
A Tractable First-Order Probabilistic Logic

Pedro Domingos and W. Austin Webb
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{pedrod, webb}@cs.washington.edu

Abstract

Tractable subsets of first-order logic are a central topic
in AI research. Several of these formalisms have been
used as the basis for first-order probabilistic languages.
However, these are intractable, losing the original moti-
vation. Here we propose the first non-trivially tractable
first-order probabilistic language. It is a subset of
Markov logic, and uses probabilistic class and part hier-
archies to control complexity. We call it TML (Tractable
Markov Logic). We show that TML knowledge bases
allow for efficient inference even when the correspond-
ing graphical models have very high treewidth. We also
show how probabilistic inheritance, default reasoning,
and other inference patterns can be carried out in TML.
TML opens up the prospect of efficient large-scale first-
order probabilistic inference.

Introduction
The tradeoff between expressiveness and tractability is a
central problem in AI. First-order logic can express most
knowledge compactly, but is intractable. As a result, much
research has focused on developing tractable subsets of it.
First-order logic and its subsets ignore that most knowledge
is uncertain, severely limiting their applicability. Graphical
models like Bayesian and Markov networks can represent
many probability distributions compactly, but their expres-
siveness is only at the level of propositional logic, and infer-
ence in them is also intractable.

Many languages have been developed to handle uncer-
tain first-order knowledge. Most of these use a tractable
subset of first-order logic, like function-free Horn clauses
(e.g., (Wellman, Breese, and Goldman 1992; Poole 1993;
Muggleton 1996; De Raedt, Kimmig, and Toivonen 2007))
or description logics (e.g., (Jaeger 1994; Koller, Levy, and
Pfeffer 1997; d’Amato, Fanizzi, and Lukasiewicz 2008;
Niepert, Noessner, and Stuckenschmidt 2011)). Unfortu-
nately, the probabilistic extensions of these languages are
intractable, losing the main advantage of restricting the rep-
resentation. Other languages, like Markov logic (Domingos
and Lowd 2009), allow a full range of first-order constructs.
Despite much progress in the last decade, the applicability

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of these representations continues to be significantly limited
by the difficulty of inference.

The ideal language for most AI applications would be a
tractable first-order probabilistic logic, but the prospects for
such a language that is not too restricted to be useful seem
dim. Cooper (1990) showed that inference in propositional
graphical models is already NP-hard, and Dagum and Luby
(1993) showed that this is true even for approximate infer-
ence. Probabilistic inference can be reduced to model count-
ing, and Roth (1996) showed that even approximate count-
ing is intractable, even for very restricted propositional lan-
guages, like CNFs with no negation and at most two literals
per clause, or Horn CNFs with at most two literals per clause
and three occurrences of any variable.

We can trivially ensure that a first-order probabilis-
tic knowledge base is tractable by requiring that, when
grounded, it reduce to a low-treewidth graphical model.
However, this is a syntactic condition that is not very mean-
ingful or perspicuous in terms of the domain, and experience
has shown that few real domains can be well modeled by
low-treewidth graphs. This is particularly true of first-order
domains, where even very simple formulas can lead to un-
bounded treewidth.

Although probabilistic inference is commonly assumed
to be exponential in treewidth, a line of research that
includes arithmetic circuits (Darwiche 2003), AND-OR
graphs (Dechter and Mateescu 2007) and sum-product net-
works (Poon and Domingos 2011) shows that this need not
be the case. However, the consequences of this for first-order
probabilistic languages seem to have so far gone unnoticed.
In addition, recent advances in lifted probabilistic inference
(e.g., (Gogate and Domingos 2011)) make tractable infer-
ence possible even in cases where the most efficient propo-
sitional structures do not. In this paper, we take advantage of
these to show that it is possible to define a first-order prob-
abilistic logic that is tractable, and yet expressive enough to
encompass many cases of interest, including junction trees,
non-recursive PCFGs, networks with cluster structure, and
inheritance hierarchies.

We call this language Tractable Markov Logic, or TML
for short. In TML, the domain is decomposed into parts,
each part is drawn probabilistically from a class hierarchy,
the part is further decomposed into subparts according to
its class, and so forth. Relations of any arity are allowed,

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1902



provided that they are between subparts of some part (e.g.,
workers in a company, or companies in a market), and that
they depend on each other only through the part’s class. In-
ference in TML is reducible to computing partition func-
tions, as in all probabilistic languages. It is tractable because
there is a correspondence between classes in the hierarchy
and sums in the computation of the partition function, and
between parts and products.

We begin with some necessary background. We then de-
fine TML, prove its tractability, and illustrate its expressive-
ness. The paper concludes with extensions and discussion.

Background
TML is a subset of Markov logic (Domingos and Lowd
2009). A Markov logic network (MLN) is a set of weighted
first-order clauses. It defines a Markov network over all
the ground atoms in its Herbrand base, with a feature cor-
responding to each ground clause in the Herbrand base.
(We assume Herbrand interpretations throughout this pa-
per.) The weight of each feature is the weight of the
corresponding first-order clause. If x is a possible world
(assignment of truth values to all ground atoms), then
P (x) = 1

Z exp (
∑

i wini(x)), where wi is the weight
of the ith clause, ni(x) is its number of true ground-
ings in x, and Z =

∑
x exp (

∑
i wini(x)) is the par-

tition function. For example, if an MLN consists of the
formula ∀x∀y Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)
with a positive weight and a set of facts about smoking and
friendship (e.g., Friends(Anna, Bob)), the probability of a
world decreases exponentially with the number of pairs of
friends that do not have similar smoking habits.

Inference in TML is carried out using probabilistic theo-
rem proving (PTP) (Gogate and Domingos 2011). PTP is an
inference procedure that unifies theorem proving and proba-
bilistic inference. PTP inputs a probabilistic knowledge base
(PKB) K and a query formula Q and outputs P (Q|K). A
PKB is a set of first-order formulas Fi and associated poten-
tial values φi ≥ 0. It defines a factored distribution over
possible worlds with one factor or potential per ground-
ing of each formula, with the value of the potential being
1 if the ground formula is true and φi if it is false. Thus
P (x) = 1

Z

∏
i φ

ni(x)
i , where ni(x) is the number of false

groundings of Fi in x. Hard formulas have φi = 0 and soft
formulas have φi > 0. An MLN is a PKB where the po-
tential value corresponding to formula Fi with weight wi is
φi = e−wi .

All conditional probabilities can be computed as ratios of
partition functions: P (Q|K) = Z(K ∪ {(Q, 0)})/Z(K),
where Z(K) is the partition function of K and Z(K ∪
{(Q, 0)}) is the partition function of K with Q added as
a hard formula. PTP computes partition functions by lifted
weighted model counting. The model count of a CNF is the
number of worlds that satisfy it. In weighted model counting
each literal has a weight, and a CNF’s count is the sum over
satisfying worlds of the product of the weights of the liter-
als that are true in that world. PTP uses a lifted, weighted
extension of the Relsat model counter, which is in turn an
extension of the DPLL satisfiability solver. PTP first con-

Algorithm 1 LWMC(CNF L, substs. S, weights W )
// Base case
if all clauses in L are satisfied then

return
∏

A∈M(L)(WA +W¬A)nA(S)

if L has an empty unsatisfied clause then return 0
// Decomposition step
if there exists a lifted decomposition {L1,1, . . . , L1,m1

,
. . . , Lk,1, . . . , Lk,mk

} of L under S then
return

∏k
i=1[LWMC(Li,1, S,W )]mi

// Splitting step
Choose an atom A
Let {Σ(1)

A,S , . . . ,Σ
(l)
A,S} be a lifted split of A for L under S

return
∑l

i=1 niW
ti
AW

fi
¬ALWMC(L|σi; Si,W )

verts the PKB into a CNF L and set of literal weights W .
In this process, each soft formula Fi is replaced by a hard
formula Fi⇔Ai, where Ai is a new atom with the same ar-
guments as Fi and the weight of ¬Ai is φi, all other weights
being 1.

Algorithm 1 shows pseudo-code for LWMC, the core rou-
tine in PTP. M(L) is the set of atoms appearing in L, and
nA(S) is the number of groundings of A consistent with the
substitution constraints in S. A lifted decomposition is a par-
tition of a first-order CNF into a set of CNFs with no ground
atoms in common. A lifted split of an atom A for CNF L is
a partition of the possible truth assignments to groundings
of A such that, in each part, (1) all truth assignments have
the same number of true atoms and (2) the CNFs obtained
by applying these truth assignments to L are identical. For
the ith part, ni is its size, ti/fi is the number of true/false
atoms in it, σi is some truth assignment in it, L|σi is the re-
sult of simplifying L with σi, and Si is S augmented with
the substitution constraints added in the process. In a nut-
shell, LWMC works by finding lifted splits that lead to lifted
decompositions, progressively simplifying the CNF until the
base case is reached.

Tractable Markov Logic
A TML knowledge base (KB) is a set of rules. These can
take one of three forms, summarized in Table 1. F : w is the
syntax for formula F with weight w. Rules without weights
are hard. Throughout this paper we use lowercase strings to
represent variables and capitalized strings to represent con-
stants.

Subclass rules are statements of the form “C1
is a subclass of C2,” i.e., C1 ⊆ C2. For example,
Is(Family, SocialUnit). For each TML subclass rule,
the corresponding MLN contains the two formulas shown
in Table 1. In addition, for each pair of classes (C1, C2)
appearing in a TML KB K such that, for some D, Is(C1, D)
and Is(C2, D) also appear in K, the MLN corresponding
to K contains the formula ∀x ¬Is(x, C1) ∨ ¬Is(x, C2).
In other words, subclasses of the same class are mutually
exclusive.

Using weights instead of probabilities as parameters in
subclass rules allows the subclasses of a class to not be ex-

1903



Name TML Syntax Markov Logic Syntax Comments
Rules Subclass Is(C1, C2) : w ∀x Is(x, C1)⇒ Is(x, C2),

∀x Is(x, C2)⇒ Is(x, C1) : w
Subpart Has(C1, C2, P, n) ∀x∀i Is(x, C1)⇒ Is(Pi(x), C2) 1 ≤ i ≤ n; P, n optional
Relation R(C, P1, . . . , Pn) : w ∀x∀i1 . . . ∀in Is(x, C)⇒ R(Pi1(x), . . . , Pin(x)) : w ¬R(. . .) also allowed

Facts Instance Is(X, C) Is(X, C) ¬Is(X, C) also allowed
Subpart Has(X1, X2, P) X2 = P(X1)
Relation R(X, P1, . . . , Pn) R(P1(X), . . . , Pn(X)) ¬R(. . .) also allowed

Table 1: The TML language.

haustive. This in turn allows classes to have default sub-
classes that are left implicit, and inherit all the class’s parts,
relations, weights, etc., without change. A default subclass
has weight 0; any subclass can be made the default by sub-
tracting its weight from the others’.

Subpart rules are statements of the form “Objects of
class C1 have n subparts P of class C2.” n = 1 by default.
For example, Has(Platoon, Lieutenant, Commander)
means that platoons have lieutenants as comman-
ders. If P is omitted, Pi is C2 with the index i ap-
pended. For example, Has(Family, Child, 2), mean-
ing that a typical family has two children, trans-
lates to ∀x Is(x, Family)⇒ Is(Child1(x), Child)∧
Is(Child2(x), Child). Pi(x) is syntactic sugar for P(i, x).

Subpart rules are always hard because uncertainty over
part decompositions can be represented in the subclass
rules. For example, the class Family may have two
subclasses, TraditionalFamily, with two parents, and
OneParentFamily, with one. The probability that a family
is of one or the other type is encoded in the weights of the
corresponding subclass rules. This can become cumbersome
when objects can have many different numbers of parts, but
syntactic sugar to simplify it is straightforward to define. For
example, we can define parameterized classes like C(C′, n, p)
as a shorthand for a class C and n subclasses Ci, where Ci
is C with i parts of class C′, and P (Ci|C) is the binomial
probability of i successes in n trials with success probability
p. In this notation, Family(Child, 5, 1

2
) represents families

with up to five children, with the probability of i children
being 1

32

(
5
i

)
. However, for simplicity in this paper we keep

the number of constructs to a minimum.
Is and Has are reserved symbols used to represent sub-

class and subpart relationships, respectively. R in Table 1 is
used to represent arbitrary user-defined predicates, which we
call domain predicates.

Relation rules are statements of the form “Relation R
holds between subparts P1, P2, etc., of objects of class C.”
(Or, if ¬R(. . .) is used, R does not hold.) For example,
Parent(Family, Adult, Child) says that in a family every
adult is a parent of every child. The relation rules for a class
and its complementary classes allow representing arbitrary
correlations between domain predicates and classes. Rela-
tion rules for a class must refer only to parts defined by sub-
part rules for that class. The rule R(C) with no part arguments
represents ∀x Is(x, C)⇒ R(x). Distributions over attributes
of objects can be represented by rules of this form, with an R
for each value of the attribute, together with Has rules defin-

ing the attributes (e.g., Has(Hat, Color), Red(Color)). In
propositional domains, all relation rules (and facts) are of
this form.

Using weights instead of probabilities in relation rules al-
lows TML KBs to be much more compact than otherwise.
This is because the weight of a relation rule in a class need
only represent the change in that relation’s log probability
from the superclass to the class. Thus a relation can be omit-
ted in all classes where its probability does not change from
the superclass. For example, if the probability that a child
is adopted is the same in traditional and one-parent fam-
ilies, then only the class Family need contain a rule for
Parent(Family, Adult, Child). But if it is higher in one-
parent families, then this can be represented by a rule for
Parent(. . .) with positive weight in OneParentFamily.

For each rule form there is a corresponding fact
form involving objects instead of classes (see lower half
of Table 1): X is an instance of C, X2 is subpart P
of X1, and relation R holds between subparts P1, P2,
etc., of X. For example, a TML KB might contain the
facts Is(Smiths, Family), Has(Smiths, Anna, Adult1)
and Married(Smiths, Anna, Bob). Subpart facts must be
consistent with subpart rules, and relation facts must be con-
sistent with relation rules. In other words, a TML KB may
only contain a fact of the form Has(X1, X2, P) if it contains a
rule of the form Has(C1, C2, P, n) with the same P, and it may
only contain a fact of the form R(X, P1, . . . , Pn) if it contains
a rule of the form R(C, P1, . . . , Pn) with the same P1, . . . , Pn.
If Family(Child, 5, 1

2
) is a parameterized class as defined

above, the fact that the Smiths have three children can be
represented by Has(Smiths, Child, 3).

The class hierarchy H(K) of a TML KB K is a directed
graph with a node for each class and instance in K, and an
edge from node(A) to node(B) iff Is(B, A) ∈ K. The class
hierarchy of a TML KB must be a forest. In other words, it
is either a tree, with classes as internal nodes and instances
as leaves, or a set of such trees.

A TML KB must have a single top class that is
not a subclass or subpart of any other class, i.e., a
class C0 such that the KB contains no rule of the
form Is(C0, C) or Has(C, C0, P, n). The top class must
have a single instance, called the top object. For ex-
ample, a KB describing American society might have
Society as top class and America as top object, re-
lated by Is(America, Society). American society might
in turn be composed of 100 million families, one of
which might be the Smiths: Has(America, Family, 108),

1904



Has(America, Family1, Smiths).
The semantics of TML is the same as that of infinite

Markov logic (Singla and Domingos 2007), except for the
handling of functions. In TML we want to allow limited use
of functions while keeping domains finite. We do this by re-
placing the Herbrand universe and Herbrand base with the
following.

The universe U(K) of a TML KB K is the
top object X0 and all its possible subparts, i.e., all
terms constructible by applying to X0 the functions
along each rooted path in K’s part decomposition. If
Has(C0, C1, P, n) ∈ K, then {P1(C0), . . . , Pn(C0)} ⊂
U(K); if in addition Has(C1, C2, Q, m) ∈ K, then
{Q1(P1(C0)), . . . , Qm(Pn(C0))} ⊂ U(K); etc. Constants
other than X0 are merely syntactic sugar for parts of X0,
and subpart facts serve solely to introduce these con-
stants. In the example above, Anna is syntactic sugar for
Adult1(Family1(America)). In addition, U(K) includes
all class symbols appearing in K.

The base B(K) of a TML KB K consists of: an Is(T , C)
ground atom for each term T in U(K) and each possible
class of T ; an R(T , . . .) ground atom for each relation rule
of each possible class of T ; and the ground clauses corre-
sponding to these atoms. C is a possible class of T iff it is
T ’s class in the part rule that introduces it or an ancestor or
descendant of that class in H(K); or, if T is the top object, the
top class or its descendants. A TML KBK defines a Markov
network over the atoms in B(K) with a feature correspond-
ing to each clause in B(K), etc.

The part decomposition D(K) of a TML KB K is a
directed graph with a node for each object in U(K) and
a leaf for each domain atom in B(K) and its negation.
It contains an edge from node(A) to non-leaf node(B) iff
Has(C, D, P, n) ∈ K, where C is a possible class of A and
D is a possible class of B. It contains an edge from node(B)
to leaf node(G), where G is a ground literal, iff B is the first
argument of G in a hard rule of a possible class of B, or of G
or ¬G in a soft rule of such a class.

A TML KB must be consistent: for every pair (T , C),
where T is a term in U(K) and C is a possible class of T ,
if the ground literal G (Is(. . .) or R(. . .), negated or not)
is a descendant of one of T ’s subparts in D(K) when T is
of class C, then ¬G may not be a descendant of any other
subpart of T in D(K) when T is of class C or one of its sub-
classes; and C and its subclasses may not have a soft relation
rule for G’s predicate with the same subparts, or hard rule
with the opposite polarity of G.

A TML KB is non-contradictory iff its hard rules and
facts contain no contradictions. TML KBs are assumed to
be non-contradictory; the partition function of a contradic-
tory KB is zero.

Figure 1 shows a fragment of a TML KB representing a
social domain.

Tractability
We now show that TML is tractable. Since all conditional
probabilities can be computed as ratios of partition func-
tions, and all entailment queries can be reduced to comput-
ing conditional probabilities (Gogate and Domingos 2011),

to prove that a language is tractable it suffices to prove that
computing the partition function of every KB in that lan-
guage is tractable.

We begin by defining an algorithm for inference in TML
that is an extension of PTP. We call it PTPT. PTPT inputs a
KB K and outputs its partition function Z(K). It proceeds
as follows:

1. Cleanup. Delete from K all Has(C1, C2, P, n) rules for
which Has(C3, C2, P, n) ∈ K, with C3 being an ancestor
of C1 in H(K), since these rules are redundant and do not
affect the value of Z.

2. Translation. Translate K into MLN syntax, according to
Table 1, and the MLN into PKB form (i.e., rules and po-
tential values; notice that this rescales Z, but it it easy to
compute the rescaling factor and divide Z by it before re-
turning).

3. Demodulation. For each subpart fact X = P(T ), where T
is a term, replace all appearances of X inK by P(T ), start-
ing with the top object of K as T and proceeding down
D(K). (E.g., replace Smiths by Family1(America) and
Anna by Adult1(Family1(America))). Delete all sub-
part facts from K.

4. Normalization. Convert K into a CNF and set of literal
weights, as in PTP.

5. Model counting. Call LWMC (Algorithm 1) onK, choos-
ing lifted decompositions and lifted splits as follows in
calls that do not satisfy the base case:

(i) Let L be the CNF in the current call of LWMC. If
L contains no class symbols, it consists solely of unit
clauses over domain atoms, which form a lifted decom-
position. Execute it. If L consists of a single domain
atom, split on it.

(ii) If L contains sub-CNFs with different class arguments
and/or disjoint substitution constraints for the object ar-
guments, these form a lifted decomposition. Execute it.

(iii) Otherwise, choose a class C with no superclasses and
no superparts in L. If Is(T , C) ∈ L for some term T ,
split on this atom and then split on the A(T, . . .) atoms
generated by this split from the A(x, . . .) atoms intro-
duced for rules on C in Step 4.

Notice that handling functions in PTPT requires no exten-
sions of PTP beyond redefining the Herbrand universe/base
as in the previous section, performing Step 3 above, and
treating ground terms as constants.

The size |K| of a KB K is the number of rules and facts
in it. We can now show that TML is tractable by showing
that PTPT(K) always runs in time and space polynomial in
|K|.
Theorem 1 The partition function of every TML knowledge
base can be computed in time and space polynomial in the
size of the knowledge base.

Proof. It is easy to see that Steps 1-4 of PTPT run in poly-
nomial time and space. Let nc, np and nr be respectively
the number of subclass, subpart and relation rules in the
KB K. Notice that |U(K)|, the number of objects in the

1905



Figure 1: Example of a TML knowledge base and its partition function Z. On the left, rectangles represent objects and their
classes, rounded rectangles represent relations, arcs joined by an angle symbol represent subpart rules, other arcs represent
subclass or relation rules, and labels represent rule weights. On the right, circles represent operations in the computation of Z
(sums or products), and arc labels represent coefficients in a weighted sum. Dashed arrows indicate correspondences between
nodes in the KB and operations in Z. If Anna and Bob on the left had internal structure, the leaves labeled “Anna” and “Bob”
on the right would be replaced with further computations.

domain (terms in the universe of K), is O(np): |U(K)| =∑
i

∏
j nij , where i ranges over rooted paths in D(K), of

which there are O(np), and j ranges over the n’s in the sub-
part rules on a path, which are constants.

In general PTP, finding lifted decompositions and lifted
splits in LWMC could take exponential time. However, in
PTPT(K) (Step 5), this can be done in O(1) time by main-
taining a stack of atoms for splitting. The stack is initialized
with Is(X0, C0), and after splitting on an Is(T , C) atom, for
some term T and class C (and on the A(. . .) atoms corre-
sponding to C’s rules, introduced in Step 4), the resulting
decomposition is executed and the atoms in the consequents
of C’s rules are added (see below). Thus each call to LWMC
is polynomial, and the key step in the proof is bounding the
number of calls to LWMC.

LWMC starts by splitting on Is(X0, C0), where X0 is the
top object and C0 the top class, because by definition C0
is the only class without superclasses or superparts in K
and X0 is its only instance, and no decomposition is ini-
tially possible because X0 is connected by function appli-
cations to all clauses in K. After splitting on Is(T , C) and
all A(T , C, . . .) for some term T and class C: (1) for the
true groundings of Is(T , C) all rules involving C become
unit clauses not involving C; (2) for the false groundings
of Is(T , C), all rules involving C become satisfied, and can
henceforth be ignored. Consider case (1). Suppose L now
contains k sets of unit clauses originating from relation rules
and facts involving Is(T , C), at most one set per predicate
symbol, and l unit clauses originating from subpart rules in-

volving Is(T , C). Let Li be the sub-CNF involving the ith
subpart of T according to C and all its sub-subparts accord-
ing to C’s descendants in D(K), let Rj be the set of unit
clauses with predicate symbol Rj, and letL′ be the rest of the
CNF. Then {R1, . . . , Rj , . . . , Rk, L1, . . . , Li, . . . , Ll, L

′} is
a lifted decomposition of L, for the following reasons: (1)
R1, . . . , Rk do not share any ground atoms because they
have different predicate symbols; (2) since K is consistent,
either L1, . . . , Ll do not share any ground atoms with each
other, R1, . . . , Rk and L′, or they share only pure literals,
which can be immediately eliminated; (3) if R1, . . . , Rk

share any non-pure literals with L′, they can be incorporated
into L′.

Performing this decomposition leads to a set of recursive
calls to LWMC. Overall, with caching (Gogate and Domin-
gos 2011), there is on the order of one call to LWMC per
(T, C) pair, where T is a term in U(K) and C is a possible
class of T , and one call per (T,R) pair, where T is a term
and R is a relation rule of a possible class of T . The time
complexity of LWMC is therefore of the order of the num-
ber of such pairs, as is the space complexity (cache size).
Since the number of terms in U(K) isO(np), the total num-
ber of calls to LWMC is O(np(nr + nc)) = O(|K|2). 2

The constants involved in this bound could be quite high,
on the order of the product of the n’s in the subpart rules on a
path inD(K). However, lifted inference will generally make
this much lower by handling many of the objects allowed by
such sequences of rules as one.

Notice that computing the partition function of a TML

1906



KB is not simply a matter of traversing its class hierarchy
or its part decomposition. It involves, for each set of objects
with equivalent evidence, computing a sum over their pos-
sible classes, a product over their subparts in each class, a
sum over the possible classes of each subpart, products over
their sub-subparts, etc. Thus there is a correspondence be-
tween the structure of the KB and the structure of its par-
tition function, which is what makes computing the latter
tractable. This is illustrated in Figure 1.

Expressiveness
Given its extremely simple syntax, TML may at first appear
to be a very restricted language. In this section we show that
TML is in fact surprisingly powerful. For example, it can
represent compactly many distributions that graphical mod-
els cannot, and it can represent probabilistic inheritance hi-
erarchies over relational domains.

We begin by showing that all junction trees can be rep-
resented compactly in TML. A junction tree J over a set of
discrete variables R = {Rk} is a tree where each node rep-
resents a subsetQi ofR (called a clique), and which satisfies
the running intersection property: if Rk is in cliques Qi and
Qj , then it is in every clique on the path from Qi to Qj

(Pearl 1988). The separator Sij corresponding to a pair of
cliques (Qi, Qj) with an edge between them in J isQi∩Qj .
A distribution P (R) over R is representable using junction
tree J if instantiating all the variables in a separator ren-
ders the variables on different sides of it independent. In this
case P (R) =

∏
Qi∈nodes(J) P (Qi)/

∏
Sij∈edges(J) P (Sij).

P (Qi) is the potential over Qi, and its size is exponential in
|Qi|. The size of a junction tree is the sum of the sizes of the
potentials over its cliques and separators. Junction trees are
the standard data structure for inference in graphical models.
The treewidth of a graphical model is the size of the largest
clique in the corresponding junction tree (obtained by trian-
gulating the graph, etc.), minus one. The cost of inference
on a junction tree is exponential in its treewidth.

Theorem 2 A distribution representable by a junction tree
of size n is representable by a TML KB of size O(n).

Proof. To represent a junction tree J , include in the corre-
sponding TML KB K a class for each state of each clique
and a part for each state of each separator in J as follows.
Choose a root clique Q0, and for each of its states qt0 add
to K the rule Is(Ct, C0), where C0 is the top class, with
weight logP (qt0). If the non-separator variable Rk is true
in qt0, add the hard rule Rk(Ct), otherwise add ¬Rk(Ct).
(For simplicity, we consider only Boolean variables.) For
each qt0 and each state su0,j of each separator S0,j involv-
ing Q0 compatible with qt0, add Has(Ct, Cu). For each su0,j ,
add Is(Cu, C0,j) with weight − logP (su0,j). If the separator
variable Rl is true in S0,j , add the hard rule Rl(Cu), other-
wise add ¬Rl(Cu). For each state qvj of the clique Qj con-
nected to Q0 by S0,j , add Is(Cv, Cu) with weight logP (qvj ),
etc. The unnormalized probability of a truth assignment a
to the R atoms, obtained by summing out the Is atoms, is∏

Qi
P (Qi = qai )/

∏
Sij

P (Sij = saij), where qai (saij) is the
state of Qi (Sij) consistent with a. The partition function,

obtained by then summing out the R atoms, is 1. Therefore
K represents the same distribution as J . 2

It follows from Theorem 2 that any low-treewidth graph-
ical model can be represented by a compact TML KB. Im-
portantly, however, many high-treewidth graphical models
can also be represented by compact TML KBs. In particu-
lar, TML subsumes sum-product networks, the most general
class of tractable probabilistic models found to date (Poon
and Domingos 2011), as shown below.

Theorem 3 A distribution representable by a valid sum-
product network of size n is representable by a TML KB of
size O(n).

Proof. Add to the TML KB a class for each non-leaf node
in the SPN. For each arc from a sum node S to one of its
children C with weight w, add the rule Is(C, S) with weight
logw. For each arc from a product node P to one of its chil-
drenC, add the rule Has(P, C). For each arc from a sum node
S to a positive/negative indicator R/R with weight w, add
the rule R(S)/¬R(S) with weight logw. For each arc from a
product node P to a positive/negative indicator R, add the
hard rule R(S)/¬R(S). This gives the same probability as the
SPN for each possible state of the indicators, and the num-
ber of rules in the KB is the same as the number of arcs in
the SPN. 2

Moreover, this type of tractable high-treewidth distribu-
tion is very common in the real world, occurring whenever
two subclasses of the same class have different subparts. For
example, consider images of objects which may be animals,
vehicles, etc. Animals have a head, torso, legs, etc. Vehicles
have a cabin, hood, trunk, wheels, and so on. However, all
of these ultimately have pixel values as atomic properties.
This results in a very high treewidth graphical model, but a
tractable TML PKB.

It is also straightforward to show that non-recursive prob-
abilistic context-free grammars (Chi 1999), stochastic image
grammars (Zhu and Mumford 2007), hierarchical mixture
models (Zhang 2004) and other languages can be compactly
encoded in TML. As an example, we give a proof sketch of
this for PCFGs below.

Theorem 4 A non-recursive probabilistic context-free
grammar of size n is representable by a TML KB of size
polynomial in n.

Proof. Assume without loss of generality that the gram-
mar is in Chomsky normal form. Let m be the maximum
sentence length allowed by the grammar. For each non-
terminal C and possible start/end point i/j for it according
to the grammar, 0 ≤ i < j ≤ m, add a class Cij to the
TML KB K. For the hth production C → DE with prob-
ability p and start/end/split points i/j/k, add the subclass
rule Is(Chij, Cij) with weight log p and the subpart rules
Has(Chij, Dik) and Has(Chij, Ekj). For each production of the
form C → t, where t is a terminal, add a relation rule of the
form Rt(Ci,i+1) per position i. This assigns to each (sen-
tence, parse tree) pair the same probability as the PCFG.
Since there are n productions and each generates O(m3)
rules, the size of K is O(nm3). 2

1907



A sentence to parse is expressed as a set of facts of the
form Rt(i), one per token. The traceback of PTPT applied to
the KB comprising the grammar and these facts, with sums
replaced by maxes, is the MAP parse of the sentence.

Most interestingly, perhaps, TMLs can represent proba-
bilistic inheritance hierarchies, and perform a type of default
reasoning over them (Etherington and Reiter 1983). In an in-
heritance hierarchy, a property of an object is represented at
the highest class that has it. For example, in TML notation,
Flies(Bird), but not Flies(Animal). If Is(Opus, Bird),
then Flies(Opus). However, rules have exceptions, e.g.,
Is(Penguin, Bird) and ¬Flies(Penguin). In standard
logic, this would lead to a contradiction, but in default rea-
soning the more specific rule is allowed to defeat the more
general one. TML implements a probabilistic generalization
of this, where the probability of a predicate can increase or
decrease from a class to a subclass depending on the weights
of the corresponding relation rules, and does not change if
there is no rule for the predicate in the subclass. More for-
mally:

Proposition 1 Let (C0, . . . , Ci, . . . Cn) be a set of classes in
a TML KB K, with C0 being a root of H(K) and Cn having
no subclasses, and let Is(Ci+1, Ci) ∈ K for 0 ≤ i < n.
Let wi be the weight of R(Ci) for some domain predicate R,
and let K contain no other rules for R. If X is an object for
which Is(X, Cn) ∈ K, then the unnormalized probability of
R(X) is exp(

∑n
i=0 wi).

For example, if we know that Opus is a penguin, decreas-
ing the weight of Flies(Penguin) decreases the likelihood
that he flies. A generalization of Prop. 1 applies to higher-
arity predicates, summing weights over all tuples of classes
of the arguments.

Further, inference can be sped up by ignoring rules for
classes of depth greater than k in H(K). As k is increased,
inference time increases, and inference approximation error
decreases. If high- and low-probability atoms are pruned at
each stage, this becomes a form of coarse-to-fine probabilis-
tic inference (Kiddon and Domingos 2011), with the corre-
sponding approximation guarantees, and the advantage that
no further approximation (like loopy belief propagation in
Kiddon and Domingos (2011)) is required. It can also be
viewed as a type of probabilistic default reasoning.

TML cannot compactly represent arbitrary networks with
dependencies between related objects, since these are in-
tractable, by reduction from computing the partition func-
tion of a 3-D Ising model (Istrail 2000). However, the size
of a TML KB remains polynomial in the size of the network
if the latter has hierarchical cluster structure, with a bound
on the number of links between clusters (e.g., cities, high
schools, groups of friends).

Extensions and Discussion
If we set a limit on the number of (direct) subparts a part can
have, then TML can be extended to allow arbitrary depen-
dencies within each part while preserving tractability. Notice
that this is a much less strict requirement than low treewidth
(cf. Theorem 3). TML can also be extended to allow some
types of multiple inheritance (i.e., to allow class hierarchies

that are not forests). In particular, an object may belong to
any number of classes, as long as each of its predicates de-
pends on only one path in the hierarchy. Tractability is also
preserved if the class hierarchy has low treewidth (again, this
does not imply low treewidth of the KB).

As a logical language, TML is similar to description log-
ics (Baader et al. 2003) in many ways, but it makes different
restrictions. For example, TML allows relations of arbitrary
arity, but only among subparts of a part. Description log-
ics have been criticized as too restricted to be useful (Doyle
and Patil 1991). In contrast, essentially all known tractable
probabilistic models over finite domains can be compactly
represented in TML, including many high treewidth ones,
making it widely applicable.

Tractability results for some classes of first-order proba-
bilistic models have appeared in the AI and database liter-
atures (e.g., (Jha et al. 2010)). However, to our knowledge
no language with the flexibility of TML has previously been
proposed.

Conclusion
TML is the first non-trivially tractable first-order proba-
bilistic logic. Despite its tractability, TML encompasses
many widely-used languages, and in particular allows for
rich probabilistic inheritance hierarchies and some high-
treewidth relational models. TML is arguably the most ex-
pressive tractable language proposed to date. With TML,
large-scale first-order probabilistic inference, as required by
the Semantic Web and many other applications, potentially
becomes feasible.

Future research directions include further extensions of
TML (e.g., to handle entity resolution and ontology align-
ment), learning TML KBs, applications, further study of the
relations of TML to other languages, and general tractability
results for first-order probabilistic logics.

An open-source implementation of TML is available at
http://alchemy.cs.washington.edu/lite.

Acknowledgements
This research was partly funded by ARO grant W911NF-
08-1-0242, AFRL contract FA8750-09-C-0181, NSF grant
IIS-0803481, and ONR grant N00014-08-1-0670. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
ARO, AFRL, NSF, ONR, or the United States Government.

References
Baader, F.; Calvanese, D.; McGuinness, D.; and Patel-
Scheider, P. 2003. The Description Logic Handbook. Cam-
bridge, UK: Cambridge University Press.
Chi, Z. 1999. Statistical properties of probabilistic context-
free grammars. Computational Linguistics 25:131–160.
Cooper, G. 1990. The computational complexity of proba-
bilistic inference using Bayesian belief networks. Artificial
Intelligence 42:393–405.

1908



Dagum, P., and Luby, M. 1993. Approximating probabilistic
inference in Bayesian belief networks is NP-hard. Artificial
Intelligence 60:141–153.
d’Amato, C.; Fanizzi, N.; and Lukasiewicz, T. 2008.
Tractable reasoning with Bayesian description logics. In
Greco, S., and Lukasiewicz, T., eds., Scalable Uncertainty
Management. Berlin, Germany: Springer. 146–159.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM 50:280–305.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic Prolog and its application in link discovery.
In Proceedings of the Twentieth International Joint Confer-
ence on Artificial Intelligence, 2462–2467. Hyderabad, In-
dia: AAAI Press.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171:73–106.
Domingos, P., and Lowd, D. 2009. Markov Logic: An In-
terface Layer for Artificial Intelligence. San Rafael, CA:
Morgan & Claypool.
Doyle, J., and Patil, R. 1991. Two theses of knowledge rep-
resentation: Language restrictions, taxonomic classification,
and the utility of representation services. Artificial Intelli-
gence 48:261–297.
Etherington, D., and Reiter, R. 1983. On inheritance hierar-
chies with exceptions. In Proceedings of the Third National
Conference on Artificial Intelligence, 104–108. Washington,
DC: AAAI Press.
Gogate, V., and Domingos, P. 2011. Probabilistic theo-
rem proving. In Proceedings of the Twenty-Seventh Con-
ference on Uncertainty in Artificial Intelligence, 256–265.
Barcelona, Spain: AUAI Press.
Istrail, S. 2000. Statistical mechanics, three-dimensionality
and NP-completeness: I. Universality of intractability for the
partition function of the Ising model across non-planar sur-
faces. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, 87–96. Portland, OR:
ACM Press.
Jaeger, M. 1994. Probabilistic reasoning in terminological
logics. In Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning,
305–316. Cambridge, MA: Morgan Kaufmann.
Jha, A.; Gogate, V.; Meliou, A.; and Suciu, D. 2010. Lifted
inference from the other side: The tractable features. In Laf-
ferty, J.; Williams, C.; Shawe-Taylor, J.; Zemel, R.; and Cu-
lotta, A., eds., Advances in Neural Information Processing
Systems 24. Vancouver, Canada: NIPS Foundation. 973–
981.
Kiddon, C., and Domingos, P. 2011. Coarse-to-fine infer-
ence and learning for first-order probabilistic models. In
Proceedings of the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, 1049–1056. San Francisco, CA: AAAI
Press.
Koller, D.; Levy, A.; and Pfeffer, A. 1997. P-Classic:
A tractable probabilistic description logic. In Proceedings
of the Fourteenth National Conference on Artificial Intelli-
gence, 390–397. Providence, RI: AAAI Press.

Muggleton, S. 1996. Stochastic logic programs. In De
Raedt, L., ed., Advances in Inductive Logic Programming.
Amsterdam, Netherlands: IOS Press. 254–264.
Niepert, M.; Noessner, J.; and Stuckenschmidt, H. 2011.
Log-linear description logics. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelli-
gence, 2153–2158. Barcelona, Spain: IJCAII.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Francisco, CA:
Morgan Kaufmann.
Poole, D. 1993. Probabilistic Horn abduction and Bayesian
networks. Artificial Intelligence 64:81–129.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence,
337–346. Barcelona, Spain: AUAI Press.
Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82:273–302.
Singla, P., and Domingos, P. 2007. Markov logic in infinite
domains. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, 368–375. Vancouver,
Canada: AUAI Press.
Wellman, M.; Breese, J. S.; and Goldman, R. P. 1992. From
knowledge bases to decision models. Knowledge Engineer-
ing Review 7:35–53.
Zhang, N. 2004. Hierarchical latent class models for cluster
analysis. Journal of Machine Learning Research 5:697–723.
Zhu, S., and Mumford, D. 2007. A stochastic grammar of
images. Foundations and Trends in Computer Graphics and
Vision 2:259–362.

1909




