
A Multi-Path Compilation Approach to Contingent Planning

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University of the Negev
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering &

Deutsche Telekom Laboratories
Ben-Gurion University of the Negev

shanigu@bgu.ac.il

Abstract
We describe a new sound and complete method for compiling
contingent planning problems with sensing actions into clas-
sical planning. Our method encodes conditional plans within
a linear, classical plan. This allows our planner, MPSR, to
reason about multiple future outcomes of sensing actions, and
makes it less susceptible to dead-ends. MPRS, however, gen-
erates very large classical planning problems. To overcome
this, we use an incomplete variant of the method, based on
state sampling, within an online replanner. On most current
domains, MPSR finds plans faster, although its plans are of-
ten longer. But on a new challenging variant of Wumpus with
dead-ends, it finds smaller plans, faster, and scales better.

Introduction
Agents acting under partial observability must acquire infor-
mation about the true state of the world using sensing actions
to achieve their goals. Such problems can be modeled using
contingent planning, where action effects are conditioned
on some unknown world features. Contingent planning is
difficult because the agent plan must branch given different
world states, resulting in potentially large plan trees.

The translation (or compilation) approach to conformant
planning (Palacios and Geffner 2009) compiles a problem of
planning in belief-space into a classical planning problem in
which the planner “reasons” about knowledge explicitly. It
works by adding new “knowledge” propositions and modi-
fying actions so that the state space is transformed into a be-
lief space, essentially allowing a classical planner to plan in
belief space. This reduction allows us to leverage advances
in classical planning, such as recent, powerful heuristic gen-
eration methods, within a conformant planner. This is par-
ticularly appealing given the difficulty in generating good
and fast heuristic estimates directly in belief space.

The compilation approach motivated a number of re-
cent contingent planers that combine similar transformations
with replanning or heuristic search, performing much better
than previous methods (Albore, Palacios, and Geffner 2009;
Shani and Brafman 2011; Bonet and Geffner 2011). Classi-
cal and conformant planning differ substantially from con-
tingent planning. The former have a single possible exe-
cution path (in state or belief space, respectively), whereas

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the latter has multiple possible execution paths because of
the possibility of different possible sensor inputs. Depend-
ing on the sensed values, unknown to the agent at planning
time, its knowledge at execution time will be different, and
its behavior should be appropriate to this knowledge.

Because of this fundamental difference, existing contin-
gent planners utilize problem compilation in a limited way.
More specifically, they are based on the idea of replan-
ning (Yoon, Fern, and Givan 2007), where in each replan-
ning phase, a classical planning problem that operates in a
representation of the belief space is generated. To generate
a deterministic, classical planning problem, planners must
determinize the effects of sensing actions, somehow. Plan-
ners like CLG (Albore, Palacios, and Geffner 2009) and K-
planner (Bonet and Geffner 2011) make optimistic assump-
tions about the sensed values (i.e., the planner essentially
selects what values are sensed), whereas SDR (Shani and
Brafman 2011) samples an arbitrary initial state sI and as-
sumes that observations will be sensed as if sI is the true ini-
tial state. Consequently, the planner does not consider future
execution paths in which the observations will be different.
This limited foresight is somewhat mitigated by the use of
replanning, as the planner reconsiders its future plan when-
ever new information arrives. However, until such new in-
formation arrives, it typically executes a number of actions,
that while appropriate under the assumptions it made, could
be bad, or even catastrophic (i.e., lead to a dead-end) under
other, possible assumptions.

The main contribution of this paper is a new sound and
complete compilation method, called multi-path translation,
that addresses these issues. The new compilation scheme
generates a classical, deterministic planning problem whose
solutions encode a true contingent plan that considers all ex-
ecution paths. This method can be used offline to generate
a complete, contingent plan that reaches the goal in all cir-
cumstances, when such a plan exists.

Unfortunately, the size of such complete plans, and, more
importantly, the size of the classical planning problem gen-
erated using the complete method can be linear in the num-
ber of initial states, and hence, exponential in the number of
propositions. To address this problem, we resort to a replan-
ning architecture, and use a modified, incomplete version of
this translation scheme at each stage. Specifically, to control
the size of the classical problem generated, much like SDR,

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1868

we sample a subset of the initial states, and ignore all others.
By improving the sampling techniques of SDR, we select
diverse states, covering diverse future trajectories.

Two key ideas underlie the multi-path translation tech-
nique. The first idea is to use conditional knowledge, and
the notion of distinguishability, both rooted strongly in the
logics of knowledge (Fagin et al. 1995). More specifically,
we maintain information about the knowledge of the agent
at run-time, conditioned on its initial state. In deterministic
environments, we can accurately know what the agent’s state
of knowledge will be at run-time, if we know the initial state.
We keep track of which states it can distinguish between, ef-
fectively capturing its belief state. From the agent’s belief
state, we can deduce all of the agent’s knowledge.

The second idea is to enhance the set of actions so that
we can encode a contingent plan, typically represented as
a tree, within a linear, classical plan. To do this, we in-
troduce multiple versions of each action for different belief
states. An action ab that corresponds to an original action a
and a belief state b will have the same effect as a on states
that are in b, and no effect on states outside b. A similar
technique was used by Bonet, Palacios, and Geffner (2009)
(BPP), the only other compilation-based planner that gener-
ates conditional plans. BPP generate finite-state controllers,
which have the added advantage of generality, i.e., a plan
for one maze may work for different mazes and different
initial states. On the other hand BPP does not handle sens-
ing actions, and assumes a fixed set of observable variables,
sensed passively following each action. Thus, the specifics
of the two methods differ substantially.

Our Multi-Path Sampling Replanner (MPSR), was eval-
uated empirically on old and new contingent planning do-
mains. Our experiments show that MPSR is typically faster
than SDR and CLG, although the quality of its plans is lower
(i.e., longer). However, these domains do not contain dead-
ends. When we include dead-ends in the Wumpus domain,
we see the true strength of MPSR. SDR is completely un-
able to handle this domain, and while CLG can handle the
smaller instances, MPSR scales much better, and generates
smaller plans, faster.

Partially Observable Contingent Planning
Partially observable contingent planning problems are char-
acterized by uncertainty about the initial state of the world,
partial observability, and the existence of sensing actions.
Actions may be non-deterministic, but much of the litera-
ture focuses on deterministic actions, and in this paper we
will assume deterministic actions, too.

Problem Definition
A contingent planning problem is a quadruple: π =
〈P,A, ϕI , G〉. P is a set of propositions, A is a set of ac-
tions, ϕI is a formula over P that describes the set of pos-
sible initial states, and G ⊂ P is the goal propositions. We
often abuse notation, treating a set of literals as a conjunc-
tion of the literals in the set, as well as an assignment of the
propositions in it. For example, {p,¬q} will also be treated
as p ∧ ¬q and as an assignment of true to p and false to q.

A state of the world, s, assigns a truth value to all elements
of P . A belief-state is a set of possible states, and the initial
belief state, bI = {s : s |= ϕI} defines the set of states
that are possible initially. An action a ∈ A is a three-tuple,
{pre(a),effects(a),obs(a)}. pre(a) is a set of literals denoting
the action’s preconditions. effects(a) is a set of pairs (c, e)
denoting conditional effects, where c is a set (conjunction)
of literals and e is a single literal. Finally, obs(a) is a set of
propositions, denoting those propositions whose value is ob-
served when a is executed. We assume that a is well defined,
that is, if (c, e) ∈ effects(a) then c∧pre(a) is consistent, and
that if both (c, e), (c′, e′) ∈ effects(a) and s |= c ∧ c′ for
some state s then e ∧ e′ is consistent. In current benchmark
problems, either the set effects or the set obs are empty. That
is, actions either alter the state of the world but provide no
information, or they are pure sensing actions that do not alter
the state of the world, but this is not a mandatory limitation.

We use a(s) to denote the state that is obtained when a
is executed in state s. If s does not satisfy all literals in
pre(a), then a(s) is undefined. Otherwise, a(s) assigns to
each proposition p the same value as s, unless there exists
a pair (c, e) ∈ effects(a) such that s |= c and e assigns p a
different value than s. Observations affect the agent’s belief
state. We assume throughout that all observations are deter-
ministic and accurate, and reflect the state of the world prior
to the execution of the action. It is possible to have observa-
tion reflect the post-action state, at the price of slightly more
complicated notation. Thus, if p ∈obs(a) then following the
execution of a, the agent will observe p if p holds now, and
otherwise it will observe ¬p. Thus, if s is the true state of
the world, and b is the current belief state of the agent, then
ba,s, the belief state following the execution of a in state s is
defined as:

ba,s = {a(s′)|s′ ∈ b, s′ and s agree on obs(a)}

The new belief state corresponds to the progression through
a of all states in the old belief state b that assign the propo-
sitions in obs(a) the same values as s does.

Contingent Plans
A plan for a contingent planning problem is an annotated
tree τ = (N,E). The nodes, N , are labeled with actions,
and the edges, E, are labeled with observations. A node
labeled by an action with no observations has a single child,
and the edge leading to it is labeled by the null observation
true. Otherwise, each node has one child for each possible
observation value. The edge leading to this child is labeled
by the corresponding observation.

A plan is executed as follows: starting at the root, we
execute the action of the current node. If this action has
no observation, we move to its (only) child. Otherwise, we
move along the edge labeled by the observed value to the
appropriate child. We continue recursively until a leaf has
been reached. As we assume that actions and observations
are deterministic, there is a single possible execution path
along this tree for each initial state. We use τ(s) to denote
the state obtained when τ is executed starting in state s. τ is
a solution plan (or plan) for π if τ(s) |= G for every s ∈ bI .

1869

A belief state can be associated with each node in the
tree, i.e., the set of possible states when this node is reached
during run-time. bI is the belief state associated with the
root. If b is the belief state associated with node n labeled
by a, and n′ is a child of n connected with an edge la-
beled by ϕ, then the belief state associated with n′ will be
{a(s) : s ∈ b, s |= ϕ}.

Using the belief annotation, we can represent a contingent
plan, τ , in linear form. We topologically sort the actions in
the plan, and annotate each action instance a with the be-
lief state, ba, associated with a. The semantics of this plan
is similar, but slightly different from that of a classical plan.
Specifically, the effect and observation of action awith asso-
ciated belief state b is identical to a if the current belief state
is b, and is null otherwise. That is, if b is the current be-
lief state, then upon reaching an action annotated by a belief
state other than b, that action is skipped. Below we explain
how a classical planner can generate such plans.

We illustrate these ideas using a 4 × 4 Wumpus do-
main (Albore, Palacios, and Geffner 2009), which will serve
as our running example. Figure 1(a) illustrates this domain,
where an agent is located on a 4 × 4 grid. The agent can
move in all four directions, and if moving into a wall, it re-
mains in place. The agent initially is in the low-left corner
and must reach the top-right corner. There are two monsters
called Wumpuses hidden along the grid diagonal, the agent
knows that each Wumpus is hiding in one of two possible
locations, but must observe its stench, which carries to all
adjacent locations, in order to deduce its whereabouts. The
possible states can be characterized by the whereabouts of
the Wumpuses — in both lower locations (denoted dd for
down-down), in both upper locations (denoted uu for up-up),
lower location first and then upper location (du), and up-
per location first and then lower location (ud). Figures 1(b)
shows a possible plan tree for the Wumpus domain, and Fig-
ure 1(c) shows a possible linearization of this plan.

Knowledge and Its Evolution

The belief state of the agent is what, in the traditional litera-
ture, is referred to as its set of possible worlds, or knowledge
state (Fagin et al. 1995). The knowledge of the agent corre-
sponds to the facts that hold in all its possible worlds. Essen-
tially, this is the information it can deduce from its knowl-
edge about the set of possible initial states of the world, the
actions it executed, and the observations it observed.

If some formula ϕ is true in all states in the agent’s current
belief state, we say that it knows ϕ, denoted Kϕ. Initially,
the agent’s belief state, the set of currently possible states, is
bI . As it attains information, the size of this set decreases,
because we can rule out initial states that are inconsistent
with its observations. Initial states that were ruled out due
to inconsistency with some observation can never become
“possible” again. If one maintains the initial belief state,
and updates this representation each time a new observation
is obtained (Shani and Brafman 2011), then the uncertainty
over the initial belief and hence over the current belief state,
i.e., the number of possible initial and current states given

(a) The 4× 4 Wumpus do-
main

(b) A plan tree for the 4× 4 Wumpus domain. Arrows denote
movement actions, and S denotes sensing for Wumpus stench,
with outgoing edges marked by T or F denoting whether a
stench was observed or not. Branches are associated with the
current possible belief state, i.e. set of possible states.

(c) A possible linearization of the plan tree in figure 1(b). Actions
are associated with the adequate belief state.

Figure 1: The Wumpus domain, plan tree, and linearized
plan

the observations, can only get reduced1.
A major difficulty of contingent planning is that we can-

not predict, at planning time, what will be observed follow-
ing a sensing action. Thus, we cannot predict the agent’s
state of knowledge at run-time. At planning time, though,
useful knowledge may be gained and leveraged.

First, if we know what actions were executed, we know
whether the agent will know the value of certain facts.
Specifically, if the agent executes an action that observes the
value of p, we know that, afterwards, it will know the value
of p, even though we do not know whether p or ¬p will be
observed. This knowledge can be represented by proposi-
tions of the form KWp (know-whether p). Second, we
can maintain specific information about the knowledge that
the agent will have following the execution of an action se-
quence, conditioned on state s being the true initial state. If
s is the initial state, in a deterministic environment, we know
what observations the agent will make, and consequently, its
state of information at run-time. In particular, given that s is
the true world state, we know which states it will be able to

1This is true only for deterministic domains. When actions have
non-deterministic effects, the uncertainly may grow.

1870

distinguish from s (because they would induce different ob-
servations), and which states it will not be able to distinguish
from s (because they would yield the same observations as
s). Hence, we know the agent’s future belief states, given
that s is the true initial state.

We assume here that for each pair of initial states s1, s2,
either there exists some plan τ resulting in an observation
o that distinguishes between the states, or there exists some
plan τ ′ that is applicable in both initial states and obtains the
goal. Otherwise, no contingent plan solves the problem.

The Multi-Path Translation
We now suggest a method for translating contingent plan-
ning problems into classical planning problems whose solu-
tion is (essentially) a contingent plan in linear form. There
are two elements to this translation: a representation of the
knowledge state of the agent, and an enhanced actions set.

For representing knowledge we need 3 types of proposi-
tions: propositions that represent the current value of world
features, conditioned upon an initial state, propositions that
represent whether the agent currently knows the value of
world features, given an initial state, and propositions that
allow the reasoning about the belief state. For the latter, we
maintain propositions that define whether two states s and
s′ are distinguishable, i.e., whether the agent has observed a
proposition whose value is different in the two states.

We enhance the set of actions by adding, for each action a
and every belief state b, an action ab, that applies only if the
current belief state is b. The number of actions thus increases
substantially, and we discuss practical solutions later.

Given the input problem π = 〈P,A, ϕI , G〉 and current
belief state b, we generate a classical planning problem πc =
〈Pc, Ac, Ic, Gc〉 as follows:

Propositions Pc = {p/s : p ∈ P, s ∈ S} ∪ {KWp/s :
p ∈ P, s ∈ S} ∪ {KW¬s/s′ : s, s′ ∈ S}. Propositions
of the form p/s capture the value at run time of p when s
is the true initial state. Propositions of the form KWp/s
capture the knowledge at run time regarding the value of
p when s is the true initial state. If KWp/s holds, then
the agent knows p’s value if s is the true initial state (and
that value is the value of p/s). Propositions of the form
KW¬s′/s denote that at run-time, if s is the true initial
state, then the agent has gathered sufficient data to con-
clude that s′ cannot be the true initial state. These propo-
sitions allow us to define the belief state during execution.

Actions For every action a ∈ A, and every subset of S′ ⊆
bI , Ac contains an action aS′ . This action denotes the
execution of a when the agent’s belief state is S′. aS′ has
no effect on states outside S′! It is defined as follows:

pre(aS′) = {KWp/s ∧ p/s : s ∈ S′, p ∈ pre(a)} ∪
{KW¬s′/s : s′ ∈ S′, s ∈ bI \ S′}. That is, the agent
must know that the preconditions are true prior to apply-
ing the action in all states for which this action applies,
and it must be able to distinguish between any state in S′
and every state not in S′. Thus, the agent can execute aS′

only when it knows that the current belief state is S′, and
all action preconditions are known to hold in S′.

For every (c, e) ∈ effects(a), effects(aS′) contains the fol-
lowing conditional effects:

• For each s ∈ S′, (c/s, e/s) — the effect applied to every
state in S′.
• (

∧
s∈S′ KWc/s ∧ c/s,

∧
s∈S′ KWe/s) — if we know

that the condition c holds prior to executing a in all states
for which the action applies, we know whether its effect
holds following a.

• (
∨

s∈S′ ¬KWc/s,
∧

s∈S′ ¬KWe/s) — if we do not
know whether the condition c holds prior to executing a
in some of the states for which the action applies, we may
not know whether its effect holds following a. This is a
subtle point which we discuss later.

• {KWp/s : p ∈ obs(a), s ∈ S′}— for every observable
p, we would know its value in all the states for which the
action applies.

• {(KWp/s∧KWp/s′∧p/s∧¬p/s′,KW¬s/s′)}— for
every observable p, and every two states s, s′, if we know
the value of p in the two states, and both states disagree on
p, then we can distinguish between the states at runtime.

In addition, for each literal l (w.r.t. P) and each subset of
states S′ ⊆ bI we have a merge action that allows us to
gain knowledge:

• pre(merge(l, S′)) =
{
∧

s∈S′ l/s}∧{
∧

s′∈S′,s∈bI\S′ KW¬s/s′}— the merge
can be used when all states in S′ agree on the value of l,
and we can distinguish at run time between the states in
S′ and the rest of the states.
• effects(merge(l, S′)) = {KWl/s : s ∈ S′}— the effect is

that we now know whether l holds in all these states.

Initial State Ic =
∧

s∈bI ,s|=l l/s — for every literal we
specify its value in all sampled states.

Goal Gc = {
∧

s∈bI G/s} — we require that the goal will
be achieved in all sampled states.

The reader may have observed that the merge actions are
powerful. If we correctly keep track of the value of ev-
ery proposition given every possible initial state, and the
value of propositions of the form KW¬s′/s, we can infer
any propositions of the form KWp/s that is currently true.
Keeping track of basic (p/s) propositions is easy, and keep-
ing track of KW¬s′/s propositions is also easy: they never
become false — new observations can only cause us to dis-
tinguish between more states. This implies that, in principle,
we can offer an even simpler, sound and complete transla-
tion, in which none of the non-merge actions adds knowl-
edge about the value of the propositions (i.e., propositions
of the form KWp/s), and all such knowledge is removed
after every action. However, this would require much longer
plans that contain many merge actions, in order to recover
the lost knowledge. Instead, we conservatively update the
agent’s knowledge via regular actions. Any missing infor-
mation, can be deduced with the merges. These observations
underlie the soundness and completeness result below.

Theorem 1. π has a contingent plan IFF πc has a (classi-
cal) plan.

1871

Proof. (outline) Having established the relation between
plan trees and their linearizations, the main observations
upon which this result builds are (1) The classical plan cor-
rectly maintains the actual state of the world for every pos-
sible initial state (using the propositions p/s). (2) The clas-
sical plan correctly and completely tracks the set of distin-
guishable state (i.e., propositions of the form KW¬s′/s).
(3) One can use the merge actions to deduce any valid propo-
sition of the form KWp/s. (4) All conclusions of the form
KWp/s added by a non-merge action are sound.

Translations Linear in |bI | The above translation adds a
number of actions exponential in the number of initial states,
and potentially, doubly exponential in the number of propo-
sitions. However, there exists an alternative translation that,
like previous complete translations for conformant planning,
is linear in the number of initial states, and hence only worst-
case exponential in the number of propositions. We define
one action as for each original action a and possible initial
state s. This action as applies a to all states that are cur-
rently indistinguishable from state s′, where s′ is the state
obtained by applying the current plan prefix to initial state
s. This translation exploits the fact that the number of pos-
sible belief states after each plan prefix is at most |bI |. Yet,
although this translation introduces a linear number of new
actions, these actions require many conditional effects. Such
actions are challenging for current classical planners. Thus,
given the fact that after sampling we consider only a small
number of initial states, we use the former translation, which
is more effective in practice.

The Multi-Path Planning Algorithm
The multi-path translation allows us, in principle, to solve
any contingent planning problem with a classical planner.
However, this approach is impractical for two reasons. First,
complete plans (trees) are very large. Generating them of-
fline is, thus, difficult, and recent work has moved towards
online planning, in which the planner generates a single ex-
ecution sequence. Second, our translation is linear in the
number of possible initial states, and hence exponential in
the number of propositions — due to the need to main-
tain propositions for each possible world state. One can
slightly improve the situation by using tags, denoting sets
of states, rather than actual states, as introduced by Pala-
cios and Geffner (2009), but even with tags the size of the
translation can be unmanageable (Shani and Brafman 2011).
Instead, we take a sampling and replanning approach in the
spirit of the SDR planner (Shani and Brafman 2011).

Replanning with MPSR
MPSR (for multi-path, sampling, replanner) is an online
contingent planner that uses a replanning approach. MPSR
maintains the agent’s current belief state using the lazy
method introduced in SDR. At each iteration MPSR gen-
erates a multi-path translation using only a small subset of
bI — typically of size no greater than 4. The resulting plan
is typically not a solution plan because some possible ini-
tial states were ignored. However, it is much more informed
than plans generated using single-execution path methods,

such as SDR. MPSR executes the plan until either a new ob-
servation is made, which alters the belief state, or the next
action is not safe to execute because its preconditions do not
hold in one of the possible states. Then, it replans again. The
high level scheme of MPSR is described in Algorithm 1. size
controls the size of the set of world states S′I .

Algorithm 1 MPSR
Input: Contingent Planning Problem: π = 〈P,A, ϕI , G〉, Inte-

ger: size
1: b :=initial belief state
2: changed := false
3: while G is not known at the current belief state do
4: Sample a set of states S′

I consistent with b s.t. |S′
I | ≤size

5: ρ := (linear) solution to 〈P,A, S′
I , G〉 using the multi-path

translation.
6: if ρ is empty then
7: return failure
8: end if
9: while ρ 6= ∅ and not changed and pre(first(ρ)) is known at

the current belief state do
10: a :=first(ρ)
11: execute a, observe o
12: bnew := {a(s) : s ∈ b and s |= o}
13: changed := [b 6= bnew]
14: Remove a from ρ
15: end while
16: end while

For belief maintenance and update we use the lazy re-
gression technique suggested by Shani and Brafman (2011),
where only the initial belief state is maintained, and queries
concerning possible current states are resolved by regressing
the query through the action-observation history.

Sampling and Resampling
To improve the value of the plan generated by multi-path
translation, we would like to sample a diverse set of states.
There are different ways to define diversity in this context.
Our sampling algorithm (Algorithm 2) seeks to find a set
S of possible initial states of predefined size, such that the
number of propositions p that attain different values on state
in S is maximized (i.e., there exists states s′, s′′ ∈ S such
that s′ |= p and s′′ |= ¬p).

We use the following technique to obtain a diverse sam-
ple (Algorithm 2): We sample an unknown proposition, as-
sign it a value, and propagate this assignment through the
belief state constraints, setting the values of other depen-
dent propositions. We continue to sample this way until all
propositions have been assigned. For the rest of the states,
whenever we need to pick a proposition to assign, we seek
a proposition that was assigned uniformly in all samples, so
far. We assign it the complementary value, propagate its
value, and continue. If all remaining literals have diverse
values in the states assigned so far, we continue sampling
arbitrary unassigned propositions, as before.

Diverse sampling is an important component of MPSR,
but given the small sample size that we use, we may not be
able to cover all aspects of the initial state. To get a more
informed plan, we use resampling. That is, we generate m

1872

Algorithm 2 Diverse-Sampling
Input: ϕ — the constraints over the belief state, size
1: S ← ∅
2: P ← all unknown predicates in ϕ
3: P ′ ← P , ϕ′ ← ϕ
4: s← ∅
5: while P ′ 6= ∅ do
6: Choose p ∈ P ′, l ∈ {p,¬p} uniformly
7: Propagate l through ϕ′

8: if There is no solution to ϕ′ then
9: Backtrack

10: else
11: Add l and all assignments in the propagation to s
12: end if
13: P ′ ← all unknown predicates in ϕ′

14: end while
15: Add s to S
16: s← ∅
17: while |S| < size do
18: P ′ ← P , ϕ′ ← ϕ
19: while P ′ 6= Φ do
20: Choose p ∈ P ′, l ∈ {p,¬p} s.t. l does not appear in S.

If no such l exists, pick p, l uniformly.
21: Propagate l through ϕ′

22: if There is no solution to ϕ′ then
23: Backtrack
24: else
25: Add l and all assignments in the propagation to s
26: end if
27: P ′ ← all unknown predicates in ϕ′

28: end while
29: Add s to S
30: end while
31: return S

initial state sets S1, S2, ..., Sm, all of which contain only a
small number of states. We then plan for each Si indepen-
dently, resulting in a plan πi. As computing m plans with a
sample size n is (much) faster than solving a single plan with
sample size n+1, this approach scales better than increasing
the sample size. Then, we select the plan that applies a sens-
ing action the earliest. This usually indicates an awareness
to conflicting needs that can be resolved by sensing.

Empirical Evaluation
We now compare MPSR to CLG (Albore, Palacios,
and Geffner 2009) and SDR* — the best variation of
SDR (Shani and Brafman 2011), on benchmarks from the
SDR paper. These are currently the best contingent planners.
We evaluate MPSR using a single sample, denoted MPSR,
and MPSR using resampling with 5 samples, denote MPSR
×5. MPSR always uses two sampled states. The experi-
ments were conducted on a Windows Server 2008 machine
with 24 2.66GHz cores (although each experiment uses only
a single core) and 32GB of RAM. The underlying planner is
FF (Hoffmann and Nebel 2001).

Table 1 shows that MPSR is typically faster than all other
planners. When resampling is used, planning time increases,
but plan quality (number of actions) typically improves. In
localize, MPSR does not offer better plan quality than SDR

because in this domain the best behavior is to guess a possi-
ble state and plan for it. In colorballs (CB) and the larger lo-
gistics domain (cloghuge), the underlying FF planner failed
to solve the translated domains, possibly because the result-
ing plan trees are huge. In Wumpus, MPSR generates much
better plans, much faster than either SDR or CLG.

To demonstrate where MPSR overcomes the disadvan-
tages of SDR, we experiment on a Wumpus variation with
deadends. Wumpus requires a smart exploration and sensing
policy, and is thus one of the more challenging benchmarks.
Originally, the agent requires a cell to be “safe” before en-
tering it. We removed this precondition, and changed the
move action so that the agent is dead if it enters a cell con-
taining a wumpus or a pit, creating deadends. As expected
SDR and all its variations fail utterly. CLG, however, solves
these domains without failing. MPSR can rapidly solve this
domain with good quality plans. MPSR uses 3 initial states,
that given our diverse sampling technique, cover all possible
safe configurations.

Table 2: Wumpus domains with deadends. TF denotes that the
CLG translation did not complete in 30 minutes.

MPSR CLG
Name Time (secs) #Actions Time (secs) #Actions
Wumpus 4 1.3 (0.01) 17.5 (0.1) 0.17 (0.001) 17.7 (0.04)
Wumpus 8 16.9 (1.5) 27.5 (1.1) 2.8 (0.01) 40.5 (0.31)
Wumpus 16 93.5 (4.5) 38.3 (1.2) 182.5 (1.73) 119.7 (0.91)
Wumpus 20 216.8 (6.7) 48.28 (1.2) TF
Wumpus 24 285.5 (5.5) 71.5 (0.7) TF

Conclusion and Future Work
We introduced a new translation scheme from contingent
planning into classical planning. The method is sound and
complete, but comes at substantial cost — the resulting plans
can be very large. This cost can be controlled by selec-
tive sampling of the initial states combined with replanning,
as we did here, or by using the multi-path translation as a
method for generating informed heuristic estimates. Our
empirical evaluation shows that MPSR is typically faster
than SDR and CLG, although its plans are longer, but that
on the new, more challenging domains with dead-ends, it
produces better plans, faster, and scales-up better.

In this paper we assume that actions have deterministic
effects. The multi-path formulation is motivated, in part, by
the difficulty of current contingent planners to deal with non-
deterministic effects. This difficulty has two sources. The
first is inherent — non-determinism raises the uncertainty in
the domain, and makes it harder for current transformation
based planners to generate good choices. Their choices are
greedy, and often need to be undone (when possible) in later
stages when effects are not as expected. Here, we hope the
multi-path method will help. The second difficulty is techni-
cal. All translation methods require some way of capturing
the set of possible paths. In deterministic domains, these
correspond to the set of initial states. In non-deterministic
domains, this set depends on the actual plan executed, and
cannot be bounded a-priori. Thus, it is impossible to capture

1873

Table 1: Comparing MPSR to CLG (execution mode) and SDR* — the best SDR variation in each domain. For domains with conditional
actions (localize) CLG execution cannot be simulated. We denote TF when the CLG translation failed, CSU when CLG cannot run a
simulation with a uniform distribution, and PF where the CLG planner failed, either due to too many predicates or due to timeout. Domains
were FF was unable to solve the translation are denoted by FFF. Values in parentheses denote standard error. Maximum time allowed was 30
minutes. Best time and plan length for each domain are bolded.

MPSR MPSR× 5 SDR* CLG
Name #Actions Time(secs) #Actions Time(secs) #Actions Time(secs) #Actions Time(secs)
cloghuge FFF FFF 61.17 (0.44) 117.13 (4.19) 51.76 (0.33) 8.25 (0.08)
ebtcs-70 44.5 (0.7) 22.4 (0.3) 37.2 (0.8) 12.8 (0.3) 35.52 (0.75) 3.18 (0.07) 36.52 (0.86) 73.96 (0.14)
elog7 23.5 (0.1) 1.4 (0.1) 22.4 (0.1) 3.8 (0.1) 21.76 (0.07) 0.85 (0.01) 20.12 (0.05) 1.4 (0.08)
CB-9-1 359.1 (3.9) 61.1 (1.3) 188.9 (3.9) 61.1 (1.3) 124.56 (2.49) 71.02 (1.57) 94.36 (1.83) 129.3 (0.26)
CB-9-3 FFF FFF 247.28 (2.91) 245.87 (4.03) 252.76 (2.66) 819.52 (0.47)
CB-9-5 FFF FFF 392.16 (2.81) 505.48 (8.82) PF
CB-9-7 FFF FFF 487.04 (2.95) 833.52 (15.82) PF
doors5 17.24 (0.2) 2 (0.1) 15.8 (0.2) 5.8 (0.1) 18.04 (0.18) 2.14 (0.03) 16.44 (0.18) 2.4 (0.1)
doors7 40 (0.4) 6.5 (0.1) 34.2 (0.3) 16.4 (0.2) 35.36 (0.41) 9.29 (0.1) 30.4 (0.24) 20.44 (0.02)
doors9 67.12 (0.7) 17.8 (0.2) 53.92 (0.5) 42.7 (0.4) 51.84 (0.55) 28 (0.31) 50.48 (0.5) 38.52 (0.06)
doors11 117.8 (1) 48.8 (1.4) 75.68 (0.6) 99.2 (0.8) 88.04 (0.91) 79.75 (1.04) 71.68 (0.79) 126.59 (0.1)
doors13 197.92 (1.2) 105.5 (2.1) 140.12 (1) 249.1 (3.2) 120.8 (0.93) 158.54 (2.01) 105.48 (0.89) 330.73 (0.21)
doors15 262.2 (1.9) 190 (3.3) 167.8 (1.6) 418.5 (6.1) 143.24 (1.36) 268.16 (3.78) PF
doors17 368.25 (3.4) 335.3 (5.3) 221.4 (2.2) 686.6 (11.4) 188 (1.64) 416.88 (6.16) PF
localize3 8.1 (0.1) 1.2 (0.1) 7.2 (0.1) 2.1 (0) 8 (0.12) 1.77 (0.03) CSU
localize5 16 (0.3) 1.5 (0.1) 15.5 (0.3) 4.1 (0.1) 14.56 (0.24) 7.12 (0.1) CSU
localize9 30.7 (0.4) 11.1 (0.2) 33.1 (0.5) 25.6 (0.5) 28.52 (0.42) 72.69 (1.43) CSU
localize11 38.5 (0.6) 31.1 (1.4) 39.9 (0.6) 71.3 (1.4) 34.67 (0.61) 155.6 (3.87) PF
localize13 42.4 (0.8) 73.4 (1.9) 47.2 (0.8) 185.4 (5) 37.52 (0.62) 396.76 (10.72) PF
localize15 45 (0.9) 130.6 (4.1) 59.8 (1.1) 384.9 (8) 40.08 (0.61) 667.22 (19.7) PF
localize17 59.8 (0.9) 230.4 (7.7) 71.8 (1.1) 687.4 (15.3) 45.00 (0.86) 928.56 (33.2) PF
unix1 9.8 (0.2) 0.6 (0.1) 10.8 (0.1) 0.9 (0) 12.2 (0.16) 0.48 (0.01) 11.68 (0.23) 0.35 (0.01)
unix2 30.6 (0.6) 1.9 (0.1) 24.9 (0.4) 3.9 (0.1) 26.44 (0.72) 1.41 (0.03) 19.88 (0.47) 2.69 (0.01)
unix3 69.7 (1.7) 5.2 (0.1) 51.7 (1.1) 13 (0.2) 56.32 (1.72) 5.47 (0.18) 51.32 (0.97) 18.56 (0.05)
unix4 158.6 (4.3) 30.4 (1.1) 138.1 (3.6) 61.8 (1.2) 151.72 (4.12) 35.22 (0.94) 90.8 (2.12) 189.41 (0.6)
Wumpus05 23.4 (0.2) 4.5 (0) 23.0 (0.2) 7.1 (0.1) 34.72 (0.3) 6.51 (0.07) 24.12 (0.1) 2.38 (0.09)
Wumpus10 47.2 (1) 12.4 (0.2) 44.2 (0.4) 23.1 (0.2) 70.64 (1.13) 65.89 (1.13) 40.44 (0.18) 36.29 (0.04)
Wumpus15 65 (1.6) 126.6 (3.1) 67.2 (0.8) 262.7 (5) 120.14 (2.4) 324.32 (7.14) 101.12 (0.67) 330.54 (0.25)
Wumpus20 71.6 (1.2) 261.1 (7) 79.9 (0.9) 773.6 (7.9) 173.21 (3.4) 773.01 (20.78) 155.32 (0.95) 1432 (0.47)

all eventualities. Workarounds exist, such as focusing on the
first time each action is performed, as suggested by Pala-
cios and Geffner (2009), which is well suited for translation
based methods. Nevertheless, building a contingent plan-
ner that handles non-deterministic domains well remains an
important challenge.
Acknowledgement: Ronen Brafman is partially supported
by ISF grant 8254320, the Paul Ivanier Center for Robotics
Research and Production Management, and the Lynn and
William Frankel Center for Computer Science.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI’11.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In ICAPS.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. MIT Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Shani, G., and Brafman, R. I. 2011. Replanning in do-
mains with partial information and sensing actions. In IJ-
CAI, 2021–2026.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS.

1874

