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Abstract

The presence of non-symmetric evidence has been a barrier
for the application of lifted inference since the evidence de-
stroys the symmetry of the first-order probabilistic model. In
the extreme case, if distinct soft evidence is obtained about
each individual object in the domain then, often, all current
exact lifted inference methods reduce to traditional inference
at the ground level. However, it is of interest to ask whether
the symmetry of the model itself before evidence is obtained
can be exploited. We present new results showing that this
is, in fact, possible. In particular, we show that both exact
maximum a posteriori (MAP) and marginal inference can be
lifted for the case of distinct soft evidence on a unary Markov
Logic predicate. Our methods result in efficient procedures
for MAP and marginal inference for a class of graphical mod-
els previously thought to be intractable.

1 Introduction
First-order probabilistic models (FOPMs) (Richardson and
Domingos 2006; Getoor et al. 2001; Ngo and Haddawy
1995; Poole 1993) are graphical models specified in a re-
lational manner (in other words, a compact, intensional, or
template-based manner), as opposed to the traditional repre-
sentation in which every random variable and dependency is
listed explicitly. FOPMs are an intuitive and compact repre-
sentation, and preserve exploitable domain structure by di-
rectly indicating dependencies and parameters shared across
random variables.

Inference on FOPMs can be done by grounding them to a
regular graphical model and using standard graphical model
algorithms. A much more efficient alternative is to per-
form lifted inference (Gogate and Domingos 2011; Jha et
al. 2010; Milch et al. 2008; Singla and Domingos 2008;
de Salvo Braz, Amir, and Roth 2005; Poole 2003), in which
the first-order structure is used and preserved by the algo-
rithm during inference, and in which each computation step
corresponds to many computation steps performed by a reg-
ular algorithm (in a way analogous to first-order logic (FOL)
resolution as opposed to propositional resolution).

Traditional lifted inference operates by identifying sets of
individuals (the values which parameterize, or index, ran-
dom variables) that are symmetrical given the model, that
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is, about which we have exactly the same knowledge. This
renders them interchangeable, and computations performed
for one of them hold for all of them. The time complexity of
lifted inference can be polynomial or even constant on the
size of such symmetrical individual sets, while inference on
the grounded model is exponential in it.

One obstacle to the application of lifted inference algo-
rithms presented to date is the presence of distinct soft evi-
dence on every individual object in the domain of the first-
order language. This introduces unique knowledge about
each individual and breaks the symmetry of the model, forc-
ing inference to be performed on the ground level, typically
with exponential time complexity. This paper considers the
simplest form of distinct evidence: those that arise when
there is distinct soft evidence on every grounding instance of
a single unary predicate. The main contribution of this paper
is a technique (LIDE, for Lifted Inference with Distinct Ev-
idence) for efficient exact lifted inference in this case. Note
that distinct evidence even in this simplest form would typ-
ically cause existing lifted inference methods to revert to
ground inference.

LIDE works in the following manner. Instead of shatter-
ing (that is, breaking symmetries in) the original model with
distinct soft evidence, as previous lifted inference methods
do, LIDE first applies lifted inference to the model with-
out the problematic soft evidence. Because the model is un-
shattered in this step, this calculation can take full advan-
tage of existing lifted inference methods. LIDE then uses
the marginal probability of the previous step as a prior, and
along with the distinct evidence, computes the final posterior
probability. To achieve efficient computation in this key step
(O(n lnn) for MAP and O(n2) for marginal inference), we
exploit the symmetry of the partition function of the proba-
bility model, a notion of symmetry previously not exploited
in current lifted inference methods. LIDE thus acts as an
efficient wrapper around another lifted inference method,
shielding it from the problematic soft evidence. Our exper-
iments show that LIDE can perform exact lifted inference
under the presence of distinct soft evidence much faster than
(lifted) belief propagation (which is a very efficient approx-
imate method), without suffering from non-convergence is-
sues or approximation errors.

We begin by providing some background on FOPMs and
lifted inference. Then we show how to reduce certain
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queries on a Markov Logic Network (MLN) with distinct
soft evidence on each individual to a calculation that takes
advantage of the symmetry in the original MLN (without the
evidence). We discuss maximum a posteriori (MAP), parti-
tion function and marginal variants of inference, ending with
the presentation of empirical results.

2 Background

2.1 First-order Probabilistic Models

A factor f is a pair (Af , φf ) where Af is a tuple of random
variables and φf is a potential function from the range of
Af to the non-negative real numbers. Given a valuation v of
random variables (rvs), the potential of f on v is φf (v) =
φf (v(Af )).

The joint probability defined by a set F of factors on
a valuation v of random variables is the normalization of∏
f∈F φf (v). If each factor in F is a conditional probability

of a child random variable given the value of its parent ran-
dom variables, and there are no directed cycles in the graph
formed by directed edges from parents to children, then the
model defines a Bayesian network. Otherwise, it is an undi-
rected model.

We can have parameterized (indexed) random variables
by using predicates, which are functions mapping pa-
rameter values (indices) to random variables. A re-
lational atom is an application of a predicate, pos-
sibly with free variables. For example, a predicate
Friends is used in atoms Friends(x, y), F riends(x,Bob)
and Friends(John,Bob), where x and y are free vari-
ables and John and Bob possible parameter values.
Friends(John,Bob) is a ground atom and directly cor-
responds to a random variable.

A parfactor is a tuple (L,C,A, φ) composed of a set of
parameters (also called logical variables) L, a constraint C
on L, a tuple of atoms A, and a potential function φ. Let a
substitution θ be an assignment to L and Aθ the relational
atom (possibly ground) resulting from replacing logical vari-
ables by their values in θ. A parfactor g stands for the set of
factors gr(g) with elements (Aθ, φ) for every assignment θ
to the parameters L that satisfies the constraint C.

A First-order Probabilistic Model (FOPM) is a compact,
or intensional, representation of a graphical model. It is
composed by a domain, which is the set of possible pa-
rameter values (referred to as domain objects) and a set of
parfactors. The corresponding graphical model is the one
defined by all instantiated factors. The joint probability of a
valuation v according to a set of parfactors G is

P (v) = 1/Z
∏
g∈G

∏
f∈gr(g)

φf (v), (1)

where Z is a normalization constant.
Example: the following is an example of an FOPM in

which the prior of an epidemic is 0.1 and the probability of
each individual getting sick is 0.4 in the case of an epidemic
and 0.1 otherwise, but for an individual Bob, who is known

to be sick:

(∅,>, (Epidemic), P (Epidemic) = 0.1)

({x}, x 6= Bob, (Sick(x), Epidemic),

P (Sick(x)|Epidemic) =

{
0.4, if Epidemic
0.1, otherwise

)

(∅,>, (Sick(Bob)), P (Sick(Bob)) = 1)

where > is the tautological constraint.
The formalism above subsumes that of MLNs (Richard-

son and Domingos 2006). An MLN with a set of formulas
{Fi}i with weights {wi}i, logical variables {Li}i and ran-
dom variables {RVi}i for each i-th clause is equivalent to
the FOPM {(Li,>, RVi, ewiFi)}i.

We use the “Friends & Smokes” MLN (Singla and
Domingos 2008) as a running example in this paper:

1.4 : ¬Smokes(x)

2.3 : ¬Cancer(x)

4.6 : ¬Friends(x, y)

1.5 : Smokes(x)⇒ Cancer(x)

1.1 : Smokes(x) ∧ Friends(x, y)⇒ Smokes(y)

2.2 Lifted Inference and Counting Formulas
Lifted inference (Gogate and Domingos 2011; Jha et al.
2010; Milch et al. 2008; Singla and Domingos 2008;
de Salvo Braz, Amir, and Roth 2005; Poole 2003) is a set of
techniques for performing inference on the FOPM represen-
tation without simply reducing the FOPMs to propositional
(ground) graphical models first. In the epidemic example
model, lifted inference can exactly compute the marginal
probability of an epidemic given that 100 people out of a
million are sick without instantiating a million random vari-
ables, and in time constant in the number of people in the
problem.

All of these methods, with the exception of (Kersting et
al. 2010), are guaranteed to revert back to ground infer-
ence under the presence of the kind of distinct soft evidence
considered in this paper. To see why, suppose that from
the Friends and Smokes MLN, we obtain the soft evidence
wi : Cancer(Pi), i = 1 . . . n, where wi are distinct real
numbers. The exact lifted inference methods (Gogate and
Domingos 2011; Milch et al. 2008; de Salvo Braz, Amir, and
Roth 2005; Poole 2003) would treat each individual Pi dif-
ferently, leading to the grounding of the whole model. Lifted
BP (Singla and Domingos 2008) and Counting BP (Ker-
sting, Ahmadi, and Natarajan 2009) both treat the distinct
soft evidence as distinct factors, leading to distinct compu-
tation trees for every individual messages; thus these meth-
ods also revert to ground inference. While it is plausible that
a quantization-based approximation such as (Kersting et al.
2010) can find a grouping of variables for lifting in this case,
distinct soft evidence would pose a serious challenge for this
approach, especially if the strengths of the soft evidence are
uniformly distributed.

Since counting formulas play an important role in the
LIDE method, we describe the method in more details. C-
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FOVE (Milch et al. 2008) introduced the notion of count-
ing formulas to lifted inference. Counting formulas are ran-
dom variables representing the histogram of values in a set
of symmetric random variables. In the “Friends & Smokes”
MLN example, {Cancer(x)}x is a set of symmetric random
variables (in the absence of evidence distinguishing them
from each other), and #x[Cancer(x)] is a counting formula
ranging over histograms of how many individuals have can-
cer and how many do not.

Imagine that we want to compute the joint marginal prob-
ability of {Cancer(x)}x. Because the fifth clause in the
model connects Smokes(x) and Smokes(y), the instances
of {Cancer(x)}x become connected and their marginal
cannot be provided in a factorized form with a factor per x.
However, this marginal can be provided as a function of the
counting formula #x[Cancer(x)], because it only depends
on how many individuals have cancer, not which ones (since,
after all, the individuals in this set are interchangeable). This
allows a much more compact representation than a function
on the exponentially many assignments on {Cancer(x)}x.

3 Lifted Inference With Distinct Evidence
(LIDE)

Consider an MLN M0 and a unary predicate q that appears
in M0, where each instance q(x) of q is a binary ({0, 1}-
valued) random variable. Consider also soft evidence on ev-
ery instance q(x) of q in the form of a weighted formula1

wx : q(x) where the weights wx are distinct, which to-
gether with M0 form an MLN M . With traditional lifted
inference, the symmetry of the model is destroyed by the
sentences on individual random variables, which causes ex-
isting lifted inference methods to revert back to ground in-
ference. For example, we may haveM0 equal to the MLN in
the “Friends & Smokes” example, and M equal to M0 plus
the distinct soft evidence on every instance of Cancer(x)
(for example, the result of a screening test providing a prob-
ability of cancer on an individual). We want to take the prior
knowledge encoded in M0 into account in order to assess
the posterior probability of each individual actually having
cancer. It is clear that current exact (and some approximate)
lifted inference methods would reduce to ground inference
in the presence of this type of evidence.

The main contribution of this paper is to show how the
symmetry present in M0 can still be exploited in this case.
The method is based on obtaining the prior probability on
the counting formula of the random variables on which one
has evidence (in this case, {Cancer(x)}x). Therefore, this
prior is a symmetric function on that set of random vari-
ables. Because this prior probability is computed before the
evidence is taken into account, it can be obtained with lifted
inference fromM0 in time polynomial in the size of the sym-
metric sets of random variables. Only then is the evidence
taken into account, in time also polynomial, exploiting the
fact that the prior computed from M0 is a symmetric func-
tion.

1This set of evidence can also be modeled as a set of factors
{φx(q(x))}

3.1 Symmetry of Ground Instances of MLN
Unary Predicates

Here, we study the symmetry of vectors of random variables
resulting from grounding a unary predicate in a given MLN.
We start with a formal definition of symmetric functions.

Definition 1. A n-variable function f(t1, . . . , tn) is sym-
metric if for all permutation π ∈ Sn, the set of all per-
mutations on n items, permuting the variables of f by π
does not change the output value, that is, f(t1, . . . , tn) =
f(tπ(1) . . . , tπ(n)).

In the case where the variables ti of a symmetric function
f are binary, it is clear that the value of f depends only on
the number of 1 values in the vector t. Thus, f can be sum-
marized precisely by n + 1 values ck, k = 0, . . . , n, where
ck = f(t) for any t such that ‖t‖1 = k. The set of ck is
termed the counting representation of the symmetric func-
tion f .

Given the MLN M0, let P0 be the distribution defined by
M0, and let q be a unary predicate inM0. For ease of exposi-
tion, we assume that all individuals of M0 are from a single
domain (type) D, but this requirement is not essential and
can be relaxed. Assume that the MLN M0 mentions a set
of constants D0 ⊂ D, and let D∗ = D\D0 = {d1, . . . , dn}
be the set of individuals in the domain that do not appear
in the MLN. Since M0 mentions no specific individual in
D∗, all individuals in it are exchangeable. Therefore, we
can expect that the random variables (q(d1) . . . q(dn)) are
exchangeable under Pr(·|M0) as stated formally in the fol-
lowing theorem.

Theorem 1. Let D∗ = {d1, . . . , dn} be the set of indi-
viduals that do not appear as constants in the MLN M0

and let q be a unary predicate in M0. Then, P0(.) =
Pr(q(d1) . . . q(dn) |M0) is a symmetric function of n vari-
ables. Equivalently, the random vector (q(d1) . . . q(dn)) is
exchangeable under P0.

The proof of this theorem can be found in the appendix.
While the above result might seem intuitive, it does not hold
for the case when the arity of q is strictly larger than one.

Given the application of lifted inference techniques on
M0 alone, we can obtain a potential function on the count-
ing formula #x∈D∗ [q(x)], which is a counting representa-
tion of the symmetric function P0(q(d1) . . . q(dn)). In the
next subsection, we show how to take into account the dis-
tinct evidence on each instance of q(x), where x ranges over
the individuals in D∗.

3.2 Posterior of Exchangeable Binary Random
Variables

To proceed, we make several simplifications of the no-
tations: q(di) will be referred to as qi, and the poten-
tial representing the evidence φdi(q(di)) simply as φi(qi).
The problem of incorporating the evidence concerns the
posterior of the random vector q, which can be written
in the form P (q1, . . . , qn) = 1

ZF (q1 . . . qn)
∏n
i=1 φi(qi)

where F (q1 . . . qn) denote a symmetric function on q =
(q1, . . . , qn) (of which P0 is one possible example). In par-
ticular, we would like to compute the MAP assignment q,
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the normalizing term Z, and the marginal probability P (qi)
for some i. Note that q can be thought of as having an ex-
changeable prior distribution whose posterior needs to be
computed.

We will assume that φi(0) > 0 for ease of exposition. Let
αi = φi(1)

φi(0)
. Note that φi(qi) = αqii φi(0), so

P (q) =
1

Z
F (q1 . . . qn)

n∏
i=1

αqii φi(0)

=
1

Z
F (q1 . . . qn)

n∏
i=1

αqii

(
n∏
i=1

φi(0)

)

=
Φ

Z
F (q1 . . . qn)

n∏
i=1

αqii

where Φ =
∏n
i=1 φi(0) does not depend on q.

The key fact allowing efficient computation is that F is
a symmetric function on a vector of binary variables. We
know that F depends only on the number of values 1 in q,
so let ck = F (q) where ‖q‖1 = k. Then, for vector q with k
values 1 and indices i1, . . . , ik such that qi1 . . . qik are 1 and
the rest of q’s values are 0, we have

P (q) =
Φ

Z
ck

k∏
j=1

αij (2)

3.3 MAP Inference
We now show how to compute the MAP assignment of the
set of all groundings of the unary predicate q given the evi-
dence. Since α depends only on the evidence {φi}, we can
sort it in decreasing order in advance into another vector
α′ = απ(i) . . . απ(n). Then with the help of Eq. (2)

max
q
P (q) = max

k
max

q:‖q‖1=k
P (q)

= max
k

max
q:‖q‖1=k

Φ

Z
ck

k∏
j=1

αij = max
k

Φ

Z
ck max

q:‖q‖1=k

k∏
j=1

αij

The second maximization allows us to choose any vector
q with ‖q‖1 = k, and is trivially solved by picking q that
selects the largest k values in α, which are the k first values
of α′, that is, q such that qi = 1 if i ∈ {π(1), . . . , π(k)}
and 0 otherwise. This constant-time maximization is then
repeated for each value of k, as shown in Algorithm 1. The
complexity of this algorithm isO(n log n) due to the sorting
step.

3.4 Compute Z
By the definition of the normalization term, Z =
Φ
∑
q1...qn

F (q)
∏n
i=1 α

qi
i . We first observe that Z is a mul-

tivariate polynomial of the variablesα1 . . . αn. Furthermore,
Z as a function of α1 . . . αn is also symmetric; thus, it is a
symmetric polynomial in α1 . . . αn. Symmetric polynomi-
als are known to have nice properties that lead to efficient

Algorithm 1 MAP Inference
Find maxq P (q) = 1

ZF (q)
∏n
i=1 φi(qi)

Input: ck = F (q), s.t.‖q‖1 = k; αi = φi(1)
φi(0)

1: (α′, order)← sort(α1, . . . , αn) in descending order
2: prodα′ ← 1; maxval← c0; k ← 0
3: for i=1,. . . ,n do
4: prodα′ ← prodα′ × α′i
5: if ci × prodα′ > maxval then
6: maxval← ci × prodα′
7: k = i
8: end if
9: end for

10: return q where

11: qi =

{
1 if order(i) ≤ k
0 otherwise

computation.2 In particular, the fundamental theorem of
symmetric polynomials asserts that any symmetric polyno-
mial can be expressed in terms of a small number of building
units called elementary symmetric polynomials (Fine and
Rosenberger 1997).

Definition 2. For 0 ≤ k ≤ n, the k-th order elementary
symmetric polynomial of n variables α1 . . . αn, denoted by
ek(α1 . . . αn), is the sum of all products of distinct k ele-
ments of α

ek(α) =
∑

1≤i1<...<ik≤n

αi1 . . . αik

when k = 0, e0(α) = 1.
The expression ofZ in terms of the elementary symmetric

polynomials in this case turns out to be very simple as the
following theorem shows.

Theorem 2. Z = Φ
∑n
k=0 ckek(α) where ck = F (q), q is

such that ‖q‖1 = k (i.e., {ck} are the counting representa-
tion of F ).

Proof. Starting from Z = Φ
∑
q1...qn

F (q)
∏n
i=1 α

qi
i , by

breaking the summation over all q′s into n+1 groups where
in each group, ‖q‖1 = k, k = 0 . . . n we obtain

Z = Φ
n∑
k=0

ck

 ∑
q : ‖q‖1=k

n∏
i=1

αqii


Note that

∑
q : ‖q‖1=k

∏n
i=1 α

qi
i is the sum of all products

of k distinct elements of (α1 . . . αn), and this by definition
is ek(α).

It remains to show that the elementary symmetric polyno-
mials can be computed efficiently. One way to achieve this is
via Newton’s identity (Mead 1992), which yields a recursive
method of computing all elementary symmetric polynomials
up to n-th order in O(n2).

2(Jha et al. 2010) exploited the fact that Z is a multivariate
polynomial. Our work however also exploits the symmetry of Z.
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Algorithm 2 Computing Z
Compute Z =

∑
q P (q) =

∑
q F (q)

∏n
i=1 φi(qi)

Input: ck = F (q), s.t.‖q‖1 = k; φi
1: Z ← 0
2: Φ← 1
3: for i = 1, . . . , n do
4: αi ← φi(1)/φi(0)
5: Φ← Φ× φi(0)
6: end for
7: e0(α)← 1
8: for k = 1, . . . , n do
9: pk(α)← 0

10: for i = 1, . . . , n do
11: pk(α)← pk(α) + αki
12: end for
13: ek(α)← 0
14: for i = 1, . . . , k do
15: ek(α)← ek(α) + (−1)i−1 × ek−i(α)× pi(α)
16: end for
17: ek(α)← ek(α)/k
18: Z ← Z + ck × ek(α)
19: end for
20: Z ← Z × Φ
21: return Z

Proposition 1. (Newton’s identities) Let pk(α1 . . . αn) =∑n
i=1 α

k
i . Then

ek(α) =
1

k

k∑
i=1

(−1)i−1ek−i(α)pi(α)

The overall algorithm for computing the normalization
term Z is given in Algorithm 2. The complexity of this algo-
rithm (not taking into account the complexity of computing
ck) is O(n2).

3.5 Marginal Inference
As usual, the marginals P (qi) can be computed in a way
similar to the computation of the normalization term Z, as
the following theorem shows.
Theorem 3. Let α∗ be the vector such that α∗i = 0 and
α∗j = αj for every j 6= i. Then

P (qi = 0) =

∑n
k=0 ckek(α∗)∑n
k=0 ckek(α)

Proof. Basic manipulation of P (qi = 0) gives

P (qi = 0) =
∑
q1...qn

P (q)δ(qi = 0)

=
1

Z

∑
q1...qn

F (q)δ(qi = 0)
n∏
j=1

φj(qj)

=
1

Z

∑
q1...qn

F (q)
n∏
j=1

φ∗j (qj)

where δ() is the indicator function and φ∗i (qi) =
φi(qi)δ(qi = 0) and φ∗j (qj) = φj(qj) for every j 6= i.

Observe that the term
∑
q1...qn

F (q)
∏n
j=1 φ

∗
j (qj) is just an-

other normalization term Z∗ that, by theorem 2,

Z∗ =
n∏
j=1

φ∗j (0)
n∑
k=0

ckek(α∗) = Φ
n∑
k=0

ckek(α∗)

where α∗j = φ∗(1)
φ∗(0) = αj for all j 6= i and α∗i = 0.

4 Experiments
We ran experiments on the “Friends & Smokes” MLN de-
scribed earlier. The task is to compute the marginal prob-
ability of having cancer of each individual given the can-
cer screening test results of the entire population as soft
evidence. We encoded this soft evidence by introducing a
unit clause wi : Cancer(Pi) for each person in the pop-
ulation; each weight wi was uniformly sampled from the
interval [0,2]. As discussed above, all existing exact lifted
inference methods reduce to ground inference with this type
of evidence. Exact inference on the grounded model is
intractable in this case due to the high tree-width of the
grounded model. In particular, exact junction tree ran out
of memory when the number of individuals n = 33. On the
other hand, Lifted BP and Counting BP reduce to ground
BP.3 Thus, we compared the performance of our exact lift-
ing algorithm (LIDE) with Belief Propagation (BP) (Pearl
1988). For LIDE, we used a minor extension of C-FOVE
(Milch et al. 2008) to compute the ck’s, which are the un-
normalized probabilities of exactly k people having cancer
before taking into account soft evidence. For BP, we used
the implementation in libDAI (Mooij 2010) with the follow-
ing setting: parallel updates, max iterations = 500, conver-
gence threshold = 1e-9, no damping. All the experiments
were conducted on a personal computer with 2.7 GHz Intel
Core i7 and 8 GB memory.

We first ran an experiment with the original “Friends &
Smokes” MLN. The running time of each algorithm is lim-
ited to 900 seconds. Figure 1 shows the running times of our
exact lifting algorithm and BP when the number of persons
is increased. For this MLN, BP surprisingly converged (in
less than 10 iterations) to the right marginals but it ran much
slower than LIDE. For example, in the case of 800 people,
our algorithm took 132 seconds while BP took 643.2 sec-
onds (the time for grounding the network is not included in
the BP running times). As a result, within the time limit, BP
can run only up to the case of 800 people while LIDE can
run up to the case of 1500 people. Memory usage is another
bottleneck for BP since storing the ground network takes
O(n2) space. Since LIDE does not ground the network, it
uses only O(n) space.

The fifth clause in the original “Friends & Smokes”
MLN leads to attractive potentials on the pairs
Smoke(x), Smoke(y), which is considered an easy
case for BP (Wainwright, Jaakkola, and Willsky 2003).
Thus, we conducted another experiment on the modified
“Friends & Smokes” MLN where the weight of the fifth
clause is negated (i.e., set to −1.1), which simulates the

3In fact, BP is faster than Lifted or Counting BP since it does
not waste time attempting to find a lifted network
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Figure 1: Running time on the original “Friends & Smokes”
MLN

mixed scenario in (Wainwright, Jaakkola, and Willsky
2003). For this case, we use BP with damping where the
damping parameter is set to 0.1. Figure 2 shows the running
times of LIDE and BP with damping. On this modified
MLN, the running times of LIDE are still the same as those
on the original MLN since its computational complexity
does not depend on the type of potentials. In contrast, even
with damping, BP still requires considerably more iterations
to converge, and the number of iterations requires increases
as the number of individuals n grows. BP did not converge
when n = 200.

It is worth noting that computing ck (that is, the computa-
tion before taking evidence into account) dominates the time
taken by our method, taking much longer than the step incor-
porating evidence. This is significant since this can be seen
as a pre-processing step that can be re-used for multiple sets
of evidence given a fixed M0.

5 Conclusion
We have shown how to leverage the symmetry of an FOPM
in order to perform lifted inference before symmetry is bro-
ken by evidence at the level of each individual in a domain.
This is done by using available lifted inference methods on
the model and obtaining compact functions on potentially
large sets of symmetric random variables, and only then us-
ing this function in conjunction with evidence in order to
compute posterior probabilities. This is significant because
in real applications one typically has an FOPM specified at
an abstract level, with much symmetry, and evidence com-
ing from large datasets that break that symmetry; this typ-
ical scenario renders lifted inference methods proposed to
date ineffective. This paper opens a new line of research in
lifted inference in which the symmetric parts of a model are
processed separately from the asymmetrical parts. Further
directions include investigation on more general forms of
evidence, including evidence on multiple unary predicates

Figure 2: Running time on the modified “Friends &
Smokes” MLN

and on non-unary predicates.
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Appendix
Proof of Theorem 1.

The key element of the proof involves an operation akin
to renaming individuals in the domain D of the MLN. Let π
be a permutation over elements ofD, that is, π ∈ S(D). The
permutaiton π has a renaming effect in that an individual
a ∈ D can now be renamed to π(a) ∈ D. Applying this
renaming operation to a ground atom g = r(b1, . . . , bm)
we obtain π(g) = r(π(b1), . . . , π(bm)). Similarly, for any
Herbrand model ω MLN, π(ω) is the set of all ground atoms
in ω after being renamed by π.
Lemma 1. Let F be an MLN formula with variables
x1, . . . , xn and constants b1, . . . , bm. Denote F [t1 . . . tn]
the result of substituting ti for xi in F. Ifπ(bi) = bi for all
constants bi then

ω |= F [a1 . . . an] ⇐⇒ ω′ |= F [a
′

1 . . . a
′

m]

where ai ∈ D∗, ω
′

= π(ω), a
′

i = π(ai).

Proof. The proof is straightforward using an inductive argu-
ment on the length of F .
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The base case assumes that F is an atomic formula. In
this case ω |= F [a1 . . . an] simplifies to F [a1 . . . an] ∈ ω.

Renaming F [a1 . . . an] by π, we obtain F [a
′

1 . . . a
′

m] since
π does not change any of the constant symbols in F . Thus,
by definition of π(ω), F [a1 . . . an] ∈ ω and F [a

′

1 . . . a
′

m] ∈
ω
′

are equivalent. The same argument also holds if F is a
negation of an atomic formula.

The induction argument takes care of logical connectives.
As an example let F = F1 ∧ F2; then, by induction

ω |= Fi[a1 . . . an] ⇐⇒ ω
′
|= Fi[a

′

1 . . . a
′

n]

so ω |= F1[a1 . . . an] ∧ F2[a1 . . . an] ⇐⇒ ω
′ |=

F1[a
′

1 . . . a
′

n] ∧ F2[a
′

1 . . . a
′

n].

Lemma 2. Given an MLN M0, let π be a renaming permu-
taiton that fixes all constants inM0. Then, for any Herbrand
model ω

Pr(ω |M0) = Pr(π(ω) |M0)

Proof. For any formular F of the MLN M0, let G(F, ω)
be the set of groundings of F that are in ω (that is, the
set of true groundings of F ). It is sufficient to show that
|G(F, ω)| = |G(F, ω

′
)| where ω

′
= π(ω). To do this, we

establish a bijective mapping beween members of the two
sets. Let F [a1 . . . an] be a true grounding in ω. This map-
ping returns F [a

′

1 . . . a
′

n], which, by the above lemma, is a
true grounding in ω

′
. Observe that this mapping is a bi-

jection since its inverse can be obtianed via the renaming
operation π−1.

We now return to the main proof of Theorem 1.

Proof. We first encode the random vector (q(d1) . . . q(dn))
as a ground formula Q = Q1 ∧ . . . ∧Qn where Qi = q(di)
if q(di) = 1 and Qi = ¬q(di) if q(di) = 0. Ob-
serve that P0(q(d1) . . . q(dn)) = Pr(Q) =

∑
ω|=Q Pr(ω).

Let π be any renaming permutation that fixes all constants
in M0. By the above two lemmas, ω |= Q ⇐⇒
π(ω) |= π(Q) and Pr(ω) = Pr(π(ω)). Simple
arithmetic then leads to Pr(Q) = Pr(π(Q)). Finally,
observe that π(Q) is a formula encoding of the vec-
tor (q(π(d1)) . . . q(π(dn))). Thus, we have proved that
P0(q(d1) . . . q(dn)) = P0(q(π(d1)) . . . q(π(dn))). The
only requirement for π is that it fixes all constants in M0.
Thus, π can permute d1 . . . dn in any possible way.
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