
Visibility Induction for Discretized Pursuit-Evasion Games

Ahmed Abdelkader and Hazem El-Alfy
Department of Engineering Mathematics and Physics

Faculty of Engineering, Alexandria University
Alexandria 21544, EGYPT

{abdelkader,helalfy}@alexu.edu.eg

Abstract

We study a two-player pursuit-evasion game, in which an
agent moving amongst obstacles is to be maintained within
“sight” of a pursuing robot. Using a discretization of the en-
vironment, our main contribution is to design an efficient al-
gorithm that decides, given initial positions of both pursuer
and evader, if the evader can take any moving strategy to go
out of sight of the pursuer at any time instant. If that hap-
pens, we say that the evader wins the game. We analyze the
algorithm, present several optimizations and show results for
different environments. For situations where the evader can-
not win, we compute, in addition, a pursuit strategy that keeps
the evader within sight, for every strategy the evader can take.
Finally, if it is determined that the evader wins, we compute
its optimal escape trajectory and the corresponding optimal
pursuit trajectory.

Introduction
We consider the problem of target tracking, that is planning
the motion of a mobile robot (pursuer) as it tracks a tar-
get (evader) moving amongst obstacles. We use the term
target tracking to mean following that target or, more pre-
cisely, maintaining its visibility. This terminology is com-
mon within the robotic planning community (Hsu, Lee, and
Rong 2008) as opposed to the broader notion of tracking,
known in the computer vision literature, which refers to the
identification of paths of different targets. Several applica-
tions of that problem are suggested in the literature (Hsu,
Lee, and Rong 2008; Bhattacharya and Hutchinson 2008;
Murrieta-Cid et al. 2007). Those cover surveillance and se-
curity in sensitive or restricted areas, providing home care
by watching over children or elderly people and monitoring
the performance of human workers.

The studied problem is part of the more general visibility-
based pursuit-evasion problems (LaValle 2006). In those
problems, the task of a pursuer is to compute a path which
guarantees finding an evader that might be hiding in an en-
vironment. Obviously, the evader might “sneak” between
different hiding places as the pursuer is traveling making
a single pursuer unable to solve the problem. The natural
extension becomes that of finding the minimum number of
pursuers needed to eliminate any hiding places for one or

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more evaders under different constraints of knowledge of the
environment and information about other players’ locations
(Gerkey, Thrun, and Gordon 2004; Kolling and Carpin 2010;
Klein and Suri 2011; Borie, Tovey, and Koenig 2011). Once
the evader is found, the related problem that arises is that of
maintaining its visibility which is known as target tracking.
An early attempt at that problem is presented in (LaValle et
al. 1997) for fully predictable targets (optimal tracking paths
found offline) and partially predictable targets (best next step
found online). Recently, there has been interest in a variant
of that problem in which a pursuer, tracking an unpredictable
evader, loses immediately if its view of the evader is ob-
structed by an obstacle (Bhattacharya and Hutchinson 2008;
Murrieta-Cid et al. 2007). The problem of deciding which
player wins for any pair of initial positions has been shown
to be NP-complete (Murrieta-Cid et al. 2008).

In this paper, we are interested in the latter problem of
deciding which player wins the pursuit-evasion game de-
scribed above. We develop an algorithm, using a mesh dis-
cretization approach, to decide the outcome of the game. For
any input pair of players’ positions, the algorithm decides
whether the evader can win by moving in such a way to
break the line of sight with the pursuer at any time instance
or otherwise, the pursuer wins by maintaining the visibility
of the evader throughout the game. Using a grid to discretize
the surveyed environment has the advantages of being inde-
pendent of the geometry and layout of the obstacles as well
as being computationally feasible.

Grid discretization is often used in Artificial Intelligence
to solve problems in AI planning (Ishida and Korf 1995).
In AI, the focus is on solving the problem of finding and
(or) catching the evader using algorithms that search the
discretized state space along with heuristics to speed up
the process. The problem of deciding if a solution exists
is only approached theoretically and is often intractable.
Recently, a polynomial time algorithm that decides which
player wins and in how many steps has been developed
(Hahn and MacGillivray 2006). Mathematical results from
graph theory are used to present bounds on the time com-
plexity of the problem that can be generalized, in theory, to
the case of more players. A realization of such algorithms in
real world problems is still not practical. In contrast, our ap-
proach presents a grid-based solution that can be applied in
practice to a robotics path planning problem. It enriches the

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1976

literature by linking to existing research in that area, mod-
eling realistic constraints of bounded speeds, different play-
ers’ speeds and limited sensor range.

In the robotics motion planning area, two approaches are
used. Using the terminology in (LaValle 2006), these are
combinatorial approaches that find exact solutions through
a continuous space and sampling-based approaches that di-
vide the space (probabilistically or deterministically) into
discrete regions and find paths through these regions. The
simplest form of deterministically dividing the space (a.k.a
cell decomposition) is with a grid of fixed resolution. The
main advantage of this approach is its simple implementa-
tion in contrast to combinatorial methods, many of which
are impractical to implement. However, cell decomposi-
tion methods are resolution complete (unlike combinatorial
methods), which means that they find a solution when one
exists only if the resolution of the sampling grid is fine
enough. Another common drawback with grid methods is
that their complexity depends on the grid size (González-
Baños, Hsu, and Latombe 2006).

The main contribution of this paper is the development of
an algorithm that enhances recent results in AI planning and
visibility-based pursuit-evasion to tackle the computation-
ally prohibitive task of deciding the outcome of the pursuit-
evasion game. This is a significant improvement over earlier
depth-limited or heuristic-based approaches. The computed
results are also used to find optimal player trajectories and
optimize various objectives. The basic model (El-Alfy and
Kabardy 2011) is formally studied to facilitate the deriva-
tion of several suggested optimizations. This, to our knowl-
edge, provides first evidence of the feasibility of optimal de-
cisions at such high grid-resolutions under varying speed ra-
tios, different visibility constraints and regardless of obstacle
geometries.

In the rest of this paper, we proceed with a more detailed
literature review followed by a formal problem definition.
Our approaches to solve the decision problem and compute
tracking strategies are then presented and the results follow.
Finally, we conclude and suggest future work.

Related Work
A large amount of literature has been devoted to pursuit-
evasion games. In this section, we review closely related
work, with a focus on attempts at deciding the outcome of
the game. In the field of robotics, we survey recent work
in the problem where one pursuer maintains the visibility of
one evader, in an environment with obstacles. In artificial
intelligence, we review the related problem of cops and rob-
bers.

In the area of robotics motion planning, the main ap-
proach used is to decompose the environment into noncriti-
cal regions with critical curve boundaries, across which crit-
ical changes in occlusion and collision occur, then use a
combinatorial motion planning method. Murrieta-Cid et al.
(2007) model the pursuit-evasion game as a motion planning
problem of a rod of variable length, creating a partitioning
of the environment that depends on the geometry of obsta-
cles. Later (2008), they present a convex partitioning that

is modeled as a mutual visibility graph. Their method alter-
nates between an evader assumed to take the shortest step to
escape, countered by a pursuer that computes a prevention-
from-escape step, which produces a sequence of locally op-
timal paths. This leads to an interesting result: to decide
which player wins, every feasible ordering of local paths has
to be checked, concluding it is an NP-complete problem.

Bhattacharya et al. address the problem of maintaining
the visibility of an escaping evader and show that it is
completely decidable around one corner with infinite edges
(Bhattacharya, Candido, and Hutchinson 2007). The au-
thors then extend their work in (2008) to deal with more
general environments with convex obstacles. They split the
environment into decidable and non-decidable regions and
approximate bounds on these regions. They also provide a
sufficient condition for escape of the evader. Recently, they
used differential games theory to analyze that problem under
complete information, suggesting a formulation in which the
pursuer maximizes the time for which it can track the evader
while the evader minimizes it (Bhattacharya, Hutchinson,
and Başar 2009; Bhattacharya and Hutchinson 2010). Com-
puting equilibrium strategies gives necessary and sufficient
conditions for tracking. They present results around a point
obstacle, a corner and a hexagonal obstacle.

Within the AI planning community, the related problem
of cops and robbers consists of one or more players (cops)
trying to find and catch one or more evaders (robbers). The
players perform alternating moves. This makes the game
naturally discrete, often modeled as a graph with vertices
representing the game’s states. The mathematical foun-
dations for solving these problems are surveyed in (Hahn
2007). A polynomial time optimal algorithm that deter-
mines whether the cops or the robbers win, and in how
many steps, has only been recently given in (Hahn and
MacGillivray 2006). Unfortunately, methods for comput-
ing optimal strategies have always been impractical to im-
plement. For example, Moldenhauer and Sturtevant (2009a)
compute optimal move policies offline in 2.5 hours per envi-
ronment using an enhanced form of the algorithm in (Hahn
and MacGillivray 2006). For that reason, several heuris-
tics have been used in order to compute near optimal ap-
proximations in practical time. In (Moldenhauer and Sturte-
vant 2009b), different optimal strategies are studied on small
maps while in (2009a), larger maps are used to evaluate less
optimal strategies against optimal ones. One of the first prac-
tical implementations of the cops and robbers game is pre-
sented in (Ishida and Korf 1995) under the name of moving-
target search. Since, that problem has been extensively stud-
ied using a variety of heuristics such as incremental heuris-
tic search (Koenig, Likhachev, and Sun 2007) and Cover
heuristic (Isaza et al. 2008), to name a few recent references.

Problem Definition
This is a two-player game, with one pursuer and one evader
modeled as points that can move in any planar direction
(holonomic robots). Each player knows exactly both the
position and the velocity of the other player. We consider
two-dimensional environments containing obstacles that ob-
struct the view of the players. Obstacles have known ar-

1977

bitrary geometries and locations. The assumption of com-
plete information is used here to derive the outcome of the
game, since if some player loses with complete informa-
tion, it will always lose under other conditions. Both play-
ers have bounded speeds, move at different speeds and can
maneuver to avoid obstacles. We will denote the maximum
speed of the pursuer vp, that of the evader ve and their ratio
r = ve/vp. Players are equipped with sensors that can “see”
in all directions (ommnidirectional) and as far as the envi-
ronment boundaries or obstacles, whichever is closer. We
will see later that we can model minimum and maximum
ranges for sensors with a simple variation in our algorithm.

The pursuit-evasion game proceeds as follows. Initially,
the pursuer and the evader are at positions from which they
can see each other. It is common in the literature to define
two players to be visible to one another if the line segment
that joins them does not intersect any obstacle. The goal
of the game is for the pursuer to maintain visibility of the
evader at all times. The game ends immediately, if at any
time, the pursuer loses sight of the evader. In that case, we
say that the pursuer loses and the evader wins.

Deciding the Outcome of the Game
Deciding the game requires the construction of a binary
function in two variables for the initial positions of both
players. In order to study the progress of the game, we intro-
duce a third parameter for the time index which is a discrete
version of time in the continuous case. We call this function
Bad(p, e, i). WhenBad evaluates to 1, it means there exists
a strategy for an evader starting at e to go out of sight of a
pursuer at p by the ith time index. It is clear thatBad(p, e, 0)
corresponds directly to visibility constraints and is straight
forward to compute. We seek an algorithm to determine the
value of Bad(p, e), with the time index dropped to indicate
the end result of the game as time tends to infinity. In logical
contexts, Bad is used as a predicate.

The Visibility Induction Algorithm
Fix a pursuer and evader at grid cells p and e and let i be
the time index. If Bad(p, e, 0) = 1, then the evader is not
initially visible to the pursuer and the game ends trivially
with the pursuer losing. Now, consider the case where the
evader manages to escape at step i+ 1. To do so, the evader
must move to a neighboring cell e′ where no corresponding
move exists for the pursuer to maintain visibility. In other
words, all neighbors p′ of the pursuer either cannot see the
evader at e′ or, otherwise, were shown unable to keep an
evader at e′ in sight up to step i i.e. Bad(p′, e′, i) = 1.
This means that when Bad(p, e, i + 1) is updated to 1, the
outcome of the game has been decided for the configuration
in question as a losing one, i.e. there is a strategy for the
evader to escape the sight of the pursuer at some step≥ i, but
not any sooner. We useN (c) for the set of neighboring cells
a player at c can move to. With that, we have the following
recurrence:

Bad(p, e, i+ 1) = 1 ∀(p, e)∃e′ ∈ N (e) s.t.

∀p′ ∈ N (p)Bad(p′, e′, i) = 1
(1)

Equation (1) computes Bad(p, e, i + 1) inductively by
evaluating the necessary escape conditions as of the ith step.
For any given non-trivial initial configuration, the very first
application of the inductive step would only yield a change
for cases where the evader starts right next to an obstacle
and is able to hide behind it immediately. That is because
the Bad(p, e, 0) is only 1 for initially obstructed cells. Af-
ter many iterations of the induction over all cells, more pairs
farther and farther from obstacles get marked as bad. The
expansion of the bad region only stops at cells which the
pursuer in question is able to track and the function stabi-
lizes with Bad(p, e) = 1 if and only if the evader can win.
This bears a discrete resemblance to integrating the adjoint
equations backward in time from the termination situations
as presented in (Bhattacharya and Hutchinson 2010).

Algorithm 1 performs backward visibility induction as de-
fined in (1) to matrix M which is initialized with initial vis-
ibility constraints. To determine mutual visibility between
cells, we use Bresenham’s line algorithm (Bresenham 1965)
to draw a line connecting every two cells and see if it passes
through any obstacle. This approach works for any geome-
try and is easy to implement. More sophisticated algorithms
could be used but are hardly justified. Restrictions on visi-
bility can be easily incorporated by modifying the initializa-
tion part at line 5. For example, for a limited sensing range
Rmax, we add orD(p, e) > Rmax, where D is the distance.
If the pursuer is not to come any closer than a minimum dis-
tance to the evader, a lower bound Rmin can be added as
well.

Algorithm 1: Decides the game for a given map.
Input : A map of the environment.
Output: The Bad function encoded as a bit matrix.
Data: Two N ×N binary matrices M and M ′.

1 begin
2 Discretize the map into a uniform grid of N cells.

// Visibility initialization
3 Initialize M and M ′ to 0.
4 foreach (p, e) ∈ grid× grid do
5 if e not visible to p then M [p, e] = 1
6 end

// Induction loop
7 while M ′ 6=M do
8 M ′ =M
9 foreach (p, e) ∈ grid× grid do

10 if ∃e′ ∈ N (e) s.t.∀p′ ∈ N (p)M ′[p′, e′] = 1
then M [p, e] = 1

11 end
12 end
13 return M
14 end

Proof of Correctness
We start by showing that the algorithm always terminates.
At the end of each iteration, either M ′ = M and the loop
exits or more cells get marked as bad, which stops when

1978

all cells are marked, leaving M ′ = M . Next, we use this
induction:

1. By line 6, M contains the decision at step 0 as enforced
by the visibility constraints computed in line 5.

2. After the ith iteration of the loop at line 9, M [p, e] = 1 iff
the evader has an escape strategy e′ where the pursuer has
no corresponding strategy p′ with M [p′, e′] = 0.

Complexity Analysis

The algorithm uses O(N2) storage for the output and tem-
porary matrices M and M ′. Initializing the matrices takes
O(N2

√
N) time if naive line drawing is used for each pair,

which is linear in the length of the line. The inner loop at
line 9 processes O(N2) pairs each costing O(κ2) where
κ = max(|N (p)|, |N (e)|). Per the preceding discussion,
at the ith iteration, the algorithm decides the game for all es-
cape paths of length (i+1). LetL be the length of the longest
minimal escape trajectory for the given environment. Obvi-
ously, the induction loop at line 7 is executed O(L) times.
We can see that L depends on the largest open area in the
environment and also the speed ratio r, with equal speeds
being the worst case, where the distance between the play-
ers may not change, as the game ends earlier otherwise. A
worst case scenario is an equally fast evader starting very
close to the pursuer. For such an evader to win, it would
need to move along with the pursuer to the closest obstacle
where it can break visibility. We conclude that L = O(N)
and would typically be smaller in practice. With that, the
visibility induction algorithm is O(κ2N3).

Theorem 1. (Visibility Induction) Algorithm 1 decides the
discretized game for a general environment in O(κ2N3).

Proof. By the discussion above, the proof follows.

Practicalities and Optimizations

We present several enhancements to the visibility induction
algorithm and the speedups they yield. Our time measure-
ments are performed using test maps of 100 × 100 cells for
speed ratios [1, 45 ,

2
3 ,

1
2 ,

1
3 ,

1
5]. All run times are averaged

over 10 runs.

Memory Savings As binary matrices, both M and M ′

need only 1 bit per entry. It is also obvious we need only
store bits for valid states, which reduces N to the number
of free cells. This allows N to exceed 60, 000 using less
than 1GB of memory, which enables processing at resolu-
tions around 250× 250 cells.

Parallelization Observe that the loop at line 9 reads from
matrixM and writes toM ′. This means thatM ′ updates are
embarrassingly parallel. In our C++ implementation, we
used the cross-platform OpenMP library to exploit this prop-
erty. By adding a single line of code, we were able to harness
the multiprocessing capabilities commonly available today.
This allowed a 36% average speedup.

Level-0 Caching It is evident most of the computations
are dedicated to evaluating the escape conditions as pre-
sented in (1). It is crucial to skip any unnecessary evalua-
tions that yield no updates.
Lemma 2. Bad(p, e, i) =⇒ Bad(p, e, j) ∀ j > i

Proof. For Bad(p, e, i+ 1) in (1), put e′ = e.

Corollary 3. ¬Bad(p, e, i) =⇒ ¬Bad(p, e, j) ∀ j < i

Lemma 2 allows skipping pairs that have already been de-
cided by a simple addition to the condition in line 10.

Level-1 Caching As Lemma 4 suggests, we need only re-
evaluate the conditions for those players who witnessed a
change at the previous iteration. This can be applied inde-
pendently to pursuers and evaders leading to a 45% aver-
age speedup. When applied to both we reached 50%. This
comes at an additional O(N) storage, which is negligible
compared to the M matrix.
Lemma 4. (Synchronized Neighborhoods)

¬Bad(p, e, i) ∧Bad(p, e, i+ 1) =⇒
∃(p∗, e∗) ∈ N (p)×N (e) s.t.
¬Bad(p∗, e∗, i− 1) ∧Bad(p∗, e∗, i)

Proof.

¬Bad(p, e, i) =⇒ ¬Bad(p, e, i− 1) (by C.3)

=⇒ ∀e′ ∈ N (e) ∃p∗ ∈ N (p) s.t.

¬Bad(p∗, e′, i− 1)

(2)

Bad(p, e, i+ 1) =⇒ ∃e∗ ∈ N (e) s.t. ∀p′ ∈ N (p)

Bad(p′, e∗, i)
(3)

By (2) and (3), the existence of (p∗, e∗) is established.

Level-2 Caching Strict application of Lemma 4 results
in re-evaluating the conditions only for pairs who witness
related changes. Keeping track of that comes at a higher
storage cost of O(N2), which is equivalent to the M ma-
trix. Adding the level-2 cache resulted in a 52% average
speedup. With that, we reach a new complexity result. Note
that caching under parallelization is particularly tricky and
requires careful update and invalidation mechanisms.
Lemma 5. Level-2 caching makes the induction loop
O(κ4N2).

Proof. By only processing a pair (p, e) having a related up-
date in both N (p) and N (e), no pair gets processed more
than |N (p)| × |N (e)| = O(κ2) times. As the total number
of pairs is O(N2) and processing a single pair takes O(κ2),
this amounts to O(κ4N2).

More Memory Savings It is possible to do without the
auxiliary M ′ matrix. Instead of copying values before the
inner loop and doing all checks on old values, we can use
the M matrix for both checks and updates. If some entry
M [p, e] is not updated, the behavior would be the same. On
the other hand, if M [p, e] got updated, the algorithm would
use a newer value instead of waiting for the next iteration
which results in a minor speedup as a side-effect.

1979

Applying all the enhancements discussed in this section
led to a 64% average speedup on our test sample. We no-
tice that for the medium sized square grids we consider, ini-
tialization of matrices is above quadratic by a small factor
which is dominated by the number of iterations L. Fur-
thermore, as κ is typically limited (players have bounded
speeds) and can be considered constant for a given realiza-
tion, it may be ignored in comparison to N as the algorithm
approaches O(N2).

For the typical case of a limited sensing region of size R,
the algorithm need only consider that many evaders. This
effectively replaces one N in all the above expressions and
allows processing at much higher resolutions.

Discrete Tracking Strategies
Because the Bad function decides the game for all pairs in-
cluding all combinations of the neighboring cells for both
players, it can be used beyond determining the winner for
trajectory planning. As a zero-sum game, there will only be
one winner; and a valid trajectory must maintain this prop-
erty. Further objectives can be defined as needed and an
optimal trajectory can then be chosen. In particular, we are
interested in optimal escape trajectories for a winning evader
minimizing the visibility time. Other objectives relating to
the distance between players, the distance traveled or speed
of maneuvering can also be used.

Extensions to Guaranteed Tracking
The computed Bad function can be used directly in basic
trajectory planning for the winning player. A valid trajectory
must maintain the winning state by only moving via cells
with guaranteed win regardless of the strategy followed by
the opponent. A higher level plan may then choose any of
the valid neighbors, which are guaranteed to exist for the
winner. To unify the notation used below, we define:

Lose(a, b) =(Pursuer(a) ∧Bad(a, b)) ∨
(Evader(a) ∧ ¬Bad(b, a)) (4)

Algorithm 2 first discards invalid neighbors a winner must
not move to, then chooses one of the remaining neighbors.
Typically, a distance function is used for tie breaking. For
example, a pursuer would generally prefer to move closer to
the evader and keep it away from bad cells.

Algorithm 2: Generic trajectory planning for winners.
Input: Bad(., .), current state (player, opponent).

1 begin
2 N ∗ = {}
3 foreach n ∈ N (player) do
4 if ¬Lose(n, n′) ∀n′ ∈ N (opponent) then
5 N ∗ = N ∗ ∪ n
6 end
7 end
8 Move to any neighbor in N ∗.
9 end

Optimal Trajectory Planning
If the pursuer can keep the evader in sight, there is not much
the evader can do as far as we are concerned. On the other
hand, if the evader can win the game, it is particularly im-
portant to minimize the time taken to break the line of sight
to the pursuer. The losing pursuer must also maximize that
time by not making suboptimal moves that allow the evader
to escape faster. To compute these optimal trajectories, we
modify Algorithm 1 to store the time index i, at which the
game got decided, into M [p, e]. In lines 5 and 10, we use
0 and i, respectively, instead of just 1, and only make the
assignment once for the smallest i. The matrices are initial-
ized to ∞ to indicate the absence of an escape strategy for
the evader and the condition in line 10 is modified accord-
ingly. We call the enhanced Bad function J(p, e) as it gives
the time left for visibility, which corresponds to the value of
the game as in (Bhattacharya and Hutchinson 2010).

Theorem 6. (Time-Optimal Trajectories) J(p, e) gives the
time left before visibility is broken, assuming both players
move optimally.

Proof. Trivially, J(p, e) = ∞ =⇒ ¬Bad(p, e) and the
evader has no escape strategy. When Bad(p, e) is marked at
the ith iteration for a given pair, an escape trajectory becomes
available to the evader at e′. No such escape trajectory could
be found up to step i− 1. By definition of the escape cell e′
and J :

∀p′ ∈ N (p)Bad(p′, e′, i− 1) =⇒ J(p′, e′) < J(p, e)

By following e′ → e′′ → · · · → e(k), J(p(k), e(k)) is guar-
anteed to reach 0 at cell e(k) where visibility is broken. From
Lemma 4, ∃p∗ ∈ N (p) s.t. J(p, e) = J(p∗, e′) + 1. By re-
peatedly selecting p∗, the pursuer can force k to attain its
maximum value i.e. J(p, e).

At each step, the players will be moving to neighbors p′
and e′, maximizing J(p′, e) and minimizing J(p, e′), re-
spectively. The obtained J(p, e) can be processed further
to have these neighbors precomputed into separate functions
Sp and Se, encoding the trajectories for each player. How-
ever, as storing the time index i increases the required stor-
age, the algorithm can be modified to compute Sp and Se

directly. This allows reducing the storage by describing the
neighbor relative to the current position of the player. The
neighborhoods can be indexed unambiguously which allows
the precomputed S functions to store just as many bits as
necessary per entry, which is as small as dlog2 κe. We omit
the modified algorithms due to the limited space.

Experimental Results
We implemented our algorithms in C++ and performed ex-
periments on an Intel Core i7 CPU running at 2.67GHz with
4GB of RAM. We experiment with manually created envi-
ronments containing obstacles of various forms. Initial play-
ers positions are randomly selected satisfying certain visibil-
ity constraints and the evader’s paths are automatically gen-
erated as discussed in the above section on tracking strate-
gies. We discretized the maps of the used environments with

1980

Figure 1: Decision map
(evader) - 50x50 map.

Figure 2: Decision map
(evader) - 200x200 map.

Figure 3: Decision map
(pursuer) around a corner.

Figure 4: Decision map
(pursuer) for polygonal ob-
stacles.

regular grids of sizes ranging from 50×50 to 400×400 cells
and used 4-connected and 8-connected neighborhoods. With
such fine granularities, we anticipate moving to real world
environments.

The effect of varying the grid size on the resolution of
decision maps is shown in figures 1 and 2 for speed ratios
[1, 45 ,

2
3 ,

1
2 ,

1
3 ,

1
5]. The boundaries of the nested convex re-

gions are such that if the two players fall inside a region, the
pursuer can track the evader indefinitely, while if one player
is inside and the other outside, the evader can escape. The
darker the gray shade, the smaller the speed ratio. Obstacles
are in black and the player mentioned in each figure is the
black dot roughly centered inside all nested regions. Our ap-
proach works independently of obstacle shapes and layouts
as shown in figures 3 to 5. Modeling visibility constraints
(e.g. limited sensor range) affects the decision regions as in
figure 6. All previous results are computed for 4-connected
neighborhoods. Figures 7 and 8 contrast 4-connected to
8-connected neighborhood maps for a speed ratio of 0.5.
Finally, we show two tracking scenarios in figures 9 and 10.

As we vary the grid size, runtime is affected as shown in
table 1. It fits a quadratic model in N (for a fixed neighbor-
hood size) as by the discussion following Lemma 5.

Conclusions
We addressed the problem of maintaining an unobstructed
view of an evader moving amongst obstacles by a pursuer. In

Figure 5: Decision map
(evader) for a circular ob-
stacle.

Figure 6: Decision map
(evader) with restricted
visibility.

Figure 7: Decision map
(evader) for a 4-connected
neighborhood.

Figure 8: Decision
map (evader) for an 8-
connected neighborhood.

particular, we developed an algorithm that decides the out-
come of the game for any pair of initial positions of the play-
ers. By employing a space/time discretization approach, the
solution becomes feasible in polynomial time, is indepen-
dent of the geometry of the environment and does not require
the use of heuristics. We give a detailed analysis for the cor-
rectness of the algorithm, derive its space and time complex-
ities and present and verify several approaches to reduce its
time and memory demands. We extended our algorithm to
compute tracking or escape trajectories for both players in
real time and verified their optimality. We tested our method
on different tracking scenarios and environments.

We are currently working on a realization of the proposed

Table 1: Average runtime for Algorithm 1 vs. grid size
Grid size Runtime (hh:mm:ss)
50× 50 00:00:01
60× 60 00:00:02
75× 75 00:00:06
100× 100 00:00:23
120× 120 00:00:52
150× 150 00:02:27
200× 200 00:09:24
300× 300 01:06:18
400× 400 06:47:57

1981

Figure 9: Example of a
winning evader (blue; top).

Figure 10: Example of a
winning pursuer (red; top).

method using real robots equipped with sensors. To model
the real world more accurately, we consider hexagonal mesh
discretizations, with several interesting properties, and study
decision errors for a given resolution. We already imple-
mented limited range sensors and an extension to a limited
field of view is systematic. Other constraints on players mo-
tion can be considered such as restricted areas where the
pursuer is not allowed to go into. Regaining lost visibility
or, alternately, allowing for blind interruptions are interest-
ing extensions with a slight relaxation to the hard visibility
constraint. Finally, we envision efficient ways to extend this
approach to the case of more players.

References
Bhattacharya, S., and Hutchinson, S. 2008. Approximation
schemes for two-player pursuit evasion games with visibil-
ity constraints. In Proceedings of Robotics: Science and
Systems IV.
Bhattacharya, S., and Hutchinson, S. 2010. On the exis-
tence of nash equilibrium for a two player pursuit-evasion
game with visibility constraints. The International Journal
of Robotics Research 29(7):831–839.
Bhattacharya, S.; Candido, S.; and Hutchinson, S. 2007.
Motion strategies for surveillance. In Proceedings of
Robotics: Science and Systems III.
Bhattacharya, S.; Hutchinson, S.; and Başar, T. 2009. Game-
theoretic analysis of a visibility based pursuit-evasion game
in the presence of obstacles. In Proc. American Control Con-
ference (ACC’09).
Borie, R.; Tovey, C.; and Koenig, S. 2011. Algorithms
and complexity results for graph-based pursuit evasion. Au-
tonomous Robots 31(4):317–332.
Bresenham, J. 1965. Algorithm for computer control of a
digital plotter. IBM Systems Journal 4(1):25–30.
El-Alfy, H., and Kabardy, A. 2011. A new approach for the
two-player pursuit-evasion game. In Proc. 8th International
Conference on Ubiquitous Robots and Ambient Intelligence
(URAI’11), 396–397. Incheon, Korea: IEEE.
Gerkey, B. P.; Thrun, S.; and Gordon, G. 2004. Visibility-
based pursuit-evasion with limited field of view. 20–27.
González-Baños, H. H.; Hsu, D.; and Latombe, J.-C. 2006.
Motion planning: Recent developments. Autonomous Mo-

bile Robots: Sensing, Control, Decision-Making and Appli-
cations (CRC Press) 373–416.
Hahn, G., and MacGillivray, G. 2006. A note on k-cop,
l-robber games on graphs. Discrete mathematics 306(19-
20):2492–2497.
Hahn, G. 2007. Cops, robbers and graphs. Tatra Mountains
Mathematical Publications 36:163–176.
Hsu, D.; Lee, W. S.; and Rong, N. 2008. A point-based
POMDP planner for target tracking. In Proc. IEEE Interna-
tional Conference on Robotics and Automation (ICRA’08),
2644–2650.
Isaza, A.; Lu, J.; Bulitko, V.; and Greiner, R. 2008. A
cover-based approach to multi-agent moving target pursuit.
In Artificial Intelligence and Interactive Entertainment Con-
ference (AIIDE).
Ishida, T., and Korf, R. E. 1995. Moving-target search:
a real-time search for changing goals. Pattern Analysis
and Machine Intelligence, IEEE Transactions on (TPAMI)
17(6):609–619.
Klein, K., and Suri, S. 2011. Complete information
pursuit evasion in polygonal environments. In Twenty-
Fifth AAAI Conference on Artificial Intelligence (AAAI’11),
1120–1125.
Koenig, S.; Likhachev, M.; and Sun, X. 2007. Speeding
up moving-target search. In Proceedings of the 6th interna-
tional joint conference on Autonomous agents and multia-
gent systems (AAMAS’07), 1–8. Honolulu, HI, USA: ACM.
Kolling, A., and Carpin, S. 2010. Multi-robot pursuit-
evasion without maps. In Proc. IEEE International Confer-
ence on Robotics and Automation (ICRA’10), 3045–3051.
LaValle, S. M.; González-Baños, H. H.; Becker, C.; and
Latombe, J.-C. 1997. Motion strategies for maintaining vis-
ibility of a moving target. In Proc. IEEE International Con-
ference on Robotics and Automation (ICRA’97), volume 1,
731–736.
LaValle, S. M. 2006. Planning Algorithms. New York, NY,
USA: Cambridge University Press.
Moldenhauer, C., and Sturtevant, N. R. 2009a. Evaluating
strategies for running from the cops. In Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI’09), 584–589.
Moldenhauer, C., and Sturtevant, N. R. 2009b. Optimal so-
lutions for moving target search. In Proceedings of The 8th
International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’09) - Volume 2, 1249–1250.
Murrieta-Cid, R.; Muppirala, T.; Sarmiento, A.; Bhat-
tacharya, S.; and Hutchinson, S. 2007. Surveillance strate-
gies for a pursuer with finite sensor range. The International
Journal of Robotics Research 26(3):233–253.
Murrieta-Cid, R.; Monroy, R.; Hutchinson, S.; and Lau-
mond, J.-P. 2008. A complexity result for the pursuit-
evasion game of maintaining visibility of a moving evader.
In Proc. IEEE International Conference on Robotics and
Automation (ICRA’08), 2657–2664.

1982

