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Abstract

We study time-consistency of optimization problems,
where we say that an optimization problem is time-
consistent if its optimal solution, or the optimal policy
for choosing actions, does not depend on when the opti-
mization problem is solved. Time-consistency is a mini-
mal requirement on an optimization problem for the de-
cisions made based on its solution to be rational. We
show that the return that we can gain by taking “opti-
mal” actions selected by solving a time-inconsistent op-
timization problem can be surely dominated by that we
could gain by taking “suboptimal” actions. We establish
sufficient conditions on the objective function and on
the constraints for an optimization problem to be time-
consistent. We also show when the sufficient conditions
are necessary. Our results are relevant in stochastic set-
tings particularly when the objective function is a risk
measure other than expectation or when there is a con-
straint on a risk measure.

Introduction
Many approaches for reinforcement learning involve re-
peating the process of estimating some quantity (e.g., a
model or parameters) and choosing an action to take based
on the estimated quantity (Bertsekas and Tsitsiklis 1996;
Sutton and Barto 1998). In repeating this process, the quan-
tity is re-estimated based on the results of the action and ad-
ditional information obtained since the previous step. In the-
ory, this repeated process as a whole can be seen as a Markov
decision process (MDP). This MDP for example captures
the transitions that depend on what information becomes
available at each time. A decision maker using reinforce-
ment learning at least seeks to find the optimal policy for the
MDP and chooses actions based on the optimal policy. Al-
though it is impractical to precisely estimate the transition
probabilities for such an MDP, the decision maker often has
an objective function and constraints clearly in mind.

In this paper, we study which objective function and con-
straints the decision maker should use for rational decision
making (regardless of the details of the parameters of the
MDP, including the definition of the state space as well as
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the particular values of the transition probabilities and re-
wards). Our study has implications beyond reinforcement
learning. In general, we solve an optimization problem to-
day and determine the actions to take today and tomorrow
to maximize our benefit in short and long terms. We might
solve an optimization problem tomorrow for the same pur-
pose again, using additional information obtained since to-
day. Are the optimal solutions today “consistent” with the
optimal solutions tomorrow? When can we guarantee that
they are “consistent”? In this paper, we investigate the new
concept, time-consistency of an optimization problem.

Roughly speaking, if an optimization problem is not time-
consistent, the optimal actions suggested by its optimal so-
lution today can surely become suboptimal (and sometimes
worst) tomorrow simply because the time has passed and a
piece of uncertain information is revealed. For instance, to-
morrow might be sunny or rainy. Today, the weather being
uncertain, the optimal solution to an optimization problem
recommends to pack our baggage so we can go picnic to-
morrow. Tomorrow, the weather will turn out to be sunny
or rainy. If the optimization problem is not time-consistent,
the optimal solution tomorrow can recommend not go pic-
nic no matter what the weather is, and the baggage must
surely be unpacked. Following the optimal solutions today
and tomorrow, respectively, is thus inferior to deciding not
to go picnic today, so that we need not unpack the baggage
tomorrow. Time-consistency is thus a minimal requirement
for optimization problems when they are solved at multiple
periods in order for the decisions made based on their opti-
mal solutions to be always rational.

In this paper, we formally define time-consistency of op-
timization problems under stochastic settings (see Defini-
tion 1), which constitutes the first contribution of this pa-
per. Although time-consistency has been studied for deci-
sion making under deterministic settings (Strotz 1956), no
prior work has formally investigated the time-consistency of
optimization problems in stochastic settings. We will discuss
the prior work in more detail in the last section of this paper.
The second contribution of this paper is a sufficient condi-
tion for an optimization problem to be time-consistent. We
prove that a certain form of an optimization problem is time-
consistent (see Theorem 1). We also discuss the necessity of
the sufficient conditions (see Lemma 1 and Corollary 2).

Our results imply that, to guarantee that an optimiza-
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(a) Normal (w.p. 0.8) (b) Busy (w.p. 0.2)

Figure 1: An example illustrating a time-inconsistent
optimization-problem. (a) Travel time at normal traffic. (b)
Travel time at busy traffic.

tion problem is time-consistent, its objective function should
be either expectation, entropic risk measure (Foellmer and
Schied 2011), or another iterated risk measure (Hardy
and Wirch 2004) having the property that we refer to as
optimality-consistency. Its constraints should have the prop-
erty that, if the constraints are satisfied with a policy today,
they will also be satisfied tomorrow with the same policy.
For example, we can require that the maximum possible
value of a random quantity to be below (or minimum to be
above) a threshold for an optimization problem to be time-
consistent.

Formal proofs are omitted in this paper but given in the
associated technical report (Osogami and Morimura 2012).
However, the key to the omitted formal proofs are in our
definitions, which will be stated formally. We expect that
the soundness of the theorems can be understood intuitively
once these formal definitions are given.

Time-inconsistent optimization problem
We start by demonstrating the necessity for an optimization
problem to be time-consistent. Suppose that we travel from
an origin, A, to a destination, C. The travel time depends
on whether the traffic is normal (Figure 1(a)) or busy (Fig-
ure 1(b)). Upon the departure, we do not know the exact traf-
fic condition but know that the traffic is normal with proba-
bility 0.8 and busy otherwise. We also know the conditional
probability distribution of the travel time given each traffic
condition. For example, given that the traffic is busy, travel
time from B’ to C is 70 minutes with probability 0.8 and 150
minutes otherwise. Note that the path from B to C is busy if
and only if the path from B’ to C is busy. From A, we can
go either to B or to B’. We assume that the exact traffic con-
dition becomes known when we arrive at B or B’.

To find a strategy that leads us to C as quickly as possible,
avoiding a huge delay, we consider an optimization problem
of minimizing the expected travel time, X , under the con-
straint on the risk that its entropic risk measure (Foellmer
and Schied 2011), ERMγ [X] ≡ 1

γ ln E [exp(γ X)], is below
a threshold, δ, where γ represents the sensitivity to riskiness:

min. E [X]
s.t. ERMγ [X] ≤ δ. (1)

Specifically, let γ = 0.1 and δ = 130 minutes in (1), where
X denotes the total travel time from A to C. Notice that
ERM0.1[c] = c for a constant c, but the value of ERM0.1[X]
is sensitive to the distribution of X . Roughly speaking, we

Strategy E ERM0.1

ABC 72.0 104.0
AB’C 75.2 127.8
AB’BC 77.0 109.0
AB’BC if normal; AB’C if busy 71.2 127.8
AB’C if busy; AB’BC if normal 81.0 109.1

(a) Evaluated at A

Strategy E ERM0.1

AB’C 70.0 70.0
AB’BC 65.0 65.0

(b) Evaluated at B’ (normal)

Strategy E ERM0.1

AB’C 96.0 143.9
AB’BC 125.0 125.0
(c) Evaluated at B’ (busy)

Table 1: Expectation (E) and entropic risk measure
(ERM0.1) of travel time. The values are evaluated upon de-
parture in (a). The values are evaluate upon the arrival at B’
given that the traffic is found normal in (b) and busy in (c).

have ERM0.1[Y ] > ERM0.1[Z] for random variables Y and
Z such that E[Y ] = E[Z] if Y takes a large value with small
probability but Z is never large. In some sense, δ = 130
represents the level of acceptable delay.

In our example, there are three static strategies, corre-
sponding to three paths: A-B-C, A-B’-C, and A-B’-B-C.
With the first static strategy of taking the fixed route from
A to B to C, it takes 60 minutes with probability 0.8 (nor-
mal) and 120 minutes with probability 0.2 (busy). Hence,
the expected travel time is 72 minutes and the entropic risk
measure is approximately 104 minutes (see the first row of
Table 1(a)). The expectation and the entropic risk measure
with the other two strategies are shown in the second and
third rows of Table 1(a). Note that the indirect path from A
to B’ to B surely takes longer than the direct path from A to
B. Hence the third static strategy of always taking the route,
A-B’-B-C, regardless of the traffic condition, is irrational.

We also consider dynamic strategies, which determine the
route depending on the traffic condition. There are two dy-
namic strategies in our example1. The first dynamic strategy
is to first visit B’ and observe the traffic condition. If the traf-
fic is found normal, we take the detour, B’-B-C; otherwise,
we take the direct path, B’-C (the fourth row of Table 1(a)).
With this dynamic strategy, the expected travel time is 71.2,
which is shorter than any static strategy. The entropic risk
measure is below 128, which satisfies the constraint in (1).
In fact, this dynamic strategy is the optimal strategy, because
the other dynamic strategy results in the expected travel time
of 81 minutes (the last row of Table 1(a)).

Solving (1) upon departure, we thus find that the first dy-
namic strategy, π0, is optimal and proceed to B’. Now, let
us solve (1) again upon arriving at B’ to verify that we in-
deed should follow π0. Arriving at B’, we now obtain the
knowledge about the traffic condition.

First, suppose that the traffic is found normal. In this case,
the total travel time with the direct path, B’-C, is 70 min-
utes (E[X] = ERM0.1[X] = 70), including the 10 min-

1The policy of taking A-B-C if traffic is normal and AB’BC
otherwise is invalid, because we assume that the exact traffic con-
dition becomes known only after we reach B or B’.
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utes that have already taken from A to B (see Table 1(b)).
The total travel time with the detour, B’-B-C, is 65 minutes
(E[X] = ERM0.1[X] = 65), because B-C is normal iff B’-
C is normal. Hence, taking the detour satisfies the constraint
and is optimal, in agreement with π0.

Next, suppose that the traffic is found busy. In this case,
π0 suggests that we should take the direct path, B’-C. The
total travel time with the direct path is 80 minutes with prob-
ability 0.8 and 160 minutes with probability 0.2, so that the
expected travel time is 96 minutes, and the entropic risk
measure is over 143 minutes (see Table 1(c)). This violates
the constraint in (1). After finding that the traffic is busy,
the route, A-B’-C, is too risky to take in the sense of this
constraint. Thus, we would have to take the detour, B’-B-C.
With the detour, the total travel time is 125 minutes surely.
The constraint is thus satisfied. Taking the detour is the only
feasible solution and hence is optimal.

We have seen that, by solving (1) at every intersection and
always following the (latest) optimal solution, we end up in
taking the route, A-B’-B-C, regardless of the traffic condi-
tion. Recall that the total travel time with the route, A-B’-B-
C, is surely longer than that with the route, A-B-C. Specif-
ically, the direct path from A to B takes 10 minutes, while
the indirect path from A to B’ to B takes 15 minutes. This
means that solving (1) at multiple epochs can lead to an irra-
tional strategy (e.g., taking A-B’-B-C). With this irrational
strategy we incur the cost that is surely larger than the cost
that we incur with another strategy (e.g., taking A-B-C). In
this sense, we say that (1) is not time-consistent2. This mo-
tivates us to formally characterize the conditions, not only
on the constraints but also on the objective function, for an
optimization problem to be time-consistent.

Time-consistency of optimization problems
In this section, we define time-consistency of an optimiza-
tion problem. Throughout, let �I denote the set of integers
in the interval I , and �[a,∞] ≡ �[a,∞) ∪ {∞} for a < ∞.
Suppose that a decision maker tries to maximize worthiness
of a random quantity, X , while keeping riskiness associated
with X at an acceptable level. The value of X will be deter-
mined in future, on or before time N , but is random before
that. To achieve the goal, he solves an optimization problem
at time 0 to select the policy, π0, that determines the action to
take for each state at each time n ∈ �[0,N). At a future time
` ∈ �[1,N), he might solve an optimization problem that can
depend on the state, S`, at time `, where S` can include his
belief, conditions of the environment, and other information
available to him by time `. We want the policy selected at
time ` to be consistent with π0.

We allow N to be either finite or infinite. There are mul-
tiple ways to interpret X when N = ∞. For example, we
can see X as a random quantity, Xτ , that is determined at a
stopping time, τ , when Sτ becomes a particular state, where
τ is finite almost surely but unbounded.

2Time-inconsistency of the optimization problem (1) does not
contradict the claim that ERM is a time-consistent risk measure.
Time-consistency is defined for a risk measure in the prior work
but for a process of optimization problems in this paper.

Process of optimization problem
More formally, for n ∈ �[0,N), let Pn(s) be the optimiza-
tion problem that a decision maker solves at time n under
the condition that Sn = sn ∈ Sn, where Sn is the set of
the possible states at time n. Specifically, we consider the
optimization problem, Pn(sn), of the following form:

Pn(sn) :
maxπ∈Πn fn(Xπ(sn))
s.t. gn(Xπ(sn)) ∈ Bn, (2)

where Xπ(sn) denotes the conditional random variable, X ,
given that Sn = sn and π is the policy used on and after
time n. The decision maker seeks to find the optimal pol-
icy from the candidate set, Πn, where |Πn| ≥ 1. A policy,
πn ∈ Πn, determines an action, a`, to take for each state,
s` ∈ S`, at each time, ` ∈ �[n,N). For two distinct poli-
cies, πn, π′n ∈ Πn, we assume that the actions taken with
πn and those with π′n 6= πn differ for at least one state,
s` ∈ S`, ` ∈ �[n,N). Throughout, we consider only deter-
ministic policies, where the action to take from a given state
is selected non-probabilistically. However, we allow a can-
didate action to be equivalent to a probabilistic action that
randomly selects one among multiple candidates.

In (2), the objective function, fn, maps Xπ(sn) to a real
number. For example, setting fn(Xπ(sn)) = E[Xπ(sn)],
the decision maker can select the optimal policy from Πn

that maximizes the expected value of the random quantity,
X , given that Sn = sn.

The constraint in (2) specifies the acceptable riskiness at
time n. Here, gn is a multidimensional function that maps
Xπ(sn) to real numbers, and Bn specifies the feasible re-
gion in the codomain of gn. For example, the constraint
could be specified with an ERM such that

ERMγ [−Xπ(sn)] ≤ bn,

where bn denotes the upper bound of the acceptable risk.
Here, the value of ERM represents a magnitude of a loss, so
that the negative sign is appended to the reward X .

Observe that the optimization problems that the deci-
sion maker is solving can be seen as a stochastic process,
POP(X,S,p), which we refer to as a Process of Optimiza-
tion Problems (POP):

POP(X,S,p) :
maxπ∈Π f(Xπ)
s.t. g(Xπ) ∈ B. (3)

Here, Xπ denotes the conditional random variable of X
given that policy π is used. For simplicity, we assume that
the initial state S0 is known to be s0 ∈ S0 (i.e., |S0| = 1),
but it is trivial to extend our results to the case with |S0| > 1.
For n ∈ �[0,N), the decision maker solves Pn(s) at time n
under the condition that Sn = s. Note that the optimal pol-
icy at time n depends on how the state transitions after time
n (specifically, the set of transition probabilities,

p(n) ≡
{
pπ` (s′|s)

∣∣∣∣ s ∈ S`, s
′ ∈ S`+1,

` ∈ �[n,N), π ∈ Πn

}
(4)

where pπ` (s′|s) denotes the probability that S`+1 = s′ under
the condition that S` = s and actions follow π). Namely,
the decision maker assumes (4) when he solves Pn(sn) for
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sn ∈ Sn. In (3), S ≡ {Sn | n ∈ �[0,N)} represents the
state space, and p = p(0) represents the sets of transition
probabilities that the decision maker uses in solving the op-
timization problems.

We assume that the state includes all of the information
about the history of prior states and prior actions. Under this
assumption, the state transition diagram has a tree structure.
Then we limit Π to be the set of Markovian policies, with
which the action to take at a state, s, depends only on s (con-
ditionally independent of the history of the prior states and
prior actions given s). Notice however that, for our purposes,
this assumption is not as limiting as it might appear at first
sight. Consider a general MDP, where a state can be reached
with different histories. It is straightforward to expand the
state space of such a general MDP in such a way that each
state in the expanded state space includes all of the infor-
mation about the history. The MDP with the expanded state
space is equivalent to the original MDP, so that the origi-
nal MDP is time-consistent if and only if the MDP with the
expanded state space is time-consistent. We assume that the
decision maker knows the state at any time, so that he solves
Pn(s) if the state is s ∈ Sn at time n ∈ �[0,N). Notice,
however, that the state might just represent the belief of the
decision maker, and in that case he only knows what he be-
lieves and the relevant history.

Time-consistent process of optimization problems
To determine whether the optimization problems that a de-
cision maker is solving lead to contradicting decisions over
time, we define time-consistency of a POP. Consider a ver-
ifier who determines whether the optimization problem is
time-consistent. We primarily consider the case where the
verifier knows none of X , S, and p that the decision maker
is using. This case is relevant for example when the decision
maker estimates p, but his estimation is unknown to her. If
the verifier does not know p, then she does not know the
distribution of X , because X depends on p. In fact, there
might be multiple decision makers who solve P (X,S,p)
but with different p. Because the verifier knows nothing
about p, any assumption about p should seem reasonable to
the verifier. Alternatively, it might be the case that a decision
maker chooses the optimal policy for the MDP, where he es-
timates p. Depending on how p is estimated, the decision
maker solves the MDP having varying p. The verifier wants
to know whether the MDP is time-consistent before the de-
cision maker estimates p. Also, the verifier might not know
S that the decision maker defines by analogous reasons.

At time 0, the decision maker finds the optimal policy,
π?0 , for the MDP that starts from s0. At time 0, π?0 is most
appealing to him, because the constraint, g0(Xπ?

0 ) ∈ B0,
is satisfied, and the value of the objective function cannot
be made greater than f0(Xπ?

0 ) by any feasible policy π ∈
Π0. Notice that π?0 can be used to determine the action that
he should take for any sn ∈ Sn at any time n ∈ �[0,N).
However, he might solve an optimization problem at a future
time to find the optimal policy at that time. Our expectation
is that π?0 continues to be one of the most appealing policies
to him at any time n ∈ �[1,N), if the associated POP is time-

consistent. This leads us to formally define time-consistency
of the POP as follows:

Definition 1 We say that POP(X,S,p) is time-consistent if
the following property is satisfied. For any n ∈ �[1,N), if
π? is optimal from s ∈ Sn−1 (i.e., π? is an optimal solu-
tion to Pn−1(s)), then π? is optimal from any s′ ∈ Sn such
that pπ

?

n−1(s′ | s) > 0. We say that POP is time-consistent if
POP(X,S,p) is time-consistent for any X , S, and p.

Observe that Definition 1 matches with our intuition about
optimizing a standard MDP, where the optimal policy found
at time 0 is optimal at any time n ∈ �[0,N). We now revisit
the optimization problem studied with Figure 1. The optimal
policy π0, which we find by solving the optimization prob-
lem upon departure, becomes infeasible (hence not optimal)
for the optimization problem solved at intersection B if the
traffic is busy. The transition probability to the busy state is
0.2, which is strictly positive. Hence, this optimization prob-
lem is indeed time-inconsistent in the sense of Definition 1.

Conditions for time-consistency
In this section, we provide conditions that the objective
function and the constraints should satisfy so that a POP
is time-consistent. To formally state the definition of time-
consistency, it is important to understand the objective func-
tion, fn, in (2) as a dynamic risk measure (RM). Let Y be
a random variable, and let ρn(Y ) be the value of the RM
of Y evaluated at time n. Note that ρn(Y ) is random be-
fore time n and becomes deterministic at time n, because
ρn(Y ) depends on the state that is random before time n.
In this sense, ρn(Y ) is called Fn-measurable, which can be
understood more precisely with measure theory. Formally, a
dynamic RM is defined as follows:

Definition 2 Consider a filtered probability space,
(Ω,F , P ), such that F0 ⊆ F1 ⊆ . . . ⊆ FN = F , where
N ∈ �[1,∞], and, if N = ∞, F∞ is defined as the σ-field
generated by ∪∞`=0F`. Let Y be an F-measurable random
variable. We say that ρ is a dynamic RM if ρ`(Y ) is
F`-measurable for each ` ∈ �[0,N ].

In our context, Xπ is random before time N but becomes
deterministic by time N , so that Xπ is FN -measurable. Be-
cause Sn is random before time n, the value of the objec-
tive function, fn(Xπ(Sn)), is random before it becomes
deterministic at time n (i.e., Fn-measurable). Hence, the
objective function is a dynamic RM. Next, let h(Xπ) ≡
I {g(·) ∈ B}, where I{·} is an indicator random variable.
Observe that h(Xπ) is a dynamic RM, because gn(Xπ) and
(the random variables that define) Bn are Fn-measurable.

We use the following definitions to provide a sufficient
condition for an POP to be time-consistent:

Definition 3 A dynamic RM, ρ, is called optimality-
consistent if following condition is satisfied for any F-
measurable random variables Y,Z and for any n ∈ �[1,N):
if Pr(ρn(Y ) ≤ ρn(Z)) = 1 and Pr(ρn(Y ) < ρn(Z)) > 0,
then Pr(ρn−1(Y ) < ρn−1(Z)) > 0. Also, we say that ρ is
optimality-consistent for a particular n if the above condi-
tion is satisfied for the n.
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Definition 4 Let Y be anF-measurable random variable. A
dynamic RM, ρ, is called non-decreasing if Pr(ρn−1(Y ) ≤
ρn(Y )) = 1 for any n ∈ �[1,N). Also, we say that ρ is
non-decreasing for a particular n if the above property is
satisfied for the n.

To get a sense of Definition 3, suppose that ρ is not
optimality-consistent for an n. Then one can choose Z at
time n− 1 (i.e., Pr(ρn−1(Y ) ≥ ρn−1(Z)) = 1) despite the
fact that, at time n, Y becomes surely at least as good as Z
(i.e., Pr(ρn(Y ) ≤ ρn(Z)) = 1) and sometimes better than
Z (i.e., Pr(ρn(Y ) < ρn(Z)) > 0). This will be formalized
in the following.

Sufficient condition
We are now ready to state a sufficient condition for a POP to
be time-consistent (see the associated technical report (Os-
ogami and Morimura 2012) for a formal proof):

Theorem 1 If f is an optimality-consistent dynamic RM
and h(·) ≡ I {g(·) ∈ B} is a non-decreasing dynamic RM,
then POP as defined with (3) is time-consistent.

We elaborate on the sufficient conditions in the following.
First, we remark that expectation and entropic risk measure
can be shown to be optimality-consistent. In fact, optimality-
consistency can be shown for a class of iterated RMs that
have been studied for example in Hardy and Wirch (2004):

Definition 5 Consider a filtered probability space,
(Ω,F , P ), such that F0 ⊆ F1 ⊆ . . . ⊆ FN = F ,
where N ∈ �[1,∞). Let Y be an F-measurable random
variable. We say that ρ is an iterated RM if ρN [Y ] = Y and
ρn[Y ] = ρ̄n[ρn+1[Y ]] for n ∈ �[0,N), where ρ̄n is a condi-
tional RM that maps an Fn+1-measurable random variable
to an Fn-measurable random variable, for n ∈ [0, N).

Notice that E[·|Sn] = E[E[·|Sn+1]|Sn], so that expectation
is an iterated RM, where ρ̄n[·] = E[·|Sn]. Likewise, entropic
risk measure is an iterated RM, where ρ̄n[·] = ERMγ [·|Sn].
The following corollary can be proved formally:

Corollary 1 An iterated RM, as defined in Definition 5,
is optimality-consistent for a particular n if the following
property is satisfied: for any F-measurable random vari-
ables, Y and D, such that Pr(D ≥ 0) = 1 and Pr(D >
0) > 0, we have Pr(ρ̄n[Y +D] > ρ̄n[Y ]) > 0.

Corollary 1 allows us to check whether a given iterated
RM, ρ, is optimality-consistent by studying the properties of
ρ̄n for n ∈ �[0,N). For example, an iterated RM defined with
ρ̄n(X) ≡ (1−β) E[X|Sn]−β CTEα[−X|Sn] is optimality-
consistent for α, β ∈ (0, 1), where CTEα[−X|Sn] denotes
the conditional tail expectation (also known as conditional
value at risk (Artzner et al. 1999; Rockafellar and Uryasev
2000)), having parameter α, of −X given Sn. One can ex-
pect that maximizing this iterated RM leads to balancing be-
tween maximizing expectation and minimizing riskiness. An
easy way to verify the conditions of Corollary 1 is to demon-
strate that ρn(X) can be expressed as

ρ̄n(X) =

∫
x∈�

u(x, FX(x)) dFX(x), (5)

where u(·, ·) is monotonically increasing with respect to its
first argument, and FX is the cumulative distribution func-
tion of X . For the D defined in Corollary 1, we have

ρ̄n(Y +D) =

∫ 1

0

u(F−1
Y+D(q), q) dq

>

∫ 1

0

u(F−1
Y (q), q) dq = ρ̄n(Y ).

We remark that an iterated RM, ρ, does not have the prop-
erty, ρn(·) = ρ̄n(·), unless ρ̄n is E[·|Sn] for all n ∈ �[0, N)
or ERMγ [·|Sn] for all n ∈ �[0, N). If the objective function
is an iterated RM, then ρn(·) is maximized at each time n,
where the number of conditional RMs (ρ̄n, . . . , ρ̄N−1) used
to define ρn depends on the remaining time, N − n. A key
implication of Corollary 1 and (5) is that there is a large class
of iterated RMs having optimality-consistency.

Simple examples of the constraints that make a POP time-
consistent include max(Xπ) ≤ δ and min(Xπ) ≥ δ,
where max(Xπ) (respectively, min(Xπ)) denote the max-
imum (respectively, minimum) value that Xπ can take
with positive probability. Notice that max(Xπ) is non-
increasing over time for any sample path, because we
obtain more information about (the maximum possible
value of) Xπ as time passes. Therefore, I {max(Xπ) ≤ δ}
is non-decreasing. Analogously, I {min(Xπ) ≥ δ} is non-
decreasing.

We have seen with Figure 1 that (1) is not necessarily
time-consistent. We can now see that the time-inconsistency
is due to the constraint in (1), because the objective function
in (1) is optimality-consistent. Observe that ERM0.1[Xπ0 ]
increases from 127.8 upon departure to 143.9 at inter-
section B’ if the traffic is found busy at B’. Hence,
I {ERM0.1[·] ≤ 130} is not non-decreasing.

A way to modify (1) into a time-consistent POP is to in-
corporate the constraints that might need to satisfy in future:

min. E [X]
s.t. ERMγ [X | S` = s`] ≤ δ,

∀s` ∈ S,∀` ∈ �[0,N),
(6)

Then π0 becomes infeasible for the optimization problem to
be solved on Day 0, which resolves the issue of the time-
inconsistency.

Because ERM is optimality-consistent, the following
POP is time-consistent for any parameter α:

min. ERMα[X]
s.t. ERMγ [X | S` = s`] ≤ δ,

∀s` ∈ S,∀` ∈ �[0,N),
(7)

Conditional tail expectation is not optimality-consistent, so
that the following POP is not time-consistent:

min. CTEα[X]
s.t. ERMγ [X | S` = s`] ≤ δ,

∀s` ∈ S,∀` ∈ �[0,N).
(8)

Necessary conditions
Next, we study necessity of the sufficient condition provided
in Theorem 1. We can show that the sufficient condition on
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the constraints is necessary for POP to be time-consistent for
any objective function. Also, the sufficient condition on the
objective function is necessary for POP to be time-consistent
for any constraints (see the associated technical report (Os-
ogami and Morimura 2012) for a formal proof):

Lemma 1 If POP is time-consistent for any objective func-
tion f , then hn(·) ≡ I {gn(·) ∈ Bn} must be non-
decreasing. If POP is time-consistent for any constraints
g(·) ∈ B, then the objective function f must be optimality-
consistent.

The above results lead to the following necessary and suffi-
cient condition:

Corollary 2 Suppose that there exists γ ≡
minn∈�[0,N),sn∈Sn

fn(Xπ(sn)). Then POP is time-
consistent iff (f(·)−γ) I {g(·) ∈ B} is optimality-consistent.

Notice that our results also applies to the case where the
distribution of X , S, and p, which the decision maker is
using in solving the optimization problems, are known to a
verifier, because POP(X,S,p) is time-consistent if POP is
time-consistent. The decision maker might want to verify
that the POP associated with the problem of finding the op-
timal policy for the MDP is time-consistent. Because the de-
cision maker is a verifier, the verifier knows the distribution
of X , S, and p that the decision maker is using.

Related work and discussion
Time-consistency was first discussed in deterministic set-
tings regarding how future cost should be discounted. In par-
ticular, Strotz (1956) shows that exponential discounting is
necessary for time-consistency. Exponential discounting is
thus standard for decision making with discounted expected
utility (R. E. Lucas 1978). Bewley (1987) essentially shows
that an optimization problem is time-consistent if the ob-
jective function is a discounted expected cumulative reward.
On the other hand, we give more general sufficient condi-
tions and discuss their necessity. Bewley (1987), however,
considers the settings that are different from ours. In Bew-
ley (1987), a decision maker is not certain about probability
distributions, and his preference cannot be expressed in a to-
tal order (i.e., Knightian decision theory). Our results do not
cover the Knightian decision theory, and it is an interesting
direction to extend our results to the Knightian settings.

The necessity of time-consistency for rational decision
making is illuminated by the following quote from Ainslie
(2001) (p.30-31): “if a hyperbolic discounter engaged in
trade with someone who used an exponential curve, she’d
soon be relieved of her money. Ms. Exponential could buy
Ms. Hyperbolic’s winter coat cheaply every spring, for in-
stance, because the distance to the next winter would depress
Ms. H’s evaluation of it more than Ms. E’s. Ms. E could then
sell the coat back to Ms. H every fall when the approach of
winter sent Ms. H’s valuation of it into a high spike.” That
is, a time-consistent decision maker (Ms. E) can squeeze an
infinite amount of money out of a time-inconsistent deci-
sion maker (Ms. H). Analogous arguments apply to time-
consistency in the stochastic settings studied in this paper.

Time-consistency of the RM has also been discussed in
the literature (Artzner et al. 2007; Hardy and Wirch 2004;
Riedel 2004; Boda and Filar 2005; Foellmer and Schied
2011), where an RM is used for a bank to determine the
amount of the capital to be reserved. Time-consistency is
widely considered to be a necessary property of such an RM.
We remark that E and ERMγ are both time-consistent RMs.
In this paper, however, we have seen undesirable outcomes
when a decision maker seeks to minimize expected loss (or
equivalently to maximize expected profit) when there is a
regulation that requires that the decision maker keep the
ERM of the loss below a threshold. Namely, we find that an
optimization problem is not necessarily time-consistent (as
formally defined in Definition 1) even if the functions that
constitute its objective and constraints are time-consistent
(as defined in Artzner et al. (2007)).

Although there has not been unified discussion about the
time-consistency of optimization problems in stochastic set-
tings, time-inconsistency has been reported for several mod-
els of MDPs. In the prior work, when optimization of an
MDP is time-inconsistent, it has been stated in various ways,
including “the optimal policy changes over time,” “the opti-
mal policy is nonstationary,” or “the principle of optimality
is not satisfied,” which will be detailed in the following.

A constrained MDP requires to minimize the expect cost
of one type, while keeping the expected cost of another
type below a threshold (Altman 1999). It has been pointed
out that Bellman’s principle of optimality is not necessar-
ily satisfied by an optimal policy of a constrained MDP, i.e.,
the constrained MDP is not necessarily time-consistent (Ha-
viv 1996; Henig 1984; Ross and Varadarajan 1989; Sennott
1993), where counter-examples have been constructed for
the case where the constrained MDP is a multi-chain over
an infinite horizon. For particular constrained MDPs, how-
ever, it has been shown that Bellman’s principle of opti-
mality holds, i.e., they are time-consistent (Abe et al. 2010;
Haviv 1996; Ross and Varadarajan 1989). Our results shed
light on the time-consistency and time-inconsistency of
these constraint MDPs: one can easily verify that the con-
straints in the general constrained MDP do not necessarily
have the non-decreasing property, while they do in Abe et
al. (2010); Haviv (1996); Ross and Varadarajan (1989). For
example, in Haviv (1996); Ross and Varadarajan (1989), the
constraint must be satisfied for every sample path, which di-
rectly implies the non-decreasing property.

There also exists a large body of the literature that stud-
ies the MDPs whose objective functions are not optimality-
consistent. For example, variance is not optimality-
consistent, so that the problem of minimizing the variance of
an MDP, studied for example in Kawai (1987), is not time-
consistent. White surveys MDPs, where “principle of opti-
mality fails” or “no stationary optimal policy exists” (White
1988). One should be warned that making decisions based
on these MDPs lead to contradicting decisions over time,
which in turn can result in being deprived of an infinite
amount of wealth by a time-consistent decision maker. We
have shown that there is a large class of iterated RMs that
are optimality-consistent, which can be used to formulate
time-consistent optimization problems that can be used by
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decision makers who are risk-sensitive and rational.
Observe that time-consistency is related to dynamic pro-

gramming. Namely, if a POP is time-consistent, the corre-
sponding optimal policy can be found with dynamic pro-
gramming. Because the optimal policy today is also opti-
mal tomorrow if the POP is time-consistent, we can find the
optimal policy today by first finding the optimal policy for
each possible state of tomorrow and then finding the opti-
mal action today based on the optimal policies for tomorrow.
Therefore, a time-consistent POP is attractive from compu-
tational point of view, besides it leads to rational decision
making.

The objective of the standard risk-sensitive MDPs is ex-
pected exponential utility (or equivalently entropic risk mea-
sure), so that these MDPs are time-consistent. Ruszczyński
(2010) studies dynamic programming for an MDP whose
objective is a Markov RM, a particular iterated RM. Os-
ogami (2011) studies dynamic programming for an MDP
whose objective is a particular iterated RM when the
future cost is discounted. However, these iterated RMs
require to satisfy conditions that are not needed for
optimality-consistency and no constraints are considered in
Ruszczyński (2010) and Osogami (2011).
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