
Using the Web to Interactively Learn to Find Objects

Mehdi Samadi
Carnegie Mellon University

Pittsburgh, United States
msamadi@cs.cmu.edu

Thomas Kollar
Carnegie Mellon University

Pittsburgh, United States
tkollar@andrew.cmu.edu

Manuela Veloso
Carnegie Mellon University

Pittsburgh, United States
veloso@cs.cmu.edu

Abstract

In order for robots to intelligently perform tasks with humans,
they must be able to access a broad set of background knowl-
edge about the environments in which they operate. Unlike
other approaches, which tend to manually define the knowl-
edge of the robot, our approach enables robots to actively
query the World Wide Web (WWW) to learn background
knowledge about the physical environment. We show that our
approach is able to search the Web to infer the probability that
an object, such as a “coffee,” can be found in a location, such
as a “kitchen.” Our approach, called ObjectEval, is able to
dynamically instantiate a utility function using this probabil-
ity, enabling robots to find arbitrary objects in indoor envi-
ronments. Our experimental results show that the interactive
version of ObjectEval visits 28% fewer locations than the ver-
sion trained offline and 71% fewer locations than a baseline
approach which uses no background knowledge.

Introduction
Our aim is to make mobile robots that are able to intelli-
gently perform tasks. In this paper, we investigate a find and
deliver task, where a person specifies an object in open-
ended natural language (e.g., “coffee”) and the robot will
find and deliver the object to a specified destination (e.g.,
“GHC-8125”). This is a challenging problem because robots
have limited perceptual abilities and people use highly vari-
able language when specifying a task. For example, since
our robot only has access to the type of a room (e.g., “office”
or “kitchen”), it will need learn the relationship between a
query object (e.g., “coffee”) and these room types. In addi-
tion, since a person may ask the robot to find any of thou-
sands of objects, including a “coffee,” “pen,” or “papers,” the
robot will need to learn these relationships over all possible
query objects. The find and deliver task is easy for humans,
who have learned a large set of background knowledge from
experience with the environment; for robots, which have
limited access to such knowledge, it is much more challeng-
ing.

In this paper we introduce an approach, called ObjectE-
val, which addresses the challenges of the find and deliver
task by querying the Web. By downloading and categorizing

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a set of web-pages on-demand, ObjectEval learns the prob-
ability that a location (e.g., “kitchen”) will contain an object
(e.g., “coffee”). This probability is then dynamically incor-
porated into a utility function, which takes into account the
travel distance to a location, the number of human interac-
tions required to get to a location, and the observation of the
object during previous executions at that location. ObjectE-
val then infers the maximum-utility plan corresponding to a
sequence of locations it should visit, asks a human to provide
it with the object, and then takes the object to a destination.

We evaluate ObjectEval in three ways. First, we show that
ObjectEval is able to predict the location of novel objects
against a baseline that is similar to Kollar and Roy (Kollar
and Roy 2009). Second, we show that ObjectEval is able to
efficiently and automatically find novel objects in a realistic
simulated environment consisting of 290 spaces of an office
building given only a topological map and the space types
(e.g., “office,” “bathroom” etc.). We further show that Ob-
jectEval can improve its performance by learning from feed-
back it gets about the location of objects. Finally, we show
that a mobile office robot and can successfully find and de-
liver “coffee” to a room in our office building. This paper
builds on the preliminary work of Samadi et al. (Samadi,
Veloso, and Blum 2011) and Kollar et al. (Kollar, Samadi,
and Veloso 2012). The main contributions of this paper are:

• An approach for learning background knowledge about
the environment by querying the Web.

• An approach for finding and delivering objects that dy-
namically instantiates a utility function using the results
of a Web query, and which interactively learns about the
physical environment by getting feedback from humans.

Related Work
Exploring indoor environments has been studied as a part
of work on Simultaneous Localization and Mapping. Ya-
mauchi (Yamauchi 1997) described a search process that
would incrementally explore new regions of the map. Our
baseline search which does not use background knowledge
is similar to this approach. Later work focused on balanc-
ing the trade-off between localization quality and the need
to explore new areas of the environment (Makarenko et al.
2002) (Stachniss, Grisetti, and Burgard 2005).

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

2074



(a) Receive command (b) Go to location (c) Ask for “coffee” (d) Get “coffee” (e) Deliver object

Figure 1: Our robot searching for an object. In (a) the system gets a query to find a “coffee” and take it to room 7001. In (b) it
goes to the nearest kitchen. In (c), it asks a person to place a coffee on it. In (d), it gets the coffee and the person says that the
robot has the object. In (e), the robot delivers the object to its destination.

Searching for objects has received considerable inter-
est in the robotics community. Much research has focused
on visual object search that does not leverage the Web
(Sjöö et al. 2009; Aydemir et al. 2011; Velez et al. 2011;
Joho, Senk, and Burgard 2011). Sjöö et al. (Sjöö et al. 2009)
present a method for search and localization of objects by
using an attention mechanism as a primary step in the recog-
nition process. Using a combination of view planning and
visual search, the authors use existing computer vision al-
gorithms to efficiently detect and localize different objects.
Aydemir et al. (Aydemir et al. 2011) builds on this by us-
ing spatial relations to perform large-scale visual search for
objects. Meger et al. Joho et al. (Joho, Senk, and Burgard
2011) focuses problem of finding an object with a mobile
robot in an initially unknown, structured environment. While
the primary focus is not on vision, they present two meth-
ods for object search. The first is a reactive search technique
based on objects in the robot’s immediate vicinity. The sec-
ond is a global, inference-based approach that uses the ob-
ject arrangements of example environments. Finally, Velez
et al. (Velez et al. 2011) considers the task of autonomously
navigating through the environment while mapping the lo-
cation of objects. The authors describe an online any-time
framework where vantage points provide the most informa-
tive view of an object given a noisy object detector. Unlike
these approaches, our work uses help from humans to detect
and manipulate objects.

Researchers have begun to think about how robots might
be integrated with the Web. Meger et al. (Meger et al. 2008)
describe an integrated robotic platform that uses web-based
training data to train a visual object detector and then per-
form exploration, mapping, and active attention. Most simi-
lar to this work is Kollar et al. (Kollar and Roy 2009), who
used the co-occurrences in the labels from the Flickr photo-
sharing website as a prior over where objects are located in
the physical environment. Posner et al. (Posner, Corke, and
Newman 2010) demonstrate a system that queries the Web to
help read the visible text in the scene. Tenorth et al. (Tenorth

et al. 2011) describe how information on the World Wide
Web and intended for human use might be useful for robots.

Finally, there has been much work that is focused on us-
ing the Web to extract information. Many approaches use
pointwise mutual information (PMI), which is able to mea-
sure the semantic similarity of different words (Turney 2001;
Turney and Littman 2003; Soderl et al. July 2004; Magnini
et al. 2002). The performance of all of these techniques de-
pends on the accuracy of search engine hit counts. To ad-
dress the fact that search engine hit counts change daily and
are otherwise unreliable, Downey et al. (Downey, Etzioni,
and Soderl 2005) developed a combinatorial “balls-and-
urns” model (Urns model) that uses the redundancy of the
same extraction from different sources to compute the prob-
ability of the correctness. Finally, the Never-Ending Lan-
guage Learner (NELL) addresses actively reads the Web,
learning structured information from the unstructured web-
pages (Carlson et al. 2010).

ObjectEval
Our approach, called ObjectEval, enables a robot with lim-
ited sensing to search for an object. By using symbiotic au-
tonomy the robot is able to ask people to help it perform
tasks, including manipulation and object detection (Rosen-
thal, Biswas, and Veloso 2010; Biswas and Veloso 2012). To
find an object, the robot must therefore (1) receive a com-
mand to find an object (e.g., “coffee”) and take it to a des-
tination (e.g., room 7001), (2) compute a sequence of lo-
cations to visit by maximizing long-term utility, (3) visit a
location, (4) ask a person to retrieve the object and finally
(5) if there, deliver the object to the destination or if not, go
to the next location to look for the object. An example of our
robot finding a “coffee” can be seen in Figure 1.

Model
ObjectEval takes as input an object name (e.g., papers) and a
destination room (e.g., room 8120), and returns a plan con-
sisting of locations that robot should visit. Finding objects

2075



requires trading off different objectives including: the num-
ber of interactions with people, the distance traveled, the ex-
istence of objects at previously visited locations, and proba-
bility of finding an object in a location. ObjectEval combines
these objectives into a utility function that, when maximized,
generates a plan that the robot can execute to find an object
effectively. If O is an object name (e.g., “papers”), and U is
the utility function, then the problem can be formulated as
finding the plan that maximizes the utility:

argmax
plan

U(plan|O) (1)

The plan is broken down into a sequence of steps (plani),
each of which visit a location and ask for an object from a
person. The robot receives a reward (R) when it executes ith
step of the plan. The current step in the plan is successful
with probability p(plani|O).

U(plan|O) =
N∑
i=1

p(plani|O)×R(plani, O) (2)

In order to capture the objective of finding objects quickly,
the reward at each step is broken down into three compo-
nents:

R(plani, O) = D(plani)× I(plani)× F (plani, O) (3)

Since the robot should consider plans that travel as little as
possible, we include the reward D, which is dependent on
the distance the robot travels. D is computed by subtracting
the distance traveled from the maximum distance the robot
could travel. Since people are used as a part of the search
process to find and manipulate objects, we include the re-
ward I , which is dependent on the number of interactions
that the robot has with a person. I is computed by subtract-
ing the number of interactions required to search a location
for an object from the maximum number of interactions the
robot will need to search any location. Finally, in order to
take advantage of feedback from people, we include the re-
ward F , which uses previous searches to help search for ob-
jects. The value of F is 1 if a query object has been seen
at the search location, 0.5 if the location has not been ex-
plored, and 0 if it is known not to exist there. Although F
is fixed in this paper, learning a dynamic model for how ob-
jects move would enable ObjectEval to handle cases where
the query object moves between different locations in the
environment.

The second component of Equation 2 requires us to com-
pute the probability of a part of the plan. As a proxy for
the probability of the plan, we use the probability that the
location at the ith step of the plan will contain an object
given that the object was not seen at the previously vis-
ited locations in the plan. If lj is multinomial over location
types (e.g., “office,” “printer room,” “bathroom”) and O is
the query object, then the we can compute this probability
as:

p(plani|O) ≈

i−1∏
j=1

(1− p(lj |O))

× p(li|O) (4)

In order to find the plan with a maximum utility, the robot
must be able to compute p(li|O). This term connects a query
object O (e.g., “papers”) to a location type in the environ-
ment (e.g., “printer room”). Connecting a query word for
an object to a place where the robot can find the object
is challenging because there are thousands of different ob-
ject names people might use. We calculate the probability
p(li|O) by querying the Web for the validity of the predicate
locationHasObject(l,O) over all location types l. For exam-
ple:

p(lj =kitchen|O = coffee)

, p(locationHasObject(kitchen, coffee)) (5)

In the next section we describe how ObjectEval obtains the
probability of instances of the predicate locationHasObject.

Querying the Web
The World Wide Web (WWW) contains an enormous
amount of semantic information that might be useful for
robots. In this paper, we investigate the use of the semantic
information on the Web to predict the location of objects in
real-world environments. We expect that objects physically
present in a location will be found frequently on the Web.
For example, one of the top search results for the object “pa-
per” and the location “printer room” is, “There is no more
paper in the printer room, where can I find some more?”
For objects unrelated to the location, such as “papers” and
“elevator” there are fewer pages which often describe less
sensical events such as, “Call for Papers, The International
Space Elevator Consortium (ISEC) invites you to join us in
Washington State.” Therefore, we expect that the word pat-
terns for related terms will be predictive, while un-related
terms will be less predictive. Figure 2 shows example of text
snippets that are found on the Web for object “papers” and
locations “printer room” and “bathroom.”

ObjectEval will compute the probability from Equation 5
by converting predicate instances in first-order logic, such
as locationHasObject(papers, printer room), into a search
query such as { “papers”, “printer room”}. These search
queries can return hundreds or thousands of the most rel-
evant web-pages that relate these terms. The search query
includes both the name of the location type and the name
of the query object in order to retrieve highly relevant web-
pages. In contrast, a search query such as “papers” will re-
turn both relevant and irrelevant web-pages for determining
if “papers” can be found in a “printer room.”

The text on the web-pages that is most relevant to a predi-
cate instance will be near the search terms. We therefore ex-
tract text snippets from each of the web-pages that include
up to 10 words before, after, and in between the query object
and location words. If there are multiple text snippets ex-
tracted from the same web-page, we merge them into a sin-
gle text snippet. Each of the text snippets is then transformed
into a feature vector, where each element corresponds to
the frequency of a distinct word in the text snippet. The di-
mension of the vector is equal to the total number of dis-
tinct words that exist in the training data. All the stop words
have been deleted, since we expect these features to only add

2076



Figure 2: Querying the Web to find the maximum probability location of “papers.” In this example, two location types exist:
printer room and kitchen. A Web search for “papers,” “printer room” and “papers,” “kitchen” returns a set of web-pages from
which text snippets are extracted. The features of these text snippets are then categorized as one of the location types. The
red border indicates that the text snippet was categorized as a “kitchen” and the green border indicates it was categorized as a
“printer room.” The frequency of the resulting categorization is then used to compute the maximum likelihood probability of
each location given a query object.

noise to the learning. Figure 2 shows an example of the text
snippet that is found in one of the returned web-pages for
query {“Papers” “Printer Room”}. Some of the extracted
features include: {documents, printed, office, unfetched}.

To find which location type should be assigned to a web-
page, we train an SVM classifier that takes the feature vec-
tor for the web-page as an input and learns a multi-class
classifier that outputs one of the location types. The clas-
sifier is trained using the web-pages resulting from a cor-
pus of predicate instances. These instances can come from
human annotation or from a robot interacting with the en-
vironment. ObjectEval only needs positive examples of the
locationHasObject predicate since the SVM is a multi-class
classifier over all location types.

Thus, given a query object O, ObjectEval will create a set
of predicate instances over all locations l in the environment
(Figure 2). If papers is given as an object query and we have
only two location types in the environment, printer room
and kitchen, then ObjectEval formulates two search queries:
{“papers” “printer room”} and {“papers” “kitchen”}. Each
search query then returns a set of the highest ranked web-
pages from a Web search engine1. Text snippets are then ex-
tracted for each of the web-pages as shown in the top box
of Figure 2. The result of classification on all of the text
snippets is shown by two colors: green means that the Ob-
jectEval has classified the text snippet to location “kitchen”
and red means that ObjectEval has classified it as “printer
room”. In total, three of the text snippets are classified as

1such as Bing, www.bing.com

“printer room” and one is classified as “kitchen”. This leads
to a probability of 0.75 (3/4) for object “papers” to be found
in “printer room” and a probability of 0.25 (1/4) for “papers”
to be found in the “kitchen.”

Inferring a Plan
ObjectEval searches over candidate plans to maximize the
utility function in Equation 1. We use a beam search with
a beam width of 10 and search up to depth N = 10 in the
search tree. At each step of the search, a new plan step plani

is added to the overall plan. Each plan step plani can visit
any of the locations in the test environment to find an object.
The beam search disallows loops by preventing plans from
revisiting previously visited locations.

Evaluation
ObjectEval is evaluated in three primary ways. First, we
query the Web to predict the probability distribution p(li|O)
described in our model over a set of test objects. Secondly, a
set of simulated commands were executed for three floors of
an office building. Finally, we have demonstrated ObjectE-
val on our robotic platform.

Predicting the Location of Objects
We have collected a corpus of 134 unique instances for the
predicate locationHasObject for the “kitchen,” “bathroom,”
“office,” and “printer room” locations. These instances were
acquired by asking subjects on Amazon’s mechanical Turk
to look at pictures of each location type and describe objects

2077



(a) (b)

Figure 3: In (a) is the precision/recall curve for the 45 test predicate instances. In (b) is the F1-score for the 45 test predicate
instances when training on a subset of the training dataset.

that tend to reside there. The data is split by randomly choos-
ing 68% of data for training and 32% for testing. ObjectEval
is trained and tested by using the first 20 web-pages that are
returned by the search engine. Table 1 shows the result for
a subset of the test objects. ObjectEval is able to correctly
determine the most likely location for most objects. It in-
correctly classifies “whiteout” to be found in “bathroom.”
ObjectEval also chooses “bathroom” as the most likely lo-
cation for “cup”. Although this is correct in some environ-
ments (e.g. hotels), we generally expect robot to find “cup”
in either a “kitchen” or an “office”. The results show that
by requesting more specific query such as “coffee cup,” Ob-
jectEval will change its classification to the “kitchen.”

ObjectEval was then evaluated using precision, recall, and
F1 (which is a combination of precision and recall) over this
dataset. The ESP baseline replaces web search with a search
over tag documents that contain the search terms (von Ahn
and Dabbish 2004) in order to provide comparison to (Kollar
and Roy 2009). Figure 3(a) shows that the model trained on
ESP performs worse than ObjectEval, which likely happens
because few locations are tagged in the ESP dataset.

Finally, the speed at which ObjectEval learns was eval-
uated. Figure 3(b) shows the F1-score of ObjectEval when
increasing the number of predicate instances used for the
training. The results are obtained by training on a subset of
the training instances and evaluating on all of the test in-
stances. The result, somewhat surprisingly, shows that Ob-
jectEval achieves a high F1 value even when it uses a few
training examples. For example, it achieves a F1 score of
about 60% when it uses only 6 training examples for the
training. ObjectEval learns quickly because a single training
instance could return thousands or millions of web-pages.
For example, the number of documents referencing “papers”
and “printer room” is 61,200 according to Google. This re-
sult indicates that ObjectEval might be trained even with
only a few predicate instances.

Object Location Types
Bathroom Printer Room Kitchen Office

coffee 0.08 0.02 0.72 0.18
marker 0.33 0.53 0.08 0.06

pen 0.15 0.27 0.23 0.35
toner 0.05 0.87 0.02 0.06

scissors 0.26 0.01 0.61 0.12
whiteout 0.66 0.02 0.24 0.08

laptop 0.1 0.48 0.08 0.34
papers 0 0.17 0.13 0.7

cup 0.42 0.1 0.36 0.12
coffee cup 0 0.01 0.73 0.27

speakers 0.34 0.06 0.25 0.35

Table 1: The probability that ObjectEval assigns to different
test objects for each location type. The location type with
maximum probability is shown as bold.

Simulated Experiments
We have created a large simulated environment to evaluate
how ObjectEval will search for objects. Since the simulator
uses exactly the same procedures as the physical robot, the
number of interactions (I) will be exactly the same as on
the real robot. In general, when the robot asks for an object,
a person must answer two questions and when it is moving
between floors (using the elevator) a person must answer five
questions.

To simulate the objects present in the building, we have
created a semantic map of 290 spaces over three floors of
an office building that contain names for objects and loca-
tions present in each space. This was done by asking sub-
jects on Amazon’s Mechanical Turk to label images of 46
rooms with the location and objects present. These labels
were transferred to spaces for which we were not able to
acquire images by sampling from the data collected from
Mechanical Turk. To test the ability of ObjectEval to search
for objects, we have selected 80 object types that were not a
part of the training set. ObjectEval was given only the loca-

2078



Approach Visited locations Distance Interactions
Mean Standard Mean Standard Mean Standard

Error Error Error

Baseline 35.8 6.1 69.6 7.2 71.5 12.3
ObjectEval (offline) 14.3 4.3 33.9 4.6 28.7 8.6
ObjectEval (interactive) 10.2 3.8 32.5 4.4 20.5 7.7

Table 2: Average and standard error for the number of visited locations, distance and number of interactions for different
approaches. The baseline uses only the terms for interaction I and distance D from Equation 2. ObjectEval (offline) uses batch
training and ObjectEval (interactive) is given no training data, but instead uses the presence of objects in locations to update the
probability of a location given the object as it performs a search (as from Equation 2).

tion types (e.g., “kitchen” or “printer room”) and a map of
the environment. For each query object, a random location
is chosen as the object delivery destination.

We evaluate ObjectEval in two scenarios: offline mode
and interactive mode. In the offline mode, ObjectEval learns
the probability from Equation 4 by using a small dataset of
predicate instances consisting of objects and a place where
that object can generally be found. In interactive mode, the
robot starts performing the find and deliver task in an un-
known environment without this training data. By interact-
ing with people, ObjectEval acquires examples of objects
and the corresponding place where the object was found.
This is then used to learn a model of p(li|O) in Equation 4.
When the robot finds an object in a location, it adds this
to the current set of training instances. ObjectEval will then
search the Web and use the resulting web-pages as additional
training examples that relate the object to the observed loca-
tion.

Table 2 shows the results of different approaches that have
been used to find objects. The baseline only uses the distance
and interaction terms of Equation 2 to greedily generate the
next location to visit and uses no semantic information about
the environment. ObjectEval maximizes the expected utility
Equation 2 in both offline or interactive modes.

There is a clear downward trend in the number of visited
locations and number of interactions for ObjectEval when
compared with this baseline, indicating that the system is
learning about the physical environment. Surprisingly, the
interactive mode of ObjectEval achieves better results then
the offline version of ObjectEval. Since the training data
from Mechanical Turk can be different from the objects and
the locations that are found by the robot, the interactive ver-
sion ObjectEval may have an advantage since it learns the
locations of objects directly in the test environment. The of-
fline version starts with a biased set of data (obtained from
Mechanical Turk) that may not accurately reflect the real-
world. For example, people from Mechanical Turk have an-
notated “cup” or “glasses” as example of objects that can
be found in bathroom. However, in our office environment
these objects are expected to be found in offices. By training
on these examples, the offline version of ObjectEval would
be biased toward finding these objects in bathroom, whereas
the interactive version does not have this problem because it
only uses training data about objects in the environment.

Although the number of visited locations in Table 2 may

Figure 4: The number of locations visited by the robot before
finding the query object for the interactive mode of ObjectE-
val (red line) and the baseline (green line). The data is sorted
by the number of visited locations per simulation run.

seem high, the interactive version of ObjectEval finds 80%
of the objects within five locations or less, whereas the base-
line finds only 39% in the same five locations. One reason
that this term is high is because of a high penalty for choos-
ing the wrong location. For example, if the robot incorrectly
classifies “soap” as being in an “office”, it will have to search
an order of magnitude more locations because the environ-
ment contains hundreds of offices, whereas it only contains
a few bathrooms.

Finally, we have profiled the number of locations visited
before finding an object. Figure 4 shows the result when a
search for 20 objects is repeated 5 times starting from dif-
ferent initial location to obtain 100 runs. The figure shows
that ObjectEval, after having gathered only a few facts, has
quickly learned to execute efficient plans to find objects
when compared with the baseline approach.

Robot Experiments

We have demonstrated the ability of ObjectEval to find and
deliver an object on our mobile office assistant robot. We
have queried ObjectEval for a “coffee” and asked it to de-
liver the object to office “7001.” The robot drove to the near-
est kitchen and asked for a coffee. When a person came by,
they placed a coffee on the robot and the robot returned to
7001 with the coffee. This search can be seen in Figure 1.

2079



Conclusion
In this paper, we have presented an approach, called Ob-
jectEval, which is able to find and deliver objects in real-
world environments. We have shown that our system learns
to query the Web to evaluate the probability of physical
background knowledge that relates objects and locations.
In addition, we present an approach for finding and deliv-
ering objects that integrates information about object loca-
tions from the Web, and interactively learns about the physi-
cal environment by getting feedback from humans. We have
shown promising results over a baseline approach and have
demonstrated our system on a mobile robot navigating in an
indoor environment.

Acknowledgments
This research was partly supported by the National Science
Foundation award number NSF IIS-1012733. The views and
conclusions contained in this document are those of the au-
thors only.

References
Aydemir, A.; Sjöö, K.; Folkesson, J.; Pronobis, A.; and Jens-
felt, P. 2011. Search in the real world: Active visual object
search based on spatial relations. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation
(ICRA’11).
Biswas, J., and Veloso, M. 2012. Depth camera based in-
door mobile robot localization and navigation. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation, ICRA’12.
Carlson, A.; Betteridge, J.; Wang, R. C.; Jr., E. R. H.; and
Mitchell, T. M. 2010. Coupled semi-supervised learning for
information extraction. In Proceedings of the Third ACM
International Conference on Web Search and Data Mining
(WSDM 2010).
Downey, D.; Etzioni, O.; and Soderl, S. 2005. A probabilis-
tic model of redundancy in information extraction. In IJCAI,
1034–1041.
Joho, D.; Senk, M.; and Burgard, W. 2011. Learning
search heuristics for finding objects in structured environ-
ments. Robotics and Autonomous Systems 59(5):319–328.
Kollar, T., and Roy, N. 2009. Utilizing object-object and
object-scene context when planning to find things. In Pro-
ceedings of the IEEE international conference on Robotics
and Automation, ICRA’09, 4116–4121. Piscataway, NJ,
USA: IEEE Press.
Kollar, T.; Samadi, M.; and Veloso, M. 2012. Enabling
robots to find and fetch objects by querying the web. In Pro-
ceedings of the Eleventh International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS.
Magnini, B.; Negri, M.; Prevete, R.; and Tanev, H. 2002. Is
it the right answer? exploiting web redundancy for answer
validation. In In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, 425–432.
Makarenko, A.; Williams, S.; Bourgault, F.; and Durrant-
Whyte, H. 2002. An experiment in integrated exploration.

In Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, volume 1, 534–539. IEEE.
Meger, D.; Forssén, P.-E.; Lai, K.; Helmer, S.; McCann, S.;
Southey, T.; Baumann, M.; Little, J. J.; and Lowe, D. G.
2008. Curious george: an attentive semantic robot. Robotics
and Autonomous Systems 56:503–511.
Posner, I.; Corke, P.; and Newman, P. 2010. Using text-
spotting to query the world. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS).
Rosenthal, S.; Biswas, J.; and Veloso, M. 2010. An effec-
tive personal mobile robot agent through symbiotic human-
robot interaction. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’10.
Samadi, M.; Veloso, M.; and Blum, M. 2011. Evaluating
correctness of propositions using the web. In Proceedings of
the Workshop on Learning by Reading and its Applications
in Intelligent Question-Answering, IJCAI’11.
Sjöö, K.; López, D. G.; Paul, C.; Jensfelt, P.; and Kragic, D.
2009. Object search and localization for an indoor mobile
robot. Journal of Computing and Information Technology
17(1):67–80. doi:10.2498/cit.1001182.
Soderl, S.; Etzioni, O.; Shaked, T.; and Weld, D. S. July
2004. The use of web-based statistics to validate information
extraction. In AAAI Workshop on Adaptive Text Extraction
and Mining.
Stachniss, C.; Grisetti, G.; and Burgard, W. 2005. Informa-
tion gain-based exploration using rao-blackwellized particle
filters. In Proc. of robotics: science and systems (RSS), 65–
72.
Tenorth, M.; Klank, U.; Pangercic, D.; and Beetz, M. 2011.
Web-enabled robots. Robotics & Automation Magazine,
IEEE 18(2):58–68.
Turney, P. D., and Littman, M. L. 2003. Measuring praise
and criticism: Inference of semantic orientation from asso-
ciation. ACM Trans. Inf. Syst. 21:315–346.
Turney, P. 2001. Mining the web for synonyms: Pmi-ir ver-
sus lsa on toefl.
Velez, J.; Hemann, G.; Huang, A.; Posner, I.; and Roy, N.
2011. Planning to perceive: Exploiting mobility for robust
object detection. In Proceedings of the International Con-
ference on Automated Planning and Scheduling.
von Ahn, L., and Dabbish, L. 2004. Labeling images with a
computer game. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’04, 319–326.
New York, NY, USA: ACM.
Yamauchi, B. 1997. A frontier-based approach for au-
tonomous exploration. In Computational Intelligence in
Robotics and Automation, 1997. CIRA’97., Proceedings.,
1997 IEEE International Symposium on, 146–151. IEEE.

2080




