Bj ∧Rj] ≤ (d+R) +
π(d+ 2R)2

2R

=
π

2R
d2 + (1 + 2π)(d+R).

Therefore, the expected distance traveled in successful
rounds during Stage-2 is

∞∑
j=k+1

E[Dj | Aj ∧Bj ∧Rj]P[Ai ∧Bi ∧Ri]

=
(π

2R
d2 + (1 + 2π)(d+R)

) ∞∑
i=k+1

(
1

2

)i−k+2

=
π

8R
d2 +

1 + 2π

4
(d+R).

Computing the Competitive Ratio
Having found bounds for the expected distance traveled in
both stages, we are ready to calculate the distance competi-
tive ratio of our algorithm.

Proof of Theorem 1. The expected distance traveled is the
sum of the bounds in Lemmas 2, 3 and 4. To obtain compet-
itive ratio, we divide this sum by d/2, which yields

dπ

2R

(
r2

r2 − 1
+

r2

2 (2− r2)
+

1

2

)
+(

2 (1 + π) r

r − 1
+

(1 + π) r

(2− r)
+

1

2
+ π

)
+

R

d

(
2(1 + π) logr d+ 4π +

7

2

)
The Θ(d) dominates this expression for large d, so we

choose our r value to minimize the coefficient of d. The best
value is r =

√
1.5 ≈ 1.225, giving the distance competitive

ratio specified in the theorem.
The analysis for the time competitive ratio is analogous

to the distance calculations. In each round, a robot is inac-
tive with probability 1/2. In this case, the robot wait time in
round i is identical to the time for an active robot to com-
plete the round (since the robots move unit distance in unit

2049

time). Therefore, doubling the bounds in each of the three
lemmas gives a bound on the expected time until comple-
tion. Of course, optimal r =

√
1.5 ≈ 1.225 is same for the

time competitive ratio.

Symmetric Rendezvous in Environments with
Obstacles

In this section, we study the symmetric rendezvous problem
in the environments with obstacles. In such environments,
the strategy presented in the previous section which is de-
signed for the obstacle-free environments is not applicable.
This is because the robot cannot cover the entire environ-
ment by moving in a circular fashion due to the obstacles.
However, the strategy can be extended to solve the same
problem for environments with obstacles. As in the obstacle-
free case, the initial distance between the robots (length of
the shortest path) is given as d = rk+δ where δ ∈ (0, 1] and
k ∈ Z+. To formulate the problem, we make the following
assumptions.

1. The environment is unknown.
2. The obstacles in the environment are polygonal.
3. The robot is a translating robot (it does not rotate).
4. The robots are square robots of size D by D and they are

equipped with obstacle detection sensors.
We present the algorithm in the configuration-space (C)
in which the square robot is represented as a point robot.
We construct C-obstacles by taking the Minkowski sum of
every obstacle with D. For technical reasons, we treat C-
obstacle as open sets without the boundary.

Symmetric Rendezvous Search Algorithm
Similar to Algorithm SR, the algorithm proceeds in rounds
indexed by i ∈ Z+. At the beginning of each round, the
robot flips a coin to decide whether to move or wait in
that round. Recall that we represent the robots as points in
their configuration space C. The randomized decision of the
robots is as follows: If the robot tosses heads, it draws a disk
of radius ri centered at its initial location where r is the ex-
pansion radius of the robot (optimized in Theorem 7). Let
Diski denote the disk with radius ri in round i. The robot
first discretizes the continuous area in Diski to a grid of
D size cells. Then it covers the grid cells in Diski by the
coverage algorithm (explained in the next subsection). If the
robot tosses tails, it waits for the maximum time it takes for
the robot to cover Diski. (In the next section, we present
a bound on the coverage time of Diski.) The rendezvous
occurs when the robots are in the same cell and one robot
is moving while the other robot is waiting. The pseudocode
of the rendezvous strategy is presented in Algorithm 3 and
waitCoverage procedure is presented in Algorithm 4. We
next explain the coverage algorithm.

Coverage Algorithm
The robots execute the coverage algorithm (CA) in grid
cells in Diski. The grid cells can be free of obstacles or
full/partially occupied by the obstacles (see Figure 2). CA

Algorithm 3 SR-obstacle: Symmetric rendezvous search
algorithm.
Input: C-obstacle with removed boundary of the expanded

obstacles.
1: r ← 1.123
2: i← 0
3: coinF lip← random from {−1, 1}
4: while checkRendezvous() != true do
5: if coinF lip = -1 then
6: Draw a disk with a radius ri
7: Ccurrent← cell the robot is initially located.
8: createGrid(Ccurrent, ri)
9: CA(Diski) //cover disk

10: else if coinF lip = 1 then
11: waitCoverage(i)
12: end if
13: i← i+ 1
14: coinF lip← random from {−1, 1}
15: end while

is basically a modified version of DFS algorithm and guar-
antees that every point in the environment is covered. We
now present the details of CA.

We define the following variables used in our algorithm:
Ccenter is the cell the robot is initially located in the grid;
Ccurrent is the cell the robot is currently moving in; Cparent
is the cell from which the robot enters Ccurrent; C

j
child is

one of the neighbor cells of Ccurrent. Two cells are neigh-
bors if they share a common edge. The shared edge between
the neighbor cells can be intersected by obstacles. For exam-
ple, in Figure 2, neighbors of Cell-A are Cells (B, E, F and
H). Initially Ccurrent is set to Ccenter.

The robot covers each grid cell in the DFS tree by fol-
lowing the obstacle/cell boundary in a counter clockwise
fashion. We refer to this motion plan as “CCWBF” (counter
clockwise boundary following) in the rest of the paper. Note
that there can be one entrance of a cell while there can be
many exit points of a cell. We define ej as the entrance of
Cjchild (which is equal to the exit of Ccurrent). If the robot
in Ccurrent hits the boundary of Cjchild, Cparent becomes
Ccurrent and Cjchild becomes the new Ccurrent. The robot
then starts covering new Ccurrent by CCWBF until it hits
the boundary of Cjchild. It then recursively covers Cjchild and
all its children and continues CCWFB until it reaches ej .
When the robot comes back to ej , we say that the cell is cov-
ered. The robot then entersCparent from exit ofCparent. At
this point, Cparent becomes Ccurrent and the robot contin-
ues covering Ccurrent by CCWBF again until it reaches to
the entrance of Ccurrent. All the other cells in the grid are
covered in a similar fashion.

Figure 2 illustrates an example execution of the coverage
algorithm on a 3× 3 grid. The cells are indexed between A-
I and the robot is initially located at Cell-A. Arrows show
the direction the robot moves in a cell and the stars show
entrance of each cell. The resulting DFS tree which rep-
resents the order the robot visits the grid cells is shown in

2050

Figure 2: (a) A sample run of the coverage algorithm on a
3× 3 grid. The grid cells are indexed A-I. (b) DFS Tree.

Figure 3: Concave corner of obstacle P and its correspond-
ing corner in C-obstacle. (a) If Ei and Eo of v are not in
opposite quadrants. (b) If Ei and Eo of v are in opposite
quadrants.

Figure 2 (b). The robot first moves in upward direction in
Cell-A to start CCWBW. When it hits the boundary of Cell-
B, it follows CCWBW in this cell until it hits the boundary
of cell-C. Since cell-C has no children, the robot comes back
to entrance where it finishes covering Cell-C. The robot
then continues CCWBF in Cell-C until it hits the boundary
of Cell-D. All the other grid cells are covered in a similar
way by the robot.

Procedure 4 waitCoverage(i)
Input: D

1: Ni ← πr2i/D2

2: wait(8NiD)

The Analysis
Due to space limitations we provide a brief sketch of the
analysis.

We first study interactions between C-obstacles and grid
cells.

Lemma 5. A corner of a C-obstacle is always an obtuse
angle.

Proof. Let Ei denote the incoming edge and Eo denote the
outgoing edge of the corner of an obstacle P . A corner of P

Figure 4: Convex corner of obstacle P and its corresponding
corner in C-obstacle. (a) If Ei and Eo are in different but
not in opposite quadrants. (b) If Ei and Eo are in opposite
quadrants. (c) If Ei and Eo are in the same quadrant.

can be either convex (has an interior angle ≤ 180 degrees)
or concave (has an interior angle > 180 degrees). Let v be a
concave corner of P . We first examine how v is mapped to
a C-Obstacle corner. If Ei and Eo of v are not in opposite
quadrants, the robot sweeps Ei and Eo with its two different
corners. Figure 3 (a) shows an example for this case. If Ei
and Eo of v are in opposite quadrants, then the robot sweeps
Ei and Eo with its same corner. An example for this case is
illustrated in Figure 3 (b).In both cases, v remains as a con-
cave corner in C-obstacle. Let u be a convex corner of P .
Second, we examine how u is mapped to a C-Obstacle cor-
ner. We divide the second case into three subcases according
to Ei and Eo being in the same or different quadrants.

1. Subcase-1 (different but not in opposite quadrants):
If Ei and Eo are in different but not in opposite quad-
rants, then Minkowski sum introduces a new edge in the
C-obstacle. This edge is either vertical/horizontal and has
a length D. Therefore in this case, u corresponds to two
obtuse angle (> 90) corners in C-obstacle. Figure 4 (a)
illustrates two examples for this case.

2. Subcase-2 (opposite quadrants): If Ei and Eo are in op-
posite quadrants (meaning that u is with an obtuse angle),
then the robot sweeps Ei and Eo with its same corner.
Hence, the corresponding C-obstacle corner of v still re-
mains as an obtuse angle. Figure 4 (b) shows an example
for this case.

3. Subcase-3 (same quadrants):If Ei and Eo are in the
same quadrant, Minkowski sum introduces two new hor-
izontal and vertical edges in the C-obstacle. This yields
an obtuse angle followed by an orthogonal corner which is
followed by another obtuse angle corner. Horizontal and
vertical edges have length D. Figure 4 (c) shows an ex-
ample for the subcase where Ei and Eo are in the same
quadrant.

Lemma 5, along with the observation that a C-obstacle
has edge length at least D, yields an interesting structural
property: C-obstacles can divide a cell into at most two re-
gions. The proof, illustrated in Figure 5, shows that the pres-
ence of a third C-obstacle contradicts Lemma 5.

Next, we prove the following lemma:

2051

Figure 5: (a) P1 and P2 are two C-obstacles in a cell. They
split the cell into two (light shaded) regions. (b) We now
introduce a third obstacle, P3 in order to create a third (dark
shaded) region in the cell.R1 andR2 denote the free regions
in the cell. Ei and Eo denote the incoming and outgoing
edges to P3. An imaginary quadrant is drawn and the corner
of P3 is fixed to its origin O. Regions of the quadrant are
indexed clockwise between I-IV. Eo1 , Eo2 and Eo3 denote
the imaginary outgoing edges of P3.

Lemma 6. The cost (in terms of distance traveled) of cov-
ering a region is Tc < 4D.

Since each grid cell is composed of at most two regions,
we obtain an upper bound on covering a grid cell: Tc ≤ 8D.

This allows us to bound the total time coverDiski: TDi
<

8NiD. Here, Ni denotes the number cells inside Diski.
The remaining analysis of Algorithm SR-obstacle is sim-

ilar to the obstacle-free case. The only difference is the dis-
tance traveled by the robot in CA which is upper bounded
by 8NiD. This yields our main result:

Theorem 7. The optimal expansion radius r for the sym-
metric rendezvous algorithm for the environments with ob-
stacles is r = 1.123. This choice of r gives an algorithm that
has a competitive ratio of 292.968 d

D .

Concluding Remarks
We studied the symmetric rendezvous problem in planar set-
tings and presented randomized algorithms for two robots
to meet. We presented the details of the competitive anal-
ysis of the first algorithm designed for the open plane. We
then extended this algorithm for environments with polyg-
onal obstacles and presented an overview of its competitive
analysis.

Our future work includes implementing these strategies
on real robots. We will extend our results to handle asyn-
chronous robots that start their search at different times. We
will also investigate algorithms for symmetric multi-robot
rendezvous.

Acknowledgments
Volkan Isler is supported in part by National Science Foun-
dation Awards 1111638, 0916209, 0917676, and 0936710.
Deniz Ozsoyeller is supported by a grant from The Scien-
tific and Technological Research Council of Turkey.

References
Alpern, S., and Street, H. 2001. Rendezvous in One and
More Dimensions. CDAM Research Report LSE-CDAM-
2001-05.
Anderson, E., and Fekete, S. 2001. Two dimensional ren-
dezvous search. Operations Research 107–118.
Baezayates, R.; Culberson, J.; and Rawlins, G. 1993.
Searching in the plane. Information and Computation
106(2):234–252.
Berman, P.; Blum, A.; Fiat, A.; Karloff, H.; Rosen, A.; and
Saks, M. 1996. Randomized robot navigation algorithms. In
Proceedings of the seventh annual ACM-SIAM symposium
on Discrete algorithms, 75–84. Society for Industrial and
Applied Mathematics.
Collins, A.; Czyzowicz, J.; Gasieniec, L.; and Labourel, A.
2010. Tell me where I am so I can meet you sooner. In icalp.
Czyzowicz, J.; Ilcinkas, D.; Labourel, A.; and Pelc, A.
2010. Asynchronous deterministic rendezvous in bounded
terrains. Structural Information and Communication Com-
plexity 72–85.
Czyzowicz, J.; Labourel, A.; and Pelc, A. 2010. How to
meet asynchronously (almost) everywhere. Arxiv preprint
arXiv:1001.0890.
Fang, J.; Morse, A.; and Cao, M. 2008. Multi-agent ren-
dezvousing with a finite set of candidate rendezvous points.
In American Control Conference, 2008, 765–770.
Flocchini, P.; Prencipe, G.; Santoro, N.; and Widmayer, P.
2001. Gathering of asynchronous oblivious robots with lim-
ited visibility. STACS 2001 247–258.
Gabriely, Y., and Rimon, E. 2005. Competitive complexity
of mobile robot on line motion planning problems. Algorith-
mic Foundations of Robotics VI 155–170.
Ganguli, A.; Cortes, J.; and Bullo, F. 2006. Multirobot ren-
dezvous with visibility sensors in nonconvex environments.
Arxiv preprint cs/0611022.
Jurek, C.; Leszek, G.; and Pelc, A. 2009. Gathering few fat
mobile robots in the plane. Theoretical Computer Science
410(6-7):481–499.
Lin, J.; Morse, A.; and Anderson, B. 2007. The multi-agent
rendezvous problem. Part 2: The asynchronous case. SIAM
Journal on Control and Optimization 46(6):2120–2147.
Roy, N., and Dudek, G. 2001. Collaborative robot explo-
ration and rendezvous: Algorithms, performance bounds and
observations. Autonomous Robots 11(2):117–136.
Ruckle, W. 2007. Rendez-vous search on a rectangular lat-
tice. Naval Research Logistics 54(5):492–496.
Souissi, S.; Défago, X.; and Yamashita, M. 2006. Gather-
ing asynchronous mobile robots with inaccurate compasses.
Principles of Distributed Systems 333–349.
Thomas, L., and Hulme, P. 1997. Searching for targets who
want to be found. Journal of the Operational Research So-
ciety 48(1):44–50.

2052

