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Abstract

We consider lifted importance sampling (LIS), a previously
proposed approximate inference algorithm for statistical rela-
tional learning (SRL) models. LIS achieves substantial vari-
ance reduction over conventional importance sampling by us-
ing various lifting rules that take advantage of the symmetry
in the relational representation. However, it suffers from two
drawbacks. First, it does not take advantage of some impor-
tant symmetries in the relational representation and may ex-
hibit needlessly high variance on models having these sym-
metries. Second, it uses an uninformative proposal distribu-
tion which adversely affects its accuracy. We propose two
improvements to LIS that address these limitations. First, we
identify a new symmetry in SRL models and define a lifting
rule for taking advantage of this symmetry. The lifting rule
reduces the variance of LIS. Second, we propose a new, struc-
tured approach for constructing and dynamically updating the
proposal distribution via adaptive sampling. We demonstrate
experimentally that our new, improved LIS algorithm is sub-
stantially more accurate than the LIS algorithm.

Introduction
The emerging field of statistical relational learning (SRL)
(Getoor and Taskar 2007) seeks to combine logical and
probabilistic representation and reasoning techniques. This
combination is essential because many large, complex appli-
cation domains have both rich relational structure and large
amount of uncertainty. Logical representation and reasoning
techniques such as first-order logic and theorem proving are
good at handling complex, relational structure but have no
representation for uncertainty. On the other hand, probabilis-
tic models such as Bayesian networks and Markov networks,
and reasoning techniques for them are adept at dealing with
uncertainty but cannot handle relational structure.

Over the last decade, several modeling languages that
combine logic and probability have been introduced. No-
table examples are probabilistic relational models (Fried-
man et al. 1999), ProbLog (De Raedt, Kimmig, and Toivo-
nen 2007), Bayesian logic (Milch et al. 2005) and Markov
logic (Richardson and Domingos 2006). Obviously, for the
wide applicability of these languages, we need access to
fast, scalable, and accurate inference engines for them. To
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this end, several exact and approximate inference algorithms
have been proposed over the last few years, starting with the
pioneering work of (Poole 2003). These algorithms are often
called lifted or first-order inference algorithms because they
are capable of exploiting both relational (first-order) and
probabilistic structure. Notable exact algorithms are first-
order variable elimination (Poole 2003) and its extensions
(de Salvo Braz 2007; Ng, Lloyd, and Uther 2008), first-order
knowledge compilation (Van den Broeck et al. 2011) and
probabilistic theorem proving (Gogate and Domingos 2011).
Notable approximate algorithms are lifted belief propaga-
tion (Singla and Domingos 2008) and lifted importance sam-
pling (Gogate and Domingos 2011).

In this paper, we consider the lifted importance sampling
(LIS) algorithm of (Gogate and Domingos 2011). Just as
propositional importance sampling (IS) can be understood
as a partial exploration of the full propositional search space,
LIS can be understood as a partial exploration of the lifted
search space. The lifted search space groups similar propo-
sitional atoms together and as a result a sample in the lifted
space corresponds to multiple samples in the propositional
space. Because of an increase in the effective sample size,
LIS has smaller variance and therefore higher accuracy than
propositional IS. However, LIS, in its current form has two
limitations. First, it does not use lifting (relational structure)
to the fullest extent and as a result it can be needlessly in-
efficient and inaccurate on some problems. Second, it uses
an uninformative proposal distribution. This is problematic
because the accuracy of importance sampling is highly de-
pendent on the quality of the proposal distribution.

To remedy these issues, we improve upon the LIS algo-
rithm in the following ways. First, we propose a new lift-
ing rule that reduces the lifted search space exponentially in
many instances. We show how to perform importance sam-
pling in this reduced space and prove that our new sam-
pling algorithm has smaller variance. Second, we propose
an adaptive, structured approach for constructing and dy-
namically updating the proposal distribution. Given an SRL
model and evidence, the main idea here is to apply vari-
ous lifting and probability propagation rules in an approx-
imate manner by relaxing their pre-conditions, yielding a
polynomially specifiable proposal distribution. Then, we ini-
tialize it to the prior distribution and dynamically update its
parameters via adaptive importance sampling (Cheng and
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Druzdzel 2000; Ortiz and Kaelbling 2000). We present ex-
periments, comparing the quality of estimation of our ad-
vanced LIS scheme with the LIS scheme of (Gogate and
Domingos 2011) on SRL models from various domains.
Our experiments clearly demonstrate that our advanced al-
gorithm is always superior.

Preliminaries
The language of propositional logic consists of atomic sen-
tences called propositions or atoms, and logical connectives
such as ∧ (conjunction), ∨ (disjunction), ¬ (negation), ⇒
(implication) and ⇔ (equivalence). Each proposition takes
values from the binary domain {True,False} (or {0, 1}).
A propositional formula (sentence) f is an atom, or any
complex sentence that can be constructed from atoms using
logical connectives. For example, A, B and C are proposi-
tional atoms and f = A ∨ ¬B ∧ C is a propositional formula.
A knowledge base (KB) is a set of formulas. A world is a
truth assignment to all atoms in the KB. A world is a model
of KB, if it evaluates every formula in the KB to True.

First-order logic (FOL) generalizes propositional logic by
allowing atoms to have internal structure; an atom in FOL is
a predicate that represents relations between objects. A pred-
icate consists of a predicate symbol, denoted by Monospace
fonts, e.g., Friends, Smokes, etc., followed by a paren-
thesized list of arguments called terms. A term is a logi-
cal variable, denoted by lower case letters such as x, y, z,
etc., or a constant, denoted by upper case letters such as X ,
Y , Z, etc. We assume that each logical variable, e.g., x is
typed and takes values over a finite set ∆x. The language
of FOL also includes two quantifiers in addition to the logi-
cal connectives: ∀ (universal) and ∃ (existential). Quantifiers
express properties of an entire collection of objects. A for-
mula in first order logic is a predicate (atom), or any com-
plex sentence that can be constructed from atoms using log-
ical connectives and quantifiers. For example, the formula
∀x Smokes(x) ⇒ Asthma(x) states that all persons who
smoke have asthma. ∃x Cancer(x) states that there exists a
person x who has cancer. A first-order KB is a set of first-
order formulas.

In this paper, we assume that the formulas are of the form
∀x f , where x is the set of variables in f and f is a con-
junction or disjunction of literals; each literal is an atom
or its negation. In other words, we assume that every log-
ical variable is universally quantified and there are no ex-
istential quantifiers. Therefore, for brevity, we will drop ∀
from all formulas. Given variables x and constants X from
their domain, f [X/x] is obtained by substituting every oc-
currence of variable xi ∈ x in f withXi ∈ X. A ground for-
mula is a formula obtained by substituting each of its vari-
able with a constant. A ground KB is a KB containing all
possible groundings of all of its formulas. For example, the
grounding of a KB containing one formula, Smokes(x) ⇒
Asthma(x) where ∆x = {Ana,Bob}, is a KB contain-
ing two formulas: Smokes(Ana) ⇒ Asthma(Ana) and
Smokes(Bob) ⇒ Asthma(Bob). A world in FOL is a truth
assignment to all atoms in its grounding.

Markov logic (Domingos and Lowd 2009) extends FOL
by softening the hard constraints expressed by the formu-

las. A soft formula or a weighted formula is a pair (f, w)
where where f is a formula in FOL and w is a real-number.
A Markov logic network (MLN), denoted byM, is a set of
weighted formulas (fi, wi). It represents the following prob-
ability distribution.

PM(ω) =
1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings
of fi that evaluate to True in the world ω and Z(M) is a
normalization constant or the partition function, given by

Z(M) =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
(2)

The main inference task in MLNs is computing the partition
function and in this paper we focus on this task. At infer-
ence time, we often convert the MLN (or an SRL model)
into canonical form, which serves as a basic object for var-
ious inference operators. Each inference operator takes one
or more SRL models in canonical form as input, manipu-
lates them and outputs an SRL model in canonical form.
Notable canonical forms are parfactors (Poole 2003), first-
order weighted CNFs with substitution constraints (Gogate
and Domingos 2011) and normal forms (Milch et al. 2008;
Jha et al. 2010). Although, our method can be easily adapted
to work with any canonical form, in this paper, we use the
normal form for simplicity of exposition. An important ad-
vantage of normal forms is that they do not need access to a
constraint solver at inference time. However, in some cases,
they can be quite inefficient (Kisynski and Poole 2009).

A normal MLN (Jha et al. 2010) is an MLN that satis-
fies the following properties: (1) There are no constants in
any formula and (2) If two distinct atoms with the same
predicate symbol have variables x and y in the same po-
sition then ∆x = ∆y . For example, consider an MLN
having two formulas (Smokes(x) ⇒ Asthma(x), w) and
(Smokes(Ana),∞). It is not in normal form. Its normal
form has three formulas: (Smokes(x′) ⇒ Asthma(x′), w),
(Smokes1(y) ⇒ Asthma1(y), w) and (Smokes1(y),∞),
where ∆′x = ∆x \ {Ana} and ∆y = {Ana}.

Lifted Importance Sampling
The main idea in importance sampling (IS) (c.f. (Liu 2001))
is to reformulate the summation problem in Eq. (2) as an ex-
pectation problem using a probability distribution Q, called
the proposal or the importance distribution. Q should be
such that it is easy to generate independent samples from
it. Also, in order to apply IS to MLNs, Q should satisfy the
constraint: exp(

∑
i wiN(fi, ω)) > 0 ⇒ Q(ω) > 0. For-

mally, using Q, we can rewrite Eq. (2) as

Z(M) =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
Q(ω)

Q(ω)
(3)

= EQ
[

exp (
∑
i wiN(fi, ω))

Q(ω)

]
(4)

where EQ[x] denotes the expected value of the random vari-
able x w.r.t. Q. Given N worlds (ω(1), . . . , ω(N)), sampled
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Algorithm 1: Lifted Importance Sampling (LIS)
Input: A normal MLNM and a proposal distribution Q
Output: An unbiased estimate of the partition function ofM
ifM is empty then return 1
if there exists a decomposer x then

Let x ∈ x and X ∈ ∆x. return [LIS(M[X/x], Q)]|∆x|

if there exists a singleton atom R(x) that does not appear
more than once in the same formula then

Use Q to sample an integer i from the range [0, |∆x|]
return LIS(M|R̄i,Q)w(i)2p(i)

Q(i)

(|∆x|
i

)
Choose an atom A and sample all of its groundings from Q.
Let Ā be the sampled assignment.
return LIS(M|Ā,Q)w(Ā)2p(Ā)

Q(Ā)

independently from Q, we can estimate Z(M) using:

Ẑ(M) =
1

N

N∑
j=1

exp
(∑

i wiN(fi, ω
(j))
)

Q(ω(j))
(5)

It is known that E[Ẑ(M)] = Z(M) (i.e., it is unbiased) and
therefore the mean squared error between Ẑ(M) and Z(M)
can be reduced by reducing its variance. The variance can be
reduced by using a proposal distributionQ that is as close as
possible to the distribution PM. Thus, a majority of research
on importance sampling is focused on finding a good Q. For
more details, see (Liu 2001).

The lifted importance sampling (LIS) algorithm (Gogate
and Domingos 2011) reduces the variance of IS by group-
ing symmetric random variables, sampling just one member
from each group and using the sampled member to estimate
quantities defined over the group. It uses two lifting rules to
identify symmetric variables; we will refer to them as power
rule and generalized binomial rule.

The power rule is based on the concept of a decomposer.
Given a normal MLNM, a set of logical variables, denoted
by x, is called a decomposer if it satisfies the following two
conditions: (i) Every atom inM contains exactly one vari-
able from x, and (ii) For any predicate symbol R, there exists
a position s.t. variables from x only appear at that position
in atoms of R. Given a decomposer x, it is easy to show that
Z(M) = [Z(M[X/x])]|∆x| where x ∈ x and M[X/x] is
the MLN obtained by substituting all logical variables x in
M by the same constant X ∈ ∆x and then converting the
resulting MLN to a normal MLN. Note that for any two vari-
ables x, y in x, ∆x = ∆y by normality.

The generalized binomial rule is used to sample single-
ton atoms efficiently. The rule requires that the singleton
atom does not appear more than once in the same formula
(self-joins). Given a normal MLN M having a singleton
atom R(x) that is not involved in self-joins, we can show
that Z(M) =

∑|∆x|
i=0

(|∆x|
i

)
Z(M|R̄i)w(i)2p(i) where R̄i is

a truth-assignment to all groundings of R such that exactly
i groundings of R are set to True (and the remaining are
set to False).M|R̄i is the MLN obtained fromM by per-
forming the following steps in order: (i) Ground all R(x) and
set its groundings to have the same assignment as R̄i, (ii)
Delete all formulas that evaluate to either True or False,

(iii) Delete all groundings of R(x) and (iv) Convert the re-
sulting MLN to a normal MLN. w(i) is the exponentiated
sum of the weights of formulas that evaluate to True and
p(i) is the number of ground atoms that are removed from
the MLN as a result of removing formulas (these are essen-
tially don’t care propositional atoms which can be assigned
to either True or False).

Algorithm 1 provides a schematic description of LIS. It
takes as input a normal MLN M and a proposal distribu-
tion Q. If the MLN is empty, the algorithm returns 1. Other-
wise, if there exists a decomposer x, the algorithm recurses
onM[X/x], raising the result by |∆x| using the power rule.
The algorithm then checks if there exists a singleton atom
R(x). If there exists one, then the algorithm samples an in-
teger i from Q and recurses onM|R̄i according to the gen-
eralized binomial rule. If all of the above conditions fail, the
algorithm selects an atom A, samples all of its groundings
from Q and recurses on the MLN obtained by instantiating
the sampled assignment Ā (denoted byM|Ā). w(Ā) denotes
the exponentiated sum of the weights of formulas that eval-
uate to True because of the assignment Ā and p(Ā) denotes
the number of ground atoms that are removed from the MLN
as a result of removing formulas.

A New Lifting Rule
In this section, we illustrate the key idea behind our new lift-
ing rule using a non-trivial MLN having just one weighted
formula f = R(x, y) ∧ S(y, z) ∧ T(z, u). Note that none of
the existing exact techniques (de Salvo Braz 2007; Gogate
and Domingos 2011) that we are aware of can compute
Z({(f, w)}) in time that is polynomial in the domain sizes
of x, y, z and u.

We begin by demonstrating how LIS will estimate the par-
tition function of {(f, w)} (see Fig. 1). LIS will first se-
lect an atom, either R, S or T, and check if it can be sam-
pled in a lifted manner. For the given f , this is not possible.
Therefore, it will define an importance distribution over all
groundings of the selected atom and sample all of its ground-
ings from it. Let us assume that LIS selected R, which has
nxny possible groundings, assuming that |∆x| = nx and
|∆y| = ny . Sampling R has the effect of removing it from
all groundings of f , yielding an MLN having possibly nxny
formulas of the form S(Yi, z)∧T(z, u). Note that some of the
formulas in the resulting MLN can be deleted because they
will evaluate to False. Also, we can further reduce the rep-
resentation by merging identical formulas; the weight of the
new formula equals the sum of the weights of the merged
formulas. Fig. 1(c) shows the reduced MLN obtained by in-
stantiating the sampled assignments of R(x, y) given in Fig.
1(b). Now LIS can sample the remaining atoms in a lifted
manner: {z} is a decomposer and after instantiating the de-
composer to a value Z ∈ ∆z , the remaining atoms become
singleton, which can in turn be sampled using the general-
ized binomial rule.

We now show how we can group instantiations of R(x, y)
yielding an estimate having smaller variance than LIS. Let
∆y = {Y1, . . . , Yny

} and ∆x = {X1, . . . , Xnx
}. For i = 1

to ny , let ji ∈ {0, . . . , nx}, yielding a vector (j1, . . . , jny
).

Consider the set of truth-assignments to the groundings of
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(a) (b) (c)

Figure 1: Illustration of lifted importance sampling. (a) An example MLN. (b) Sampled groundings of R(x, y). (c) Reduced MLN obtained
by instantiating the sampled groundings of R.

Figure 2: Illustration of the advanced grouping strategy for lifted
importance sampling. Here we sample indices of ji for each Yi ∈
∆y . Let the sampled indices ji be as shown. Then, we will get the
same MLN as the one in Fig. 1(c).

R(x, y) such that exactly ji of R(x, Yi) are instantiated to
True and the remaining to False. For each such group
of truth assignments we have the following reduced MLN
Mj1,...,jny

=
⋃ny

i=1{(S(Yi, z) ∧ T(z, u), jiw)}. Moreover,
there are

∏ny

i=1

(
nx

ji

)
members in this group (since for each

ji, there are
(
nx

ji

)
ways in which ji of R(x, Yi) can be made

True). Therefore, Z(M) can be expressed as a sum over
all possible vectors (j1, . . . , jny

):

Z(M) =

nx∑
j1=0

. . .

nx∑
jny=0

Z(Mj1,...,jny
)

ny∏
i=1

(
nx
ji

)
(6)

In LIS, we sampled a truth assignment to all groundings of
R(x, y) from a state space of size O(2nxny ). If we sample
from the grouping described above, the state space size re-
duces exponentially from O(2nxny ) to O((nx + 1)ny ).

Next, we describe how to define an importance distri-
bution Q over this space. From Eq. (6), it is easy to see
that we can define it sequentially as

∏ny

i=1Qji|j1,...,ji−1

along an order (Y1, . . . , Yn) of ∆y , where eachQji|j1,...,ji−1

gives the conditional probability of sampling the index ji ∈
{0, . . . , nx} given an assignment to all previous indices.

Fig. 2 shows how to use our advanced grouping strategy
to generate samples from the MLN given in Fig. 1.

The ideas presented in this section can be generalized us-
ing the following isolated variables rule in LIS. For a pred-
icate symbol R of an MLN M, define a logical variable x
at position m in its arguments as isolated, if it is exclusive
to R in all formulas containing R. Let x denote the set of all
isolated variables of R and let y denote the set of remain-
ing variables in R. Let ∆y denote the Cartesian product of
the domains of variables in y and let Yi denote the i-th ele-
ment in ∆y. LetM[R, x] be an MLN obtained fromM by
applying the following steps in order: (i) for i = 1 to |∆y|,
sample ji from a distribution Qi(ji|j1, . . . , ji−1) and set ji
arbitrarily selected groundings of R(x,Yi) to True and the
remaining to False, (ii) Delete all formulas that evaluate to

either True or False, (iii) Delete all groundings of R and
(iv) Convert the MLN to a normal MLN. Letw(R) be the ex-
ponentiated sum of the weights of formulas that evaluate to
True and let p(R) be the number of ground atoms that are
removed from the MLN as a result of removing formulas.
The unbiased estimate of Z(M) is given by:

Ẑ(M) = Ẑ(M[R, x])w(R)2p(R)
|∆y|∏
i=1

(|∆x|
ji

)
Qi(ji|j1, . . . , ji−1)

where Ẑ(M[R, x]) is the unbiased estimate of Z(M[R, x]).
Note that in general the isolated variables rule is only ap-

plicable to atoms not involved in self-joins. However, if the
isolated variables appear in the same position in all instances
of R that are involved in self-joins, we can safely apply it to
R. For efficiency reasons, the isolated variables rule should
be applied only if neither the power rule nor the generalized
binomial rule is applicable. In other words, we should apply
the three rules in the following order: power rule, general-
ized binomial rule and isolated variables rule. In summary,
Theorem 1. LIS augmented with the isolated variables rule
yields an unbiased estimate of the partition function of its
input MLN.

Variance Reduction
Intuitively, the scheme that utilizes the most grouping is
likely to have better accuracy because it samples a smaller
(sub)space. We formalize this notion using the following
grouping lemma:
Lemma 1 (Grouping Lemma). Let Z be a sum
over M numbers grouped into k groups such
that all numbers in each group are identical. Let
(m1,1, . . . ,m1,g1 , . . . ,mk,1, . . . ,mk,gk) denote an ar-
bitrary ordering of the M numbers such that ∀ a, b, c,
ma,b = ma,c, where a ∈ {1, . . . , k}, b, c ∈ {1, . . . , ga}
and ga is the number of numbers in group a. Let Q be a
proposal distribution defined over all the M numbers and
R be a proposal distribution defined over the k groups
such that R(i) =

∑gi
j=1Q(mi,j). Then, the variance of the

importance sampling estimate of Z defined with respect to
R is smaller than the variance of the estimate of Z defined
with respect to Q.

The proof of Lemma 1 is straight-forward and can be de-
rived easily from first principles. We skip it due to space
constraints. Since the isolated variables rule reduces the size
of the lifted space by grouping atoms (see Eq. (6)), it follows
from the grouping lemma that:
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Theorem 2. LIS augmented with the isolated variables rule
has smaller variance than LIS.

Constructing the Proposal Distribution
As mentioned earlier, the accuracy of any importance sam-
pling algorithm depends on how close the proposal distribu-
tion is to the target distribution (the one represented by the
MLN). Often, practical constraints dictate that the impor-
tance distribution should be polynomially specifiable (i.e.,
tractable) as well as easy to sample from. To construct such
a tractable distribution for MLNs, a natural choice is to use
the generalized binomial rule approximately by relaxing the
requirement that the atom must be a singleton. For example,

EXAMPLE 1. Consider our example MLN, M =
{(R(x, y)∧S(y, z)∧T(z, u), w)}. Applying the approximate
generalized binomial rule to R(x, y), we can rewrite the par-
tition function as

∑|∆x×∆y|
i=0 Z(M|R̄i). Each MLN,M|R̄i is

tractable and therefore we can associate a tractable probabil-
ity distribution, say Q(M|R̄i) with each. The full proposal
distribution is Q(i)Q(M|R̄i) where Q(i) is the distribution
defined over |∆x×∆y|+1 points, where each i-th point cor-
responds to setting exactly i groundings of R(x, y) to True
and the remaining to False.

Although the approximate rule reduces the branching fac-
tor (of the search space) from 2|∆R| to |∆R| + 1 for an
atom R, it is still infeasible when the number of atoms
is large. In particular, we will assume that the proposal
distribution is specified in the product form, i.e., a rela-
tional Bayesian network (Jaeger 1997). Formally, given an
ordered set of atoms (R1, . . . , Rm), the proposal distribu-
tion is given by

∏m
i=1Qi(Ri|R1, . . . , Ri−1). The space re-

quired by this product form will be O(m[maxi(|∆Ri |)]m),
where ∆Ri is the Cartesian product of arguments of Ri.
Therefore, in order to achieve polynomial complexity, we
make the following conditional independence assumption:
Ri is conditionally independent of all other atoms given k
atoms from the set {R1, . . . , Ri−1}, where k is a constant.
Thus, each component of the proposal distribution is of the
form: Qi(Ri|pa(Ri)) where pa(Ri) ⊆ {R1, . . . , Ri−1} and
|pa(Ri)| ≤ k. We will refer to pa(Ri) as the parents of Ri.

Algorithm 2 describes a recursive approach for con-
structing the proposal distribution using the ideas discussed
above. The algorithm takes as input an MLNM, a constant
k that limits the parent size for each atom (in our exper-
iments, we used k = 2), and the potential parent set R.
The algorithm first checks the base condition: if the MLN
is empty, it returns a 1. Then, the algorithm checks if there
is a decomposer x. If there exists one, the algorithm recurses
on the reduced MLNM[X/x], where x ∈ x and X ∈ ∆x,
and then exits. Otherwise, the algorithm checks if the MLN
can be decomposed into (multiple) independent MLNs (if
two MLNs do not share any atoms, they are independent).
If it can be decomposed, the algorithm recurses on the in-
dependent MLNs and exits. Then the algorithm heuristically
selects an atom Ri and selects k atoms from the potential
parent set R as parents of R. It then constructs the proposal
distribution component for R (described below), adds R to

Algorithm 2: Construct Proposal (CP)
Input: An MLNM, an integer k and a set of atoms R
Output: The structure of the proposal distribution Q
ifM is empty then return 11
if there exists a decomposer x then2

Let x ∈ x and X ∈ ∆x. return CP(M[X/x], k,R)3

ifM can be decomposed into m MLNSM1, . . . ,Mk such4
that no two MLNs share any atoms then

for i = 1 to m do5
CP(Mi, k,R)6

return 17

Heuristically select an atom R fromM8
Heuristically select k atoms from R as parents of R9
// Construct Proposal over R
for every assignment to the groundings of pa(R) index by i do10

if R contains no isolated variables then11
Use the approximate generalized binomial rule to12
construct Qi(R)

else13
Use the isolated variables rule to construct Qi(R)14

Add R to R15
Ground R and then remove it from all formulas ofM16
return CP(M, k,R)17

R, reduces the MLN by removing R from all formulas and
recurses on the reduced MLN.

The proposal distribution component for R is computed
as follows. Given an assignment to all groundings of the
parents, denoted by pa(R) each conditional marginal distri-
bution Q(R|pa(R)) is constructed as follows. If R contains
a set x of isolated variables, we use the following method.
Let y denote the set of variables which are not isolated in
R. Note that to effectively utilize the isolated variables rule,
we have to sample a number in the range [0, |∆x|], for each
value Y ∈ ∆y. We propose to express this distribution using
a product of |∆y| marginal distributions, each defined over
|∆x| + 1 points. Namely, using notation from the previous
section, we define Qi(j1, . . . , j|∆y|) =

∏|∆y|
a=1 Qi,a(ja). If R

has no isolated atoms then we use the approximate general-
ized binomial rule and define a distribution over |∆A| + 1

points. To limit the number of assignments pa(R) (see line
10 of Algorithm 2), we group the assignments to each atom
A ∈ pa(R) into |∆A|+ 1 groups, where the j-th group has j
groundings of Ai set to True and the remaining to False.
This helps us polynomially bound the space required by the
proposal distribution component at R. In particular, the space
complexity of each component is O(|∆R|(

∑
A∈pa(R) |∆A|)).

We use the following heuristics to select the atom R:
Select any singleton atom. Otherwise, select an atom that
participates in most formulas, ties broken randomly. This
heuristic is inspired by the max-degree conditioning heuris-
tic which often yields a smaller search space. To select par-
ents of R, we first select atoms, say R1, that are mentioned
in the same formula that R participates in, followed by atoms
which participate in formulas that atoms in R1 participate in
and so on. Again, ties are broken randomly.

Until now, we have described an algorithm that outputs
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Figure 3: Lower bound on the partition function computed using LIS, ILIS and ALIS as a function of time. (a) The example R, S, T domain
with 100 objects. (b) The example R, S, T domain with 150 objects. (c) WEBKB MLN with 200 objects, (d) WEBKB MLN with 300 objects,
(e) Entity Resolution MLN with 200 objects and (f) Entity resolution MLN with 300 objects. Note that for each point, we have plotted error
bars showing the standard deviation. When the standard deviation is small, the error bars are not visible in the plots.

the structural form of the proposal distribution. To use it
in LIS, we have to define its parameters. Moreover, we
should define its parameters in such a way that the result-
ing distribution is as close as possible to the target distri-
bution. In principle, we can use any approximate inference
method such as lifted BP (Singla and Domingos 2008) to
compute the parameters. However, because of the relatively
high time-complexity of lifted BP, this approach is not likely
to be cost effective.

Therefore, we use the following adaptive importance sam-
pling approach (Cheng and Druzdzel 2000; Ortiz and Kael-
bling 2000) that dynamically updates the proposal distribu-
tion Q based on the generated samples. The updating step
is performed every l samples. Since the initial proposal dis-
tribution, no matter how well chosen, is often very differ-
ent from the target distribution, dynamic updating can sub-
stantially improve the accuracy of importance sampling. The
hope is that as more and more samples are drawn, the up-
dated proposal distribution gets closer and closer to the tar-
get distribution. We initialize the proposal distribution to the
prior distribution Q0, defined by a collection of components
Q0
i (for each atom R chosen in Algorithm 2). After every l

samples, we update each component Qmi using the expres-
sion Qm+1

i (j) = Qmi (j) + α(m)(Pr(j) − Qmi (j)) where
0 ≤ α(m) ≤ 1 is the learning rate and Pr(j) is the estimate
of the probability of j based on the last l samples. In our

experiments, we set α(m) = 0.1 and l = 103.

Experiments
In this section, we compare the performance of LIS (see
Algorithm 1) with two advanced versions: (i) LIS aug-
mented with the new lifting rule and (ii) LIS augmented
with the new lifting rule and the adaptive structured method
for constructing the proposal distribution described in the
previous section. We will call the two new schemes iso-
lated variables’ rule LIS (ILIS) and adaptive LIS (ALIS)
respectively. Note that both LIS and ILIS use the same pro-
posal distribution as the one used in (Gogate and Domin-
gos 2011) while ALIS uses the structured, adaptive ap-
proach described in the previous section. We experimented
with three MLNs: the example R,S,T MLN used in this
paper, the WEBKB MLN used in (Lowd and Domingos
2007) and the Entity resolution MLN used in (Singla and
Domingos 2006). The last two MLNs are publicly avail-
able from www.alchemy.cs.washington.edu. We
set the weights of each formula in each MLN arbitrarily by
sampling a value from the range (−1, 1). For each MLN, we
set 10% randomly selected ground atoms as evidence. We
varied the number of objects in the domain from 100 to 300.

Because computing the partition function of the MLNs
used is not feasible, we use the following approach for eval-
uating the algorithms. We use the sampling algorithms to
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compute a probabilistic lower bound on the partition func-
tion. The higher the lower bound the better the sampling al-
gorithm. For computing the lower bound, we combine our
sampling algorithms with the Markov inequality based min-
imum lower bounding scheme presented in (Gogate, Bidyuk,
and Dechter 2007). This lower bounding scheme, see also
(Gomes et al. 2007), takes as input a set of unbiased esti-
mates of the partition function and a real number 0 < α < 1,
and outputs a lower bound on the partition function that is
correct with probability greater than α. Formally,

Theorem 3. (Gomes et al. 2007; Gogate, Bidyuk, and
Dechter 2007) Let Ẑ1, . . . , Ẑm be the unbiased estimates
of Z computed over m independent runs of an importance
sampling algorithm. Let 0 < α < 1 be a constant and let
β = 1

(1−α)1/m
. Then Zlb = 1

β

[
minmi=1(Ẑm)

]
is a lower

bound on Z with probability greater than α.

In our experiments, we set α = 0.99 and m = 7, namely,
we run each sampling algorithm 7 times and each lower
bound is correct with probability greater than 0.99.

Figure 3 shows the impact of varying time and number
of objects on the performance of the three algorithms. Note
that the Entity Resolution MLN has no isolated variables
and as a result LIS is equivalent to ILIS. Therefore, for this
domain, we only compare LIS with ALIS. Also, note that
we are plotting the log partition function as a function of
time and therefore the Y-axis is in log-scale. From Figure 3,
it is easy to see that ALIS is superior to ILIS which in turn
is superior to LIS. Moreover, from the error bars in Figure
3, we see that the variance of ALIS and ILIS is typically
smaller than that of LIS.

Summary and Future Work

In this paper, we improved the lifted importance sampling
algorithm (LIS) in two ways. First, we proposed a new lift-
ing rule that reduces the variance of its estimates. Second,
we proposed a new, structured approach for constructing the
proposal distribution and dynamically learning its parame-
ters via adaptive importance sampling. Our experiments on
many real-world and artificial domains showed that our new,
advanced algorithm is substantially more accurate than LIS.

Future work includes: developing new lifting rules, learn-
ing the initial parameters of the proposal distribution using
a variational approach, combining improved LIS with ex-
act inference (Rao-Blackwellised sampling), using our algo-
rithm for weight learning, applying our lifting rules to exist-
ing relational MCMC approaches (Milch and Russell 2006;
Liang, Jordan, and Klein 2010), etc.
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